# Temperature dependence of the elastic constants of alkali halides

U. C. Shrivastava

Physics Department, Jiwaji University, Gwalior 474002, India (Received 16 February 1979)

The pseudopotential theory of Ruffa has been used to calculate the temperature dependence of the elastic constants of alkali halides crystallizing in CsCl-like and NaCl-like structures, using the Lundquist potential, and taking the thermal expansion as the experimental input. This potential contains the many-body interactions, which explains the violation of Cauchy's relations even at 0°K. The agreement between these calculated results and the available experimental data is much better than that of any other recent theories. In the case of the NaCl-like structure, our present model for the first time predicts the anomalous increase in  $C_{12}$  with temperature.

#### I. INTRODUCTION

Much theoretical work has been done on the temperature dependence of the elastic constants of alkali halides with two-body potentials, <sup>1-5</sup> but these potentials fail to explain the experimentally observed violation of Cauchy's relations  $(C_{12} = C_{44})$ . Earlier, Puri and Verma<sup>6</sup> explained the violation of Cauchy's relations even at 0 °K, through the Lundquist potential model with many-body interactions. The calculation of many-body interactions in the above theories<sup>1-5</sup> is very much involved. Recently Ruffa<sup>7</sup> has proposed the pseudopotential theory to explain the temperature dependence of the elastic shear moduli of cubic metals and we find that this pseudopotential theory is straightforward to work with many-body interactions in alkali halides. In the present work we use Ruffa's theory to calculate the temperature dependence of the elastic constants of alkali halides crystallizing in CsCl-like and NaCl-like structures using the Lundquist potential.<sup>8,9</sup> Care has been taken to use the equilibrium condition in accordance with lattice vibrations. Our results not only explain the violation of Cauchy's relation but also explain the anomalous temperature dependence of  $C_{12}$  in NaCl-like structures.

### **II. THEORY**

The expressions for the elastic constants (of second order) determined by Puri *et al.*<sup>8</sup> and Garg *et al.*<sup>9</sup> with only nearest-neighbors repulsive interactions may be written

$$C_{11} = \frac{e^2}{4r^4} \left( 0.7010 \epsilon [\epsilon + 16f(r)] + \frac{A(r) + 2B(r)}{6} + 3.1336 \epsilon r \frac{\partial f}{\partial r} \right), \quad (1)$$

$$C_{12} = \frac{e^{2}}{4r^{4}} \left( -0.4636\epsilon [\epsilon + 16f(r)] + \frac{A(r)}{6} + 3.1336\epsilon r \frac{\partial f}{\partial r} \right), \qquad (2)$$

$$C_{44} = \frac{e^2}{4r^4} \left( -0.1244\epsilon \left[ \epsilon + 16f(r) \right] + \frac{A(r)}{6} + B(r) \right) \quad (3)$$

for CsCl-like structure;

$$C_{11} = \frac{e^2}{4r^4} \left( -5.112\epsilon \left[\epsilon + 12f(r)\right] +A(r) + 9.3204\epsilon r \frac{\partial f}{\partial r} \right), \tag{4}$$

$$C_{12} = \frac{e^2}{4r^4} \left( 3.721 \epsilon [\epsilon + 12f(r)] + 2B(r) + 9.3204 \epsilon r \frac{\partial f}{\partial r} \right),$$
(5)

$$C_{44} = \frac{e^2}{4r^4} \{ 0.8085 \epsilon [\epsilon + 12f(r)] - \frac{1}{2}B(r) \}$$
(6)

for NaCl-like structures. The equilibrium condition is given by

$$B(r) = -0.3392\epsilon [\epsilon + 16f(r)]$$
(7)

for CsCl-like structures and

$$B(r) = -1.165\epsilon |\epsilon + 12f(r)| \tag{8}$$

for NaCl-like structures.

We see that in determining the equilibrium conditions (7) and (8) we have not taken into account the concept of lattice vibrations, and hence Eqs. (7) and (8) are satisfied only when  $r=r_0$ ,  $r_0$  being the position of potential minima. At a certain temperature the distance between nearest neighbors is no longer the position of potential minima. Therefore equilibrium conditions (7) and (8) are not obeyed at certain temperatures other than 0 °K.

<u>21</u>

2602

|                                                       | $r_0$ (10 <sup>-8</sup> cm)                                                                                                            | $C_{11}$<br>(10 <sup>11</sup> dyn/cm <sup>2</sup> )                                                                                                                          | $C_{12}$<br>(10 <sup>11</sup> dyn/cm <sup>2</sup> )                                                                                                                          | $C_{44}$<br>(10 <sup>11</sup> dyn/cm <sup>2</sup> )                                                                                                                          |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CsCl<br>CsBr<br>CsI<br>LiCl<br>LiBr<br>NaF            | 3.5150 <sup>a</sup><br>3.6645 <sup>c</sup><br>3.9018 <sup>c</sup><br>2.5467 <sup>d</sup><br>2.7136 <sup>d</sup><br>2.3032 <sup>d</sup> | 4.112 <sup>b</sup><br>3.417 <sup>b</sup><br>3.152 <sup>b</sup><br>5.940 <sup>b</sup><br>4.762 <sup>b</sup><br>11.340 <sup>b</sup>                                            | 1.196 <sup>b</sup><br>0.955 <sup>b</sup><br>1.040 <sup>b</sup><br>2.010 <sup>b</sup><br>1.620 <sup>e</sup><br>2.598 <sup>b</sup>                                             | 1.125 <sup>b</sup><br>1.033 <sup>b</sup><br>0.898 <sup>b</sup><br>2.695 <sup>b</sup><br>2.057 <sup>b</sup><br>2.459 <sup>b</sup>                                             |
| NaCl<br>NaBr<br>NaI<br>KF<br>KCl<br>KBr<br>KI<br>RbCl | 2.7865 f<br>2.9567 d<br>3.1967 a<br>2.6568 d<br>3.1115 f<br>3.2580 j<br>3.4840 j<br>3.2564 f                                           | 5.745 <sup>e</sup><br>4.964 <sup>b</sup><br>3.700 <sup>h</sup><br>7.712 <sup>b</sup><br>4.940 <sup>i</sup><br>4.250 <sup>k</sup><br>3.499 <sup>b</sup><br>4.525 <sup>b</sup> | 0.980 <sup>g</sup><br>1.286 <sup>b</sup><br>0.816 <sup>b</sup><br>1.590 <sup>b</sup><br>0.664 <sup>b</sup><br>0.510 <sup>k</sup><br>0.299 <sup>b</sup><br>0.675 <sup>b</sup> | 1.316 <sup>b</sup><br>1.069 <sup>b</sup><br>0.781 <sup>b</sup><br>1.296 <sup>b</sup><br>0.662 <sup>b</sup><br>0.583 <sup>b</sup><br>0.389 <sup>b</sup><br>0.511 <sup>b</sup> |
| RbI                                                   | 3.6220                                                                                                                                 | 3.181 <sup>b</sup>                                                                                                                                                           | 0.321 <sup>b</sup>                                                                                                                                                           | 0.283 <sup>b</sup>                                                                                                                                                           |

TABLE I. Input data at absolute zero or extrapolated value at absolute zero from low-temperature data.

<sup>a</sup>Leibfried and Ludwig (Ref. 1).

<sup>b</sup> Botaki, Gyrbu, and Sharko (Ref. 10).

<sup>c</sup> Bijanki and Hardy (Ref. 11).

<sup>d</sup>Rapp and Merchant (Ref. 12).

<sup>e</sup>Marshall and Cleavelin (Ref. 13).

<sup>f</sup> Hardy and Karo (Ref. 14).

<sup>g</sup>Durand (Ref. 15).

<sup>h</sup>Claythor and Marshall (Ref. 16).

<sup>1</sup>Norwood and Briscoe (Ref. 17).

<sup>j</sup> Sarkar and Sengupta (Ref. 18).

<sup>k</sup>Galt (Ref. 19).

According to the theory of Ruffa,<sup>7</sup> we have

$$r_0 = r_n (1 - x) , (9)$$

where  $r_n$  is the distance between nearest neighbors and x is the fractional change in the position of potential minima and nearest neighbors. x is related to the linear-thermal-expansion coefficient  $\alpha$  as follows:

$$\alpha = \frac{1}{1-x} \frac{\partial x}{\partial T} \,. \tag{10}$$

Using relations (9) and (10), the temperature derivatives of the elastic constants are given as

TABLE II. Calculated values of parameters from extrapolated values at absolute zero.

|      | $A_0$   | B <sub>0</sub> | $[-10^2 f(r_0)]$ | $10^2 r_0 (\partial f / \partial r_0)$ | r <sub>0</sub> /p |
|------|---------|----------------|------------------|----------------------------------------|-------------------|
| CsCl | 4.2590  | -0.2770        | 1.1462           | 0.6672                                 | 15,3758           |
| CsBr | 4.4213  | -0.2763        | 1.1596           | -0.8659                                | 16.0039           |
| CsI  | 4.9066  | -0.3046        | 0.6375           | 2.0260                                 | 16.1083           |
| LiCl | 12.0714 | -1.6484        | -3.4578          | -5.3673                                | 7.3231            |
| LiBr | 12.0097 | -1.6218        | -3.2666          | -4.4135                                | 7.4058            |
| NaF  | 9.8865  | -1.0061        | 1.1368           | 0.7285                                 | 9.8267            |
| NaC1 | 11.4270 | -1.1536        | 0.0813           | -3.7733                                | 9.9052            |
| NaBr | 11.5113 | -1.1880        | -0.1643          | 3.0892                                 | 9.6900            |
| NaI  | 11.8480 | -1.1859        | -0.1493          | 0.6808                                 | 9.9910            |
| KF   | 10.5361 | -0.9389        | 1.6176           | 2.7284                                 | 11.2221           |
| KCl  | 11.8316 | -0.9022        | 1.8797           | 0.0271                                 | 13.1139           |
| KBr  | 12.6470 | -0.9551        | 1.5014           | -1.5320                                | 13.2415           |
| KI   | 12.8370 | -0.8334        | 2.3722           | -2.4699                                | 15.4040           |
| RbC1 | 11.9220 | -0.8178        | 2.4838           | 3.3623                                 | 14.5781           |
| RbI  | 12.4989 | -0.7082        | 3.2675           | 1.2182                                 | 17.6482           |

=

$$\frac{\partial C_{11}}{\partial T} = -\frac{e^2}{4r_0^4} \left( 2.804 \epsilon \left[ \epsilon + 16f(r_0) \right] + \frac{A_0(1+r_0/\rho) + 2B_0(2+r_0/\rho)}{6} + 12.5344 \epsilon r_0 \frac{\partial f}{\partial r} \Big|_0 \right) (1-x)^3 \frac{\partial x}{\partial T} , \qquad (11)$$

$$\frac{\partial C_{12}}{\partial T} = -\frac{e^2}{4r_0^4} \left( -1.8543\epsilon \left[\epsilon + 16f(r_0)\right] + \frac{A_0(1+r_0/\rho)}{6} + 12.5344\epsilon r_0 \frac{\partial f}{\partial r} \bigg|_0 \right) (1-x)^3 \frac{\partial x}{\partial T} , \qquad (12)$$

$$\frac{\partial C_{44}}{\partial T} = -\frac{e^2}{4r_0^4} \left[ -0.4975\epsilon \left[\epsilon + 16f(r_0)\right] + \frac{A_0(1+r_0/\rho)}{6} + B_0\left(2 + \frac{r_0}{\rho}\right) \right] (1-x)^3 \frac{\partial x}{\partial T} , \qquad (13)$$

for CsCl-like structures;

$$\frac{\partial C_{11}}{\partial T} = -\frac{e^2}{4r_0^4} \left[ -20.228\epsilon \left[\epsilon + 12f(r_0)\right] + A_0 \left(1 + \frac{r_0}{\rho}\right) + 37.2816\epsilon r_0 \frac{\partial f}{\partial r} \Big|_0 \right] (1-x)^3 \frac{\partial x}{\partial T} , \qquad (14)$$

$$\frac{\partial C_{12}}{\partial T} = -\frac{e^2}{4r_0^4} \left[ 14.884 \epsilon \left[ \epsilon + 12f(r_0) \right] + 2B_0 \left( 2 + \frac{r_0}{\rho} \right) + 37.2816 \epsilon r_0 \frac{\partial f}{\partial r} \Big|_0 \right] (1-x)^3 \frac{\partial x}{\partial T} , \qquad (15)$$

$$\frac{\partial C_{44}}{\partial T} = -\frac{e^2}{4r_0^4} \left[ 3.234\epsilon [\epsilon + 12f(r_0)] - \frac{B_0(2+r_0/\rho)}{2} \right] (1-x)^3 \frac{\partial x}{\partial T}$$
(16)

for NaCl-like structures.

Using above derivatives the elastic constants at any temperature may be given as

$$(C_{11})_{T} = (C_{11})_{0} \left( 1 - \alpha_{11} (1 - 2x) \int_{0}^{T} \alpha \, dT \right), \qquad (17)$$

$$(C_{12})_{T} = (C_{12})_{0} \left( 1 - \alpha_{12}(1 - 2x) \int_{0}^{T} \alpha \, dT \right), \qquad (18)$$

$$(C_{44})_{T} = (C_{44})_{0} \left( 1 - \alpha_{44}(1 - 2x) \int_{0}^{T} \alpha \, dT \right), \qquad (19)$$



FIG. 1. Temperature dependence of the elastic constants of CsCl:  $\bigcirc$ ,  $C_{11}$  and  $C_{12}$ ;  $\bigcirc$ ,  $C_{44}$  according to Botaki, Gyrbu, and Sharko; —, calculated by the present model.

where the indices 0 and T represent the values at 0 °K and T °K, and  $\alpha_{ij}$  are given as

$$\alpha_{ij} = \frac{\partial C_{ij}}{\partial T} / (C_{ij})_0 (1-x)^3 \frac{\partial x}{\partial T} .$$
 (20)

# **III. CALCULATIONS**

The parameters  $A_0$ ,  $B_0$ ,  $f(r_0)$ , and  $r_0 \partial f/\partial r_0$  are determined for both the structures by the expressions for second-order elastic constants and the equilibrium conditions [Eqs. (1)-(8)] from the ex-



FIG. 2. Temperature dependence of the elastic constants of NaCl:  $\bigcirc$ ,  $C_{11}$  according to Haussuhl;  $\bigcirc$ ,  $C_{12}$ according to the temperature derivatives of Haussuhl; and  $\bigcirc$ ,  $C_{44}$  according to Botaki, Gyrbu, and Sharko; ——, calculated by the present model.

2604

21

2605

|      | C <sub>11</sub><br>(10 <sup>8</sup> dyn/cm <sup>2</sup> °K) | C <sub>12</sub><br>(10 <sup>8</sup> dyn/cm <sup>2</sup> K) | C <sub>44</sub><br>(10 <sup>8</sup> dyn/cm <sup>2</sup> °K) | Reference               |
|------|-------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------|
| CsCl | -1.490                                                      | -0.780                                                     | -1.077                                                      | Present                 |
|      | -0.648                                                      | -0.278                                                     | -0.150                                                      | Theor. (Ref. 1)         |
|      | -1.523                                                      | -0.849                                                     | -1.062                                                      | Expt. (Ref. 10)         |
| CsBr | -1.429                                                      | -0.783                                                     | -1.054                                                      | Present                 |
|      | -1.220                                                      | -0.692                                                     | -0.931                                                      | Expt. (Ref. 10)         |
| CsI  | -1.303                                                      | -0.696                                                     | -0.951                                                      | Present                 |
|      | -1.078                                                      | -0.575                                                     | -0.806                                                      | Expt. (Ref. 21)         |
| LiCl | -2.849                                                      | 0.478                                                      | -0,502                                                      | Present                 |
|      | -3.815                                                      | 0.342                                                      | -0.645                                                      | Expt. (Refs. 10 and 22) |
| LiBr | -3.369                                                      | 0.544                                                      | -0.577                                                      | Present                 |
|      | -3.681                                                      | -1.216                                                     | -0.775                                                      | Theor. (Ref. 2)         |
|      | -2.861                                                      | 1.245                                                      | -0.674                                                      | Expt. (Ref. 10)         |
| NaF  | -4.633                                                      | 0.432                                                      | -0.354                                                      | Present                 |
|      | -5.351                                                      | 0.437                                                      | -0.571                                                      | Expt. (Refs. 10 and 22) |
| NaCl | -2.636                                                      | 0.362                                                      | -0.258                                                      | Present                 |
|      | -2.593                                                      | -0.950                                                     | -0.120                                                      | Theor. (Ref. 1)         |
|      | -3.504                                                      | 0.219                                                      | -0.344                                                      | Expt. (Refs. 10 and 22) |
| NaBr | -2.773                                                      | 0.307                                                      | -0.275                                                      | Present                 |
|      | -3.409                                                      | 0.109                                                      | -0.249                                                      | Expt. (Refs. 10 and 22) |
| NaI  | -2.049                                                      | 0.244                                                      | -0.194                                                      | Present                 |
|      | -2.593                                                      | -0.370                                                     | -0.120                                                      | Theor. (Ref. 1)         |
|      | -2.848                                                      | 0.581                                                      | -0.163                                                      | Expt. (Ref. 22)         |
| KF   | -2.795                                                      | 0.291                                                      | -0.217                                                      | Present                 |
|      | -4.789                                                      | 0.394                                                      | -0,262                                                      | Expt. (Ref. 22)         |
| KCl  | -2.369                                                      | 0.247                                                      | -0.146                                                      | Present                 |
|      | -3.390                                                      | -0.128                                                     | -0.145                                                      | Theor. (Ref. 2)         |
|      | -2.778                                                      | -0.740                                                     | -0.150                                                      | Theor. (Ref. 1)         |
|      | -3.300                                                      | 0.240                                                      | -0.123                                                      | Expt. (Ref. 10)         |
| KBr  | -2.315                                                      | 0.249                                                      | -0.141                                                      | Present                 |
|      | -2.300                                                      | -0.463                                                     | -0.185                                                      | Theor. (Ref. 1)         |
|      | -2.763                                                      | 0.123                                                      | -0.107                                                      | Expt. (Ref. 10)         |
| KI   | -2.348                                                      | 0.232                                                      | -0.115                                                      | Present                 |
|      | -1.389                                                      | -0.740                                                     | -0.370                                                      | Theor. (Ref. 1)         |
|      | -2.541                                                      | 0.347                                                      | -0.063                                                      | Expt. (Ref. $10$ )      |
| RbC1 | -2.282                                                      | 0.222                                                      | -0.118                                                      | Present                 |
|      | -3.158                                                      | 0.353                                                      | -0.108                                                      | Expt. (Ref. 10)         |
| RbI  | -2.246                                                      | 0.186                                                      | -0.090                                                      | Present                 |
|      | -2.451                                                      | 0.321                                                      | -0.058                                                      | Expt. (Ref. 10)         |

TABLE III. Calculated values of the coefficients  $C_1$  of the linear fitted equation ( $C = C_0 + C_1 T$ ), where the  $C_0$  are from Table I, along with available theoretical and experimental results.

perimental value of  $r_0$  and  $(C_{ij})_0$  given in Table I. These parameters are presented in Table II along with  $r_0/\rho$  which is given by the relation<sup>6</sup>

$$A_{0} = (-r_{0}/\rho)B_{0}.$$
 (21)

Since the quantum-mechanical states for the potential are not known,  $\int_0^T \alpha \, dT$  is computed at different temperatures from 0 to 300 °K, from the experimental values of Rapp and Merchant<sup>12</sup> except for RbCl (Cooper and Yates<sup>20</sup>). The value of xis determined by the relation (10). The elastic constants are computed at various temperatures using Eqs. (17)-(19), for all the three alkalimetal halides in CsCl-like structure and 12 out of 16 in NaCl-like structure. These results are fitted in the following equations in the temperature:

$$C = C_0 + C_1 T , \qquad (22)$$

where the  $C_0$  values are already given in Table I. The coefficients  $C_1$  are presented in Table III along with other theoretical and experimental results<sup>21,22</sup> for comparison. The typical curves show the variation of these elastic constants with temperature, for selected members of alkali halides (CsCl, NaCl, KBr, and RbI) are also shown in Figs. 1–4.



FIG. 3. Temperature dependence of the elastic constants of KBr:  $\bigcirc$ ,  $C_{11}$  and  $C_{44}$ ; and  $\otimes$ ,  $C_{12}$  according to Botaki, Gyrbu, and Sharko;  $\bigoplus$ ,  $C_{12}$  according to Galt; \_\_\_\_\_, calculated by the present model.

### **IV. RESULTS AND CONCLUSIONS**

We see that our results give excellent agreement with the experimental results. This agreement is much better than that of previous workers, <sup>1,2</sup> especially in the case of NaCl-like structure. Our model for the first time predicts the observed anomalous increase in  $C_{12}$  with temperature.

We conclude that Ruffa's pseudopotential treatment is a useful tool to investigate the many-body interactions. Inclusion of many-body interaction ensures three distinct elastic constants even at 0 °K. Since at certain finite temperature the nearest-neighbor distance is not the position of potential minima, the equilibrium conditions (7)

- <sup>1</sup>G. Leibfried and W. Ludwig, Solid State Phys. <u>12</u>, 275 (1961).
- <sup>2</sup>J. A. Garber and A. V. Granato, Phys. Rev. B <u>11</u>, 3990 (1975); 11, 3998 (1975).
- <sup>3</sup>S. C. Lakkad, J. Appl. Phys. 42, 4277 (1971).
- <sup>4</sup>Y. Hiki, J. F. Thomas, and A. V. Granato, Phys. Rev. 153, 764 (1967).
- <sup>5</sup>K. D. Swartz, J. Acoust. Soc. Am. 41, 1083 (1967).
- <sup>6</sup>D. S. Puri and M. P. Verma, Solid State Commun. <u>18</u>, 1295 (1976).
- <sup>7</sup>A. R. Ruffa, Phys. Rev. B <u>16</u>, 2504 (1977).
- <sup>8</sup>D. S. Puri, V. K. Garg, and M. P. Verma, Phys. Status Solidi B 78, 113 (1976).
- <sup>9</sup>V. K. Garg, D. S. Puri, and M. P. Verma, Phys. Status Solidi B 80, 63 (1977).
- <sup>10</sup>A. A. Botaki, I. N. Gyrbu, and A. V. Sharko, Sov. Phys. Solid State 13, 3096 (1972).
- <sup>11</sup>S. Bijanki and R. J. Hardy, J. Phys. Chem. Solids <u>38</u>,



FIG. 4. Temperature dependence of the elastic constants of RbI:  $\bigcirc$ ,  $C_{11}$  according to Botaki, Gyrbu, and Sharko;  $\bigcirc$ ,  $C_{12}$  and  $C_{44}$  are according to Haussuhl; \_\_\_\_, calculated by the present model.

and (8) fail to account for the stability of the lattice in view of lattice vibrations. The failure of relations (7) and (8) leads to the different rates of temperature variations of  $C_{12}$  and  $C_{44}$ . These rates are found to be of opposite nature in NaCllike structure.

### ACKNOWLEDGMENTS

The author is very grateful to Professor K. G. Bansigir for guiding him during this work. He also thanks S. Raju for reading the manuscript. The financial assistance from the Council of Scientific and Industrial Research (CSIR), New Delhi is gratefully acknowledged.

- 147 (1977).
- <sup>12</sup>J. E. Rapp and H. D. Merchant, J. Appl. Phys. <u>44</u>, 3919 (1973).
- <sup>13</sup>B. J. Marshall and C. R. Cleavelin, J. Phys. Chem. Solids 30, 1905 (1969).
- <sup>14</sup>R. J. Hardy and A. M. Karo, J. Phys. Chem. Solids <u>38</u>, 335 (1977).
- <sup>15</sup>M. A. Durand, Phys. Rev. <u>50</u>, 449 (1936).
- <sup>16</sup>R. N. Claythor and B. J. Marshall, Phys. Rev. <u>120</u>, 332 (1960).
- <sup>17</sup>M. H. Norwood and C. V. Briscoe, Phys. Rev. <u>112</u>, 45 (1958).
- <sup>18</sup>A. K. Sarkar and S. Sengupta, Phys. Status Solidi B <u>58</u>, 775 (1973).
- <sup>19</sup>J. K. Galt, Phys. Rev. <u>73</u>, 1460 (1948).
- <sup>20</sup>R. F. Cooper and B. Yates, J. Phys. C 4, L113 (1971).
- <sup>21</sup>S. Haussuhl, Acta Crystallogr. <u>13</u>, 685 (1960).
- <sup>22</sup>S. Haussuhl, Z. Phys. <u>159</u>, 223 (1960).