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Lattice dynamics of layered transition-metal dihalides
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We present an extended-shell-model (ESM) calculation of the dispersion relations and of the phonon
density of crystals with either CdI2 or CdC1, structure, namely, of V, Mn, Fe, Co, and Ni dichlorides and

dibromides. The dynamical matrix, including the Coulomb and short-range contributions originating from

the anion static dipoles, is constructed from model interionic potentials. While anion-anion Born-Mayer
repulsion and van der Waals interactions are taken as in alkali halides, the parameters of metal-halogen

short-range potential are obtained from equilibrium nearest-neighbor distance and cohesive energy. To this

purpose we have derived an expression for the cohesive energy suitable to crystals with reduced ionicity and

open d-shell configurations. A transverse metal-metal force constant and a correction to the transverse

anion-anion interlayer force constant are added in ordc!r to fulfill the rotational invariance conditions. The
three electrostatic parameters, net charge Z, anion shell charge Y, and anion shell-core displacement mo, are

adjustable and are best-fitted to the experimental Raman and far-infrared data. A reliable scale of ionicities

ranging from Z = 0.71 of NiBr, to 0.91 of MnC1, is obtained, and the theoretical dynamical charges and

elastic constants are reported, The calculated dispersion curves are in good agreement with the few available

neutron data. For MnCl„where a complete comparison with neutron data is possible, we show how the

various ESM contributions influence the dynamical anisotropy and the lattice stability. Finally, we discuss

the role of central metal-metal interaction, three-body forces, monopolar and quadrupolar metal-ion

breathing (all neglected in the calculations) in order to explain the residual discrepancies,

I. INTRODUCTION

Layered crystals with CdCl, (C19) or Cdl, (C6)
structure form an ample class of binary com-
pounds. Several of them, involving transition
metals, present interesting magnetic properties;
some are today the object of numerous studies on
metal- insulator transition, charge density ~aves,
superionic conduc tivity. Transition- metal di-

/

halides, which still have a relatively large ion-

icity, also show interesting and complex vibronie
features in the region of crystal field transi-
tions. 4 All these aspects, widely investigated in
recent years, have increased the need of knowing
quantitatively the lattice dynamics of layer struc-
tures. Until now, however, the effort made along
this direction, although represented by some ex-
cellent work, was not adequate to the importance
of these materials. '

As Schmid has remarked in his review article, "
layer structures present the challenging feature
of combining a simple chemical formula with a
nonsimple dynamical structure, the latter mainly
originating from anisotropy. A single chemical
bond (or two, if we consider to a further approxi-
mation the metal-metal bonding) is the main un-
known which is expected to account for nine dis-
persion curves. This is a good test for the various
shell models, because of the existence of dynam-
ical features which cancel in isotropic crystals.
However, a good philosophy is approaching this
dynamical problem cannot consist of a mathemati-

cal game ~here parameters of a shell model are
forced to fit a given set of neutron data, but in
building the dynamical matrix from physical inter-
atomic potentials, which, first of all, account for
the equilibrium configuration of the lattice. In
doing this, attention must be paid to all those in-
teractions which cause static and dynamical
anisotropy.

Since in the ideal (trigonally undistorted) C19
structure the anions form an fcc lattice, one can
realize that, in the point-ion approximation, the
dynamical matrix block for zone-center odd-
symmetry modes is formally identical to that of
an NaCl lattice at the I point, while the block
for zone-center even-symmetry modes corre-
sponds to that of NaC1-lattice I point. Such a
similarity (approximately holding also for C6
structure) suggests the helpful distinction of the
various physical interaction into i,sotroPy factors,
like monopole Coulomb forces, and anisotroPy
factors, like dipolar, van der Waals (vdW), and
short- range interactions due to Born-Vayer
repulsion (BM), and covalency. For instance,
dipolar forces are peculiarly responsible for the
anisotropy in LO- TO splitting, as previously
found by Frey and Zeyher, ' while anisotropy in
acoustical branches (which is smaller, the larger
being the monopole Coulomb interaction) receives
an important contribution from the vdW interac-
tion. Indeed, without vdW forces, the price for
reproducing the experimental acoustic branches
along the c axis would be an unphysically low

21 2482 1980 The American Physical Society



21 I, ATTICE DYNAMICS OF LAYERED TRANSITION-METAL. . . 2483

monopole interaction, '4'5 ~hereas the ionicity of
3d metal halides is known to be quite high.

II. GENERAL CONCEPTS ON THE MODEL

This work is devoted to Sd metal dihalides with

either C6 or C19 structure. ' Their respective
symmetry classes are D~z and D~~, and the metal
ions are centers of &+ symmetry in both struc-
tures (Fig. l). We have selected those crystals
for which Raman scattering (RS)" 20 and infrared
(ir) data"" are available, namely the chlorides
and bromides of V, Mn, Fe, Co, and Ni and VI&.

The C6 lattice has a single molecule per unit cell,
whereas C19 is built up by three molecules per
cell. They have in common the same sandwich
structure, and differ only for the stacking of
sandwiches. Since both monopole and dipole parts
of the Madelung constant are the same in the two

lattices within the first three digits, ~ C19
crystals can be treated to a good approximation
with the same dynamical model used for the
simpler C6 structure. Indeed, apart from the ir-
relevant folding of the dispersion curves along the
& axis, the dynamical structure of C10 and C6
lattices are very close. The Brillouin xone (BZ)
of C6 lattice is shown in Fig. 1.

We have used an extended-shell-model (ESM)

(b)

C6

FIG. l. (a) The octahedral cage of anions surroundiag
the metal ion in C6 aad C19 structures. (b) Brillouin
zone of a lattice with CdI2(C6) structure. With respect
to the origin I', the points X, M, and A have coordinates
(4~/3a, 0, 0), (0, 2~/W3c, 0) or (27l/c, 0, 0), and
(0, 0, 2~/c), respectively, where I and c are the distan-
ces between neighbor metal ioas aloag the x and z di-
rectioas, respectively.

version including Coulomb interactions of anion
static dipoles and halogen-halogen vdW force
constants. The dipole-dipole vdW coefficient c«
is derived from the London formula. 3 Short-
range repulsion between halogen ions is described
by a Born-Mayer potential h exp(-r/p) whose pa-
rameters & and p for a closed-shell configuration
are known in the literature. 3

The metal-halogen nearest-neighbor (nn) repul-
sion is also described by a Born-Mayer potential
&, exp(- r/p, ). The exponent parameter p~ is, how-

ever, allowed to be different from p in order to
take into account that 3d metal ions have open
shells and that bonding is partially covalent. The
two metal-halogen repulsive parameters, &0 and

p„are directly fitted to the experimental equilib-
rium interionic distance ro and cohesive energy.
The fitting is performed taking into account that
we are dealing with not completely ionic crystals,
the net halogen charge being —eZ, with Z &1.
This implies that the expression of the "experi-
mental" cohesive energy, as obtained from the
Born-Haber cycle, contains Z-dependent effective
metal ionization and halogen affinity energies,
plus a Z-dependent resonance energy, representing
the covalency contribution in a valence-bond pic-
ture. Z is used as a disposable parameter. The
polarizability of transition-metal iona in view of
their small size is neglected, whereas for the
halide ions we have used the polarizabilities re-
ported by Tessmann, Kahn, and Shockley (TKS). 4

Therefore, in this model the adjustable parameters
are three: Z, the anion shell charge Y, and the
anion static shell-core displacement mo. In princi-
ple these reduce to only two since Y and wp should
reproduce the equilibrium static dipole moment.
However, the static dipole moment is in turn de-
pendent on Z, which makes the exact optimization
of the two parameters rather lengthy. Further-
more, the static dipole is quite sensitive to the
value of u (whose deviation from —,

' represents the
trigonal distortion of the sandwich}, which is not
yet known with sufficient precision in most of the
present crystals. Therefore, we were content to
report a set of results where 0 is kept fixed for
all crystals and only Z and F are disposable: we
shall show that the fitted static dipoles are fairly
consistent with the theoretical values for the un-
distorted configuration (s = —,').

In spite of such internal consistency concerning
the static dipolar structure of the lattice, the
interionic potential model'we use is not expected
to reproduce exactly the equilibrium trigonal dis-
tortion, whose parameters c/a and s, on the other
hand, are used as input data in the calculation. In
other words the set of force constants directly de-
rived from the above potentials might not be ro-
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tationally invariant. The application of the rota-
tional invariance conditions, ' equivalent to the
equilibrium conditions for c/a and s, yields a
correction of the transverse interlayer anion-
anion force constant &» and the addition of a
transverse metal-metal force constant 8„„.Al-
though there is clear evidence that metal-metal
interaction is not completely negligible in PbI2, '~

we have not included the radial metal-metal force
constant A« in this model, as at present we have
no a P~ori information on this parameter. How-

ever, in Sec. VIII we shall discuss its role in

MnC1„ for which we have a complete set of neutron
dispersion curves. Finally, owing to the relatively
large ionicity of the compounds, we have neglected
three-body forces. Indeed, the three-body angle-
bonding force constants P(j) and P& „entering a
valence-force-field (VFF) model2~'" fitted on the
experimental optical frequencies turn out to be,
respectively, of the order of ~8 and +» of the nn

force constant A„&. '

III. THE EXTENDED-SHELL MODEL

In the extended shell model, in addition to the
effect of dynamical dipoles, the contribution due
to the static polarization is taken into account.
Static dipoles arise at anions, as they are not
centers of inversion symmetry. The centers of
mass of core and shells are displaced by wo (Fig.
1), and therefore the elements of the dynamical
matrix must be evaluated for the actual core and
shell positions. In particular, the shell-core
(C ) and shell-shell (C ) Coulomb elements do
not coincide with the core-core (C ) Coulomb
force constant, but differ from it by amounts re-
lated to their anharmonic parts.

The ESM dynamical equations read

Mw~u =Au+ But,

Q=B @+AU
q

(1)

(1')

8 =R+XCcs Y+ YCss Y

R+ Y(88Y
(2b)

{2c)

where X and Y are core and shell charge matrices.
The elements of the matrices A, etc. , are denoted
by A 8(K K }, etc. , where q is the wave vector,
&, fi = x, y, z are Cartesian indices (z direction

where u and m are core and shell displacement
vectors, respectively, M is the mass matrix, and
& the phonon angular frequency. The matrices A,
I3, and & are expressed in terms of the short-
range shell-shell matrix R and Coulomb matrices
as

A=R+XC X+XCcs Y+ Y(C~) X+ YCs Y,

(2a)

along the & axis), and &, &' = 1, 2, 3 denote the
atoms of the unit cell (Fig. 1).

Since the adjustable parameters of our model are
best-fitted to the available experimental frequen-
cies of the optical modes [td(A~) and ~(E ) from
RS, and td(A, „,TO), &d(A, „,LO), td(E„, TO), and

cu(E„, LO) from ir measurements], we seek an
explicit form for the frequencies. In the long-
wavelength limit (q=0) Eq. (1) can be block
diagonalized, and the optical mode frequencies can
be written as an analytical expression

(Ot, a(0) =At a+fqBt B~j (Dt + Ytn„t) t, (2)

where i =g, u denotes the parity of the modes, and
a„ is the (isotropic) anion polarizability. For the
odd modes (A2„ for a =z and E„for u =x,y) we
have

ea= ae(t» = et
D„=D (t02), f„=2.

For the even modes (At~ for o =z and E~ for o
=x, y)

A ,= 2A (to~) +A (t~q),

Bz a=2 ee(t 3)+Bee(t t),
Df e ——2Dee(t 3)+Dec(t 2),

f~=1.
The matrix element A (,', ) is given by

Aae(t 2}=Rea(t 2)+ ZtCee(t g)Z2+ Yt Yt&e, t2,

(4)

where

+ Y,&~,&~+ 21', X&4 {8)

(„0„),B („„),and D, („0„)are obtained just
by replacing in the expression of A, („0„), re-
spectively, Z„with Y„, Z„with Y„, and both

Z„, Z„with Y„, Y„. It is useful to explain the
specific role of &,&3, which accounts for the
existence of static dipoles, and distinguishes the
ESM from the ordinary shell models. Since &,,3

is negative, the effect of this term on the ir-active
modes is to enhance the polarization part essen-
tially by reducing the denominator of Eq. (2). On
the other hand, for RS-active modes, this effect
is nearly absent because of the almost complete
cancellation of the two last terms in the right-
hand side of Eq. (8). This behavior will be clearly

a aa' =Cea (» a') Cea(a )a
is the "anharmonic" part of the Coulomb force
constant, and Z„=X„+Y„ is the net charge. Ana-
logously we have

A (,'3) = Re, (,', ) + Z,C, (,',)Z,
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displayed in the numerical results reported in
Sec. VI.

= 3c(1 —2u)8

(9a)

(9b)

a„y.=3sc'(28„„+8„„,.) —9c(I —2s)8„„., (9c)

where 8», 8», and B»" are, respectively, the
anion-anion horizontal, oblique interlayer, and
oblique intralayer transverse force constants, &»
the metal-anion, and &« the metal-metal trans-
verse force constants. Here we have used Eqs.
(9) for defining 8„„,8«, and B„„Inthe a.b-
sence of trigonal distortion [c/a = (-',)'~' and u = —,']
they are given by the approximate (but general)
expressions

8„„=0.03,9Z2(e2/a'), (10a)

8« 214'7Z2(e'./a—') + 8 „„., —28», (10b)

Bs~ = —4 092Z'("/") —28~~" . (10c)

We note that 8„„ for the undistorted configuration
could be obtained directly from the given BM and
vdW potentials. The fact that such an a PH~
value might differ from that given by Eq. (10a)
simply means that the undistorted lattice is not in
equilibrium. In Eq. (10b) B„„could have been
neglected for simplicity and &» ~ defined by this
equation itself. '4'" We have two good reasons for
also including the metal- metal transverse force
constant in the model. First, a weak covalent
bonding between neighboring d-metal ions was
recognized to occur in layer structures. ~s Second,
B„„plays a role in the stability of & acoustic
branches a,t the K point. ' We shall discuss the
inclusion of a physical metal-metal interaction
(i.e. , the addition of the radial force constant
&„„)in Sec. VIlI. Equation (10c), combined with
the cohesive energy equation, is used for deriving
the unknown Born-Mayer parameters &0 and pp.
The electrostatic equation of the shell-core dis-
placement vector wo(1) = (0, 0, w,) =-w, (3) reads

IV. EQUILIBRIUM CONDITIONS

The equilibrium positions of cores and sheBs
are fully defined by the four parameters &, &, I,
and ~0. Thus we have four equilibrium conditions,
which yield three constraints on the set of the
transverse force constants, and an equation for
the static dipole p, o=+Y,~o. The first three
equations state that the derivatives of the Coulomb
(monopole and dipole) potential 3, g, with respect
to any lattice parameters &~ must be equal to the
corresponding components of the short-range
(Born-Mayer plus van der Waals) forces, namely:

3, P, =a(6 „~+B„~.+B~s" + W„~+38'„),

Y2a„'wo(1) =X, g ( Y„&~r(I'x') + ~(K') —r(li)
~

+X„.&
~

r(l'x') —r(li)
~ ), (11)

where the sum extends over all atomic positions
r(I'e') with (I', K') s (I, 1). Since w, (~') also appear
on the right-hand side, Eq. (11) needs an iteration
procedure to be solved. Owing to the slow con-
vergence and to the fact that Eqs. (11) and (10) are
coupled to each other in principle via the presence
of dipolar terms in 8, f, and the actual equilibrium
positions in (11), the self-consistent solution of the
system of Eqs. (10) and (11), with the best fit of
Z=- —Z, and Y- Y& to the optical frequencies [Eqs.
(3)], is quite lengthy. It is perhaps too lengthy if
compared with the modest amount of additional
physical information involved. We preferred to
use u, as a disposable parameter, taking as an
initial value that of the first iteration

X,Z, „.Z, & r(l'x') —r(11)
~

0( ) Y2o-1 X Y [Ccc(0) Ccc(0)] s (

obtained by keeping only the linear term in the ex-
pansion of Eq. (11)with respect to w0. In Pbi~
(Ref. 13) and VI~, where the iteration procedure
was accomplished, the final value is somewhat
smaller than the first-step value, Eq. (12). On
the other hand, when w, is adjustable, the fitted
value also turns out to be smaller than the first
iteration value of w&. This might indicate that the
fitting procedure is not far from self-consistency.
In VQ fitted and self-consistent wo are effectively
in good agreement (Table I).

We note that for Y, -- X& (namely Z«
~ Y& ~) Eq.

(12) reduces to that reported by van der Valk and
Haas for the static dipole moment.

V. COHESIVE ENERGY

The cohesive energy, s' as deduced from the
Born-Haber cycle, is useful information for the
dynamical model. However, in a partially ionic
crystal the concept of cohesive energy is not
straightforward, as it depends on the definition of
the dissociated phase. The instantaneous dissocia-
tion of a lattice MX2 (M=metal, X=halogen) into
its atomic components yields a gaseous mixture
of the ionic and atomic species M ', M', M',
X ', Xo, and X''.

By defining the ionicity Z as the probability of
finding an additional electron on the halogen atom,
the corresponding probabilities for the above
species turn out to be Z, 2Z(1 —Z), (I - Z),
(I+ Z)2/4, (I —Z~)/2, and (I —Z)~/4, respectively.
Hence we define an effective metal ionization
potential
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I(Z) = Z2(I, + i~) + 2Z(1 —Z)I,
= I, + I2 —Ig(1 —Z) —I2(1 —Z2), (13)

where I, and I2 are the metal first and second
ionization energies, and an effective halogen af-
finity

A(Z) = ~Ai(1+ Z) —~ I (1 —Z)

+ ~(I, —Ai)(1 —Z )

=Ai+ 2(Z2+ Z- 2)Ai+ ~t Z(1 —Z)l, , (14)

Uo(Z) =Hg+H, +D+I(Z) —2A(Z)

+ 4P(1 Z2)t/2

= U0 —Ii(1 —Z) —I2(1 —Z )

+ (2 —Z —Z )Ai —Z(1 —Z)I,

+ 4P(1 —Z~)'I~ —E, ,

(15)

where H&, H„and D are salt formation, metal
sublimation, and halogen molecule dissociation
entalpies, respectively, and Uo is the cohesive
energy for the ideal ionic lattice. Two additional
terms, peculiar to a system with open shells, are
incorporated in the definition of Uo(Z): the reso-
nant energy associated with the overlapping parts
of atoms, I3 being the Coulomb integral between
nn ions, and the stabilization energy E„ i.e. , the
lowering of the d-metal ion ground state due to
the crystal field splitting of the d" levels. 3 For
the configuration t ~~e~ such a lowering is given
by (6n —10m)Iitl, where &q is the cubic crystal-
field constant. 34 Why the resonance and stabiliza-
tion energies are added to the Z-dependent affinity
and ionization potentials becomes clear from the
meaning of UD(Z) itself. Uo(Z) is the energy re-
covered when the free ions combine to form the
lattice. For closed-shell ions such a condensa-
tion occurs without any significant change of the
electronic structure, the only effect being the
rigid shift of levels produced by the Madelung
monopole field. For open shells, instead, the
condensation has three important effects. The
first is the incomplete charge transfer from metal
to halogen atoms. The second is the mixing of the
halogen s and P orbitals occupied by bonding elec-
trons with metal d orbitals, induced by the non-

diagonal Coulomb interaction. The third is the
rearrangement of the valence d electrons due to
the crystal field. Such modifications, taking
place with the change of the interionic distance,
could be accounted for by some appropriate poten-

where &, is the first affinity and I, the first ioniza-
tion potential of the halogen atom.

According to the Born-Haber cycle, we write
the cohesive energy up to small zero-point and
thermal energy corrections as

tials: for instance, the valence-force-field
potential ' ' for the covalency effect, and the
quadrupolar Madelung potential for the d electron
stabilization effect (quadrupolar-breathing-shell
model). Since these (small) contributions are ex-
plicitly neglected in the present model potential,
the ions in the gaseous phase should be "prepared"
in the electronic configuration they shall have in
the lattice, in order to keep such a configuration
unchanged during condensation. The corrections
to U0 in Eq. (15}represent just the required over-
all preparation energy.

Within this approximation, we equate U, (Z) to a
sum of two-body potentials valid for closed shells,
namely

—Ua(Z) =6boe "0I'0+8be 'I'+3be ' I'

+ 3bs ' —Sgc~~/0 —I Z 8 /ro,

(16)

where bo and po are the metal-halogen repulsive
parameters, and ro the metal-halogen equilibrium
distance. For the halogen-halogen repulsive pa-
rameters ~ and p we use the values known in
alkali halide s (p =0.3384 A, lnb = 7.8184 for chlorides
and 8.5V09 for bromides, with b given in units of
10 '9 J}.23 In nonideal (trigonally distorted) struc
tures there are three different distances between
neighbor halogen ions: that between ions in the
same my plane (s), and those between out-of-plane
iona in the same layer (a") and in different adja, —

cent layers (a').
The constant of the dipole-dipole vdW interac-

tion between halogen ions, &«, is derived from
the approximate London equation

—8 2
~4k a ED+A s

where E~ is an average halogen-ion excitation
energy. We consider as an appropriate value for
E~ the first peak of the & band, 5 corresponding
to the transition from the outermost P orbital of
the halogen to the 4s orbital of the transition
metal. This transition, yielding the most prom-
inent structure of the charge-transfer edge in uv

absorption, ' ref lectivity, 3~' ' and soft x-ray spec-
tra, s occurs nearly at the same energy in chlo-
rides (En=8.32+0.16 eV) and bromides (Eo
=7.81+0.05 eV). Thus a single average value c~~
= 88 && 10 ' Jm ~ for chlorides, and c« = 160
&10 '~ Jm for bromides is used. Owing to the
relative smallness of vdW contribution, we use
for the lattice sum the same approximate value

St; =14.454 for all crystals: this corresponds to
the undistorted C19 structure, in which the
halogen ions form an fcc sublattice. 23

The Madelung constant entering the Coulomb
term of Eq. 16 is the sum e =8„+8~ of
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TABLE I. Crystal data of layer 3d-metal dihalides of either C6 or C19 structure.

c/a ' Up

g.o &9 Z/moli 1018J

VC)t

MnCL

FeC12

CoC12 b

NiC it

VBr2

MnBr2

FeBr2

CoBr2

NiBr2

TiC it

TiBr2

VI2

MnI2

FeI~

CoI2

NiI2"

4.379 0.632 1.620 3.601 0.79 0.26

4.419 0.668 1.580 3.686 0.91 0.34

4.366 0.774 1.633 3.579 0.86 0.35

4.359 0.877 1.639 3.544 0.80 0.37

4.435 0.985 1.665 3.483 0.73 0.40

4.358 0.633 1.640 3.768 0.78 0.28

4.379 0.774 1.620 3.820 0.91 0.40

4.34S 0.875 1.650 3.740 0.83 0.40

4.334 0.956 1.663 3.680 0.77 0.41

4.353 1.158 1.645 3.708 0.71 0.42

0.41

0.45

0 44

0.42

0.40

0.46

0.54

0.51

0.48

0.45

4.348

4.1S6

4.377

1.649 3.561

1.788 3.629

1,659 4.11

4.358

4.325

4.315

4.431

1.639 4.16

1.670 4.04

1.679 3.96

1.539 3.892

4 329 0804 1 666 4057 075 0348 0326

42.39

41.51

43.13

44.74

45.73

40.67

40.12

42.02

42.97

43.56

40.79

40.11

38.53

39.83

39.38

41.19

42.32

43.53

0.2089

0.3373

0.2948

0.2567

0.2276

0.2155

0.3075

0.2815

0.2490

0.2300

0.1719

11.2628

7.4812

8.1194

9.0503

9.9034

11.3743

8.3000

8.7490

9.5500

10.2000

14.72

~All crystal data are taken from Ref. 16, except those of NiClt (a= 0.236) and Nift (u=0.233) taken from Ref. 39, and

of VI2 (u= 0.240) from Ref. 47.
C19 structure.' From self-consistent calculation (Ref. 42).

monopole ((2„) and dipolar (eo} contributions.
(2o is a simple function of n„/rto, t9 taking values
smaller than unity for all our crystals (except
NiBr2). Since the Coulomb energy is the main con-
tribution in UD(Z), (3„and eo have to be carefully
calculated for the actual equilibrium configuration
of the lattice and for the best-fitted values of the
electrostatic constants wp, Y, and Z. In Table I
we list only Z and Fwp, since sop was chosen to be
—0.1 A for all crystals, except VClt (wo= —0.08

A) and VBrt (w, =—0.09 A}. The fitted static
dipole Ywp is compared with the first iteration
value p, p"' calculated for the undistorted configura-
tion. As explained in the previous section, p, p

'

turns out systematically larger than Ymp, eg
computed for all layered 3d-metal dihalides
should be compared with the value for the ideal
C6 (6„=4.366) or C19 (0„=4.369) structure.
The deviation 6„—e„appears to be proportional
to the deviation of the corresponding c/a from
the ideal value (~t)' =1.633.40 For FeC1&, having

the ideal &/& value, the effect of the layer-dis-
tortion parameter I on e„and e~ is also shown

TABLE II. Madeluag constants as function of u in
FeClt.

FeC)t

grp= -0.10 A,

F= -3.5
Z= 0.86

c/a= 1.633

0.23
0.24
0.25
0.26
0.27

4.487
4.429
4.366
4.297
4.222

0.691
0.733
0.774
0.813
0.851

in Table II. We note that e„depends rather
strongly on u. This would be an unpleasant
circumstance since u is not yet well known in

most of the present compounds. Luckily, the
variation of e„with u is compensated to a large
extent by the opposite variation of e~, so that the

indetermination of u has only a minor effect on the

fitting to cohesive energy.
In this fitting procedure, the most serious lack

of information concerns the resonant integral P

=(g„iHig„}between metal (g„) and halogen (P„)
orbitals. Our main difficulty is to know how P
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implicitly depends on Z through its dependence on
the interionic distance. Considering the bonding
and antibonding combinations of atomic orbitals

~i(1~) =siny~P„) +cosy~//,

(&,& =cosy(les) —»ny (V,
(18)

(18')

with cos2y= Z and the diagonality condition

(E„—E„)(l—Z ) I + ZP, (19)

we have

2P= (E„-—E„)(1- Z')'I2/Z, (20)

where E„=(p„)X
) g„) and E„=(g„)SC [ g„) are the

I

Coulomb integrals. Pearson and Gray, ' in their
theory of ionicity of the free molecule, have
established the following empirical relationships
between the Coulomb integrals and the macro-
scopic parameters:

Es=- ZI2- '-(1 —Z)(I&+I2)+.-'& (21a)

E„=-(1- Z)1, —;Z(I,+A) —;eZe'/ra, (21b)

where e is the promotional energy to the lowest
sd-orbital bonding configuration. We borrow these
equations just by reinterpreting 8 as the crystal-
line rather than molecular Nadelung constant. In-
serting Eqs. (20) and (21) into Eq. (15), we re-
write Uo(Z) as

U, (Z) =U, —E, + —[(1 Z)'I, + (1 Z')I2+ Z(1 Z)A, —(2 —Z- Z2)I, —(1 —Z2)~ ] —(1 —Z2)n'e2/ro. (22)

This is an interesting form of Uo(Z), because it
shows what is lost by reducing the Madelung energy
[via the net charge reductionth, e last term of Eq.
(22)] and what is gained in the formation of the
partially covalent bond.

The values of ln&p with &p in units of 10 J,
and p, obtained from Eqs. (10c) and (16) are also
shown in Table I together with Up. The set of the
short- range radial and transverse force constants
is collected in Table III.

VI. DISPERSION CURVES

The dispersion curves calculated along the main
symmetry directions (Fig. 1) for V, Mn, Fe, Co,
and Ni dichlorides and dibromides are plotted in

Figs. 2-11. (The results on VI2 were already re-
ported in a previous communication. 42) The modes
having no transverse component parallel to the
plan of the layers are represented by dashed lines.

The available neutron data for MnCl„FeC12, "
and CoC12, ' and the experimental optical modes
are superimposed onto the dispersion curves for
a comparison. Taking into account that neutron
data were not used for the determination of the
model parameters, we consider the agreement
between experimental and calculated results to be
very satisfactory. The comparison for MnCl„
whose optical branches also have been measured,
will be discussed more extensively below.

In order to appreciate the quality of the fitting
of Z, Y, and mp to the experimental optical fre-
quencies, ' ' in Table IV they are compared with
the calculated values. Again the overall agree-
ment is rather good. Moreover, the ionicity scale
given by the fitted values of Z looks very rea-
sonable (Fig. 12). The descending values from
Nn to Ni compounds and the lower ionicity found
in bromides with respect to chlorides are well
consistent with what would be expected from gen-

TABLE III Calculated shox't range fox'ce constants in units of 8 /vp whel e vp = M3M /2 is the cel1. volume' g /8 p

Oast column) gives for comparison a measure of Coulomb force constants. In this model A~~= 0.

82/~ (Jm4) a

VC1,
MnC12

FeCl,
COC12

NiCQ
VBr2
MnBr2
FeBr2
CoBr2
NiBr2

32.95
26.14
24.61
25.13
24.40
32.82
27.15
25.43
24.08
22.14

-2.75
-3.49
-2.93
-2.63
-2.29
-2.702
-3.165
-2.757
-2.341
-2.072

1.512
1.231
1.596
1.725
1.191
2.275
2.009
2.430
2.785
2.459

-0.142
-0.113
-0.151
-0.165
-0.194
-0.205
-0.178
-0.220
—0.256
-0.225

1.088
0.959
0.978
1.029
1.063
1.422
1.307
1.380
1.490
2.428

-0.0168
-0.0234
-0.0198
-0.0167
-0.0134
-0.0195
-0.0267
-0.0213
—0.0176
-0.0143

2.329
2.496
2.573
2.709
2.813
3.383
3.430
3.642
3.944
4.785

-0.228
-0.246
-0.255
-0.271
-0.283
-0.316
-0.319
-0.343
-0.375
-0.466

0.984
1.268
1.135
0.977
0.841
1.170
1.507
1.266
1.103
0.771

3.511
3.356
3.548
3.640
3.775
3.027
2.941
3.077
3.205
3.167

Since we adopt SI units, electrical expressions are intended to be multiplied by 1/4~&p. This factor is omitted for
simplicity.
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eral chemical arguments. The same trend is
found for free 3d-metal dichloride molecules (Fig.
12),4' whose ionicities however, are systematically
lower than those of the correspondent crystals.
This is essentially due to the shorter interionic
distance occurring in molecules. Such a qualita-
tive relationship between interionic distance and

ionicity explains the exception of vanadium salts
which are more covalent than manganous salts in

the crystal and less covalent in the free molecule
state. In fact the lattice distances of Mn dihalides
are the largest of the series. On the other hand,
the cohesive energy of manganous dihalides is a
minimum along the 3d-metal series, a well known

fact explained for the past twenty years in terms
of crystal-field stabilization.

Some indication of the relatively high ionicity of
MnC1& and MnBr, ~as obtained many years ago by
Stout from the fitting of crystal-field spectra. "
The values reported in that work (Z =0.87 and

0.85, respectively) are consistent with the present
results.

It would be interesting to compare this ionicity
scale with some direct experimental informa-
tion on the ionicity, e.g. , the neutron data on the
transferred hyperfine interaction (THFI).+ For
this class of crystals THFI measurements have
been reported only for VI2. ' These data are found

A b,
I I I

300—
II

200
I

E
CJ

tP

PV

l00—

Ai

Eg„
4L

A2„(LO)

~ &~Eu ILO) ~
A2u(TO)

l kAig ~Al

.' ..vrl,
A'

Bu

T' K
I

I

I

T

, Bu
~Au

I

A2
Wg

Ag i
I

i

IB

I

MnCl2

A

B

I

(2m/c) 0 (4 +/l3a } (S
WAVE VECTOR

(4 ft/a)

FIG. 3. Dispersion curves of MnC12 {C19). Experimental neutron data {black points) from Ref. 43; RS and ir data
{black triangles) from Refs. 19 and 21.
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to be consistent with the calculated value Z=0.75
obtained for VI& within the present model.

In spite of the relatively high ionicity of these
compounds, the dynamical charges (Szigeti and
effective charges) as deduced from this ESM cal-
culation (Table V) are rather small, indicating a
relatively large charge transfer associated with
optical polar vibrations. As expected for layer
structures, the anisotropy of Z' and e

" is also
rather large, whereas the Szigeti charge Z
turns out to be almost isotropic.

In Table V we list the calculated elastic con-
stants. Only for CoC12 is some experimental in-
formation on the elastic constants available. The
calculated values are in fair agreement with the
data deduced from neutron dispersion curves. 45

The dynamical structure of a layered ionic

crystal is characterized by the complex interplay
of various long- and short-range contributions, so
that it is not easy to relate some features such as
anisotropy, LO- TO splittings, etc. , to well-
defined terms of the dynamical matrix. There-
fore, it is convenient to analyze the structure of
the dispersion curves by showing in which manner
the various kinds of interaction contribute to the
eigenfrequencies in different high-symmetry
points of the Brillouin zone.

In Figs. 13-16 we show how the frequencies of
MnCl„calculated at the points I', M, K, and A
for a rigid-ion model (Born-Mayer repulsion
plus monopole Coulomb interaction) are modified
by the addition of the various ESM contributions
and, finally, of the vdW interaction.

In the rigid-ion model (first column of each
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FIG. 5. Dispersion curves of CoC12 (C19). Experimental neutron data (black points) from Ref. 45; RS and ir
(black triangles) from Refs. 19 and 21.
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diagram) the most relevant feature, occurring at
the 1'point, consists in the very small A2„-E„
splitting and, consequently, in a practically iso-
tropie LO- To splitting. The latter splitting, on
the other hand, is very largely due to the great
ionic character of this compound.

The first ESM contribution (second column of

the diagrams) is that due to the dynamical polar-
izabilities of the negative ions. Since the static
dipoles are still neglected, we have now an
ordinary shell model. The ion softening produces
a general decrease of the frequencies, with a
striking effect at the points I and & (and there-
fore in a wide short-wavelength region): the fre-
quencies of the lower TA mode of &„or A2 sym-
metry, respectively, become imaginary, yielding
a lattice instability with in-layer reconstruction.

Such a result, however, is originated by an in-
ternal inconsistency of the model because polari-
izable anions must have also a static dipole. %hen

static dipoles are allowed in the model, two dis-
tinct effects are considered: one is the switching
of long-range pole-dipole and dipole-dipole inter-
actions (third column); the other effect, of short-
range character, is the change of Born-Mayer
interaction due to the shell displacement (fourth
column). The static displacement also produces
a change in the application. point of Coulomb
forces, namely a Coulomb force constant change
via its anharmonic part (see Sec. II). This effect
is also included in the short-range dipolar term.

The long-range part of the dipolar interaction
removes the instability at M and K. This is due
to a large increase of the acoustic frequencies,
which is accompanied by an overall decrease of
the higher optical frequencies. Such a spectral
narrowing occurring at M and K is compensated
by an opposite behavior at the points 4 and I'.
This consists essentially in the appearance of
wide A&„-E„and A~-~~ splittings. Indeed, as al-
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ready pointed out, ~ the optical-mode anisotropy
is mainly due to the long-range dipolar interaction.

As concerns the short-range dipolar term, we
note that only a small increase of the optical fre-
quencies and a decrease of the acoustic one are
produced all over the Brillouin zone. Analogously,
the vdW attractive forces (last column) are re-
sponsible for a general frequency softening. This
effect, however, is rather small for all modes,
except for the acoustic &2„branch along the &

axis (see the A2„mode at the point A) whose
lowering is relatively larger.

The specific effect of vdW forces on the acoustic
42„branch is important for obtaining good agree-
ment with neutron dispersion curves. When a
model neglecting vdW interaction is forced to fit
the neutron acoustic branches in Z direction, poor
results for the optical branches and unphysical
values for Z mould be obtained. This might ex-
plain the very low values of Z (0.06 for FeC12 and
0.41 for CoC12) found by Pasternak. '4' 5

VII. PHONON DENSITIES

The one-phonon frequency densities were cal-
culated over a grid of 256 264 points in the BZ
generated by means of a tetrahedral linear inter-
polation method from a set of 75 values of q uni-
formly distributed in the irreducible part (one
twenty-fourth) of the BZ.

The density of Nn to Ni dichlorides and di-
bromides are shown in Figs. 17 and 18, respec-
tively. The superposition of the spectra with the
frequency scale normalized to the maximum fre-
quency &„enables one to note the gradual modifi-
cations due to different metal ions. The effects
on the phonon densities due to change of the
anions is sho~n in Fig. 19 for V dihalides.

All crystals present rather sharp peaks in the
phonon density, which means they have a pro-
nounced molecular character.

When the cation is changed from Mn to Ni, a
general narrowing of the phonon bands, correlated
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with the opening of gaps, is observed both in
chlorides and bromides. Such a band narrowing is
related to the increasing covalency, and occurs
also when chlorine is replaced by heavier anions.

Vanadium dihalide spectra (Fig. 19), compared
with the other chlorides and bromides, display
even sharper bands and larger gaps, as if they
would be more covalent than Ni compounds. This
apparently contradicts the fact that Z is larger
in V than in Ni dihalides. Actually, the dynamical
charges are responsible for the dispersion. While
in Mn to Ni dihalides Z,'," turns out to be close to
the net charge, in V compounds Z~ is consider-
ably smaller than Z (see Table V). Particularly in

VI&, which still has a relatively high ionicity, both
Szigeti and effective charges are remarkably low;
this is clearly reflected by the sharp features and
the wide gap between optical branches occurring
in the phonon density.

Another aspect of the relatively higher dynamical
covalency of V dihalides is the relatively small
LO- TO splitting of A,„modes (as in some di-

chalcogenides and di-iodides ' ). As a conse-
quence, their maximum frequency occurs at theIpoint, whereas in the other compounds ~„is
always the A2„(LO) frequency. Since the modes
with &o close to to(A~„, LO) have a q value included
in a very narrow cone around the c axis (due to
the nonanalytical behavior of the Coulomb matrix
elements for q -0), Mn to ¹idihalides display a
long and weak tail in the LO density, which is ab-
sent in VX2. This effect, however, seems to be
overestimated in the present calculation, since
the experimental &o(A2„, LO) of MnC1, is 19 cm '
below the calculated value. It is interesting to
note that ~„decreases from MnBr2 to NiBr2 and
increases from MnC12 to NiC1, . This is easily
explained by considering the competing effects of
the increasing covalency (which yields a contrac-
tion of the unit cell and a strengthening of the force
constants), and of the increasing metal mass. In
the &z„mode of dibromides the metal ion vibrates
practically alone, whereas in dichlorides the
anions take part of the motion: in the latter the
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TABLE ~. Room temperature experimental (from Refs. 19-21)' and calculated frequencies of the optical modes at
the point I .

cu(I') (cm ~ or 2~ 0.03 THz)
A(~ A2g(LO) A,„(TO) E„(~O) E„(TO)

expt. calc. expt. calc. expt. calc. expt. calc. expt. cale. expt. calc.

VCL
MnC12

FeC12
CoC)2
NiC)2
VBr2
MnBr2
FeBr2
CoBr2
NiBr2

247
235
250
253
269
158
151
159
162
168

242
224
233
240
247
150
152
154
155
163

198
144
150
156
173
120

90
94
98

106

198
145
148
161
167
122

96
99

104
116

338
308
315
317
324
266
263
259
253
248

320
255
270
277
293
261
234
231
230
230

315
255
271
281
295
254
226
230
227
230

256

321
276
271
272
270
250
225
218
212
212

286
185
192
206
225
231
143
154
161
181

287
180
185
206
217
232
150
158
167
181

A limited number of low-temperature Raman and infrared data is available. For a comparison see Refs. 17-19.

metal mass has a weaker influence on the optical
frequencies.

A final remark: in all dichlorides, except VCl&,
the even- and odd-symmetry optical branches
cross each other, so that the E„(TO) modes is al-
ways below the A.,~ mode, while in bromides and
V dihalides there is a complete separation between
even- and odd-symmetry branches. In the latter
compounds (see, e.g. , NiBr2) the bands of even
modes present three sharp peaks (four peaks in

NiC12), and those in the middle are associated
with the A~ modes at the M point. This structure
is clearly seen in the two-phonon infrared ab-
sorption of V dihalides.

VIII. DISCUSSION

In view of the small number of adjustable pa-
rameters used in this ESM version, the reliability

~ free M Cl2
0.9-

MCl2-

Q
0.8-

0.7- 0

0.6
Ti V Cr Mn Fe Co Ni

FIG. 12. Fitted net ionic charge of crystal 3d-metal
dihalides compared with calculated free-molecule values
{from Pearson and Gray, Ref. 41; these authors did not
report any value for the VC1 molecule). We recall that
CrX2 crystals have structures other than C6 or C19.

of their values, and the reasonable agreement
with the available neutron data, we consider this
shell-model approach to the lattice dynamics of
layer compounds as quite successful. Neverthe-
less, we are conscious of the fact that a complete
comparison with the experimental data is done
only for the most ionic compound of the series,
MnC12. The important discrepancy found at the
& point for the acoustic E mode (146 cm ' against
the experimental value 118 cm ~) is probably a
common feature of the model and should occur
also in the other crystals.

Moreover, we expect such discrepancy to in-
crease with the crystal covalency, a point which
should be verified as soon as more complete neu-
tron-dispersion curves will be disposable. How-
ever, we have observed that the acoustic E mode
at the K point is strongly affected by the central
metal- metal interaction. When A„„is allowed to
be different from zero, one finds that the dis-
crepancy is practically removed for A« ——-2~«.
If we believe in such a numerical correspondence,
we infer that metal-metal force constants can be
derived from an attractive, soft Coulomb-type
potential, which results in a sensible reduction of
the metal- metal monopole repulsion. This argu-
ment, however, sounds quite artificial, since it is
a mere two-body transcription of the metal-metal
covalent bonding which has a marked three-body
character. As in superexchange the unpaired d
electrons of neighboring metal ions take part of a
"90' supercovalent" bond via the partially open
anion shells. As a consequence, the smaller Z
is, the larger should be the metal-metal interac-
tion.

There is some hint that three-body forces play
a non-negligible role also in these relatively
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TABLE V. Macroscopic constants.

S
gg

Zeff Zeff ~gg

(10' N m-')

Cig C33 C44 Cc C« C&3

VC12
MnC12
FeCQ
CoC12
NiCQ
VBr2
MnBr2
FeBr2
CoBr,
NiBr2
VI2

0.720
1.104
1.050
0.956
0.875
0.637
1.205
1.093
1.006
0.915
0.510

0.79 0.435 0.484 0.616
0.91 0.659 0.726 0.893
0.86 0.615 0.659 0.856
0.80 0.549 0.590 0.772
0.73 0.492 0.521 0.707
0.79 0.346 0.398 0.519
0.91 0.635 0.687 0.939
0.83 0.559 0.598 0.854
0.77 0.498 0.530 0.778
0.71 0.424 0.487 0.680
0.75 0.224 0.276 0.347

2.567
2.560
2.710
2.784
2.919
2.954
3.158
3.344
3.524
3.638
3.703

2.527
2.501
2.623
2.697
2.812
2.867
3.042
3.194
3.342
3.635
3.480

61
57
61
62
63
56
51
54
57
59
55

24 6.5 25
18 4.7 26
22 5.0 26
25 5.4 28
28 5 6 28
26 7.1 24
23 5.3 25
27 6.1 25
32 7 1 26
37 8 0 22
37 7 5 27

-6.6 17
-6.5 12
-6.6 13
-7.4 16
-8.1 18
-5.2 18
-6.6 9.7
-6.8 12
-7.2 14
-8.9 15
-4.5 16

ionic compounds. Nearest- neighbor angle- bending
force constants, which produce anisotropy in the
short- range repulsive interaction, ' can by
themselves remove the residual discrepancies
between experimental and calculated optical fre-
quencies. ~' We note in Table IV that the experi-
mental anisotropy of even modes given by tu(A«)
—~(E~) is slightly larger than the theoretical one,
with deviations increasing from Mn to ¹i.Such
deviations (5-28 cm ') could be regarded as an
estimate of the effect of three-body forces.

Other terms in the dynamical matrix which were

explicitly neglected are those coming from the
crystal-field stabilization energy E,. The adia-
batic modulation of the d"-electron ground-state
energy due to even symmetry displacements of
neighbors yields monopole and quadrupole
breathing force constants. To give an idea on the
order of magnitude of these contributions we have
derived the central force constants for cubic (A&~'),
tetragonal (&~), and trigonal (T2~) deformations
of the nn octahedral cage (apex 0 labels oz ir-
reducible representations). This calculation can
be easily done by considering the six nearest
neighbors as point ions and using the axial field
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FIG. 13. Effect of the various ESM contributions on
the optical phonon frequencies of MnC12 at I' point.

FIG. 14. Effect of the various ESM contributions on the
phonon frequencies of MnC12 at I point.
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FIG. 17. Phonon frequency density (arbitrary units)
of Sd-metal dichlorides.

(23)

MnCl2 A Point

matrix elements between t2~ or &~ d-electron
states reported by Sugano et al. 48 For a ground-
state configuration tz~&~" we find

a2S, Dq
0' 2

——10(3n —5m) ~,
(24)

where

p2g Dt Ds
Bzc(E )

0'2 ——25(n —2m) —
z

—2(4n —m) ~,
Yp

82E, Dt Ds
Bu(7'0 )' r2= 5(n —6m) —+ '- (2n —5m) — (25)
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FIG. 16. Effect of the various ESM contributions on the
phonon frequencies of MnCl2 at A point.

FIG. 18. Phonon frequency density (arbitrary units)
of 3d-metal dibromides.
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FIG. 19. Phonon frequency density (arbitrary units)
of V dihalides.

Dq= 5', Ds= f, Df= —QDq,
s2(~4) s2(r2)

(26)

and (r,") is the nth momentum of the 3d-electron
radial distribution. The monopole breathing term
Eq. (23), often the only one taken into account,
vanishes for the Mn

'
ground state (I = 5, ~ =3)

and this was the reason why we did not find it con-
venient to include the breathing contributions in

the model. However, in NiCI& (Dq =692 cm ')34

the monopole breathing force constant is —3.52
s /no, which is comparable to 8„„.Such a term
is quite appreciable; we feel that, as soon as a
detailed comparison with neutron dispersion curves
will be possible, breathing force constants should
be included in the dynamical model.

With regard to quadrupole breathing terms [Eqs.
(24) and (25)], we cannot say much, as the expres-
sions of Ds and Df Eqs. (26), valid in the point-ion
approximation, are not very reliable, owing to
the omission of the (large) overlap ei'fects. How-

ever, in a future work Eqs. (24) and (25) could be
used with &s' taken as a disposable parameter,
and with Df related to the experimental Dtf via
Eq. (26).

Incidentally we note that Eqs. (23)-(25), when

used for excited d configurations, enable us to
know the relaxation-induced renormalization of
the force constants. For example, they could
account for the difference between the ground-
state phonon frequencies obtained by Raman or
infrared techniques and those derived from the
vibronic sidebands in crystal-field absorption
spectra which refer to the excited state. ~'49

In recent years it was recognized that a con-
siderable amount of information on lattice dynam-
ics and electron-phonon interaction can be ex-
tracted from the spectroscopy of crystal-field
transitions in 3d-metal layer compounds. ' '~ '
Their low- temperature absorption spectra show
an unusual wealth of vibronic structures, whose
sharpness as well as their repetitive character to
high orders recall molecular spectra. '"" The
physical basis of such highly resolved many-pho-
non patterns is now apparent from some peculiari-
ties of the calculated phonon densities, such as
the occurrence of sharp peaks, associated with
different symmetries and intercalated by three or
even four gaps. This distinctive feature, reaching
the highest degree in V and Ni dihalides, takes its
source from the combination of partial covalency
with large-gap insulator properties. A quality
which should disappear in layered transition-metal
chalcogenides, s where the conduction- electron
screening via the q-dependent charge transfer'~
supplies a strong dispersion factor for the optical
branches.
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