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Solitons in a one-dimensional charge-density-wave system with half-filled electron bands are studied
theoretically with a continuum model. This model is a continuum version of the one of polyacetylene
recently considered by Su, Schriefter, and Heeger (SSH). We have analyzed a variational solution with the
displacement order parameter h(x) = 8 ptanh(x/$) with g as a variational parameter. It is shown within the
weak-coupling limit that the soliton (creation) energy takes the minimum value (2/e)Lp with g = fÃF/kp,
where 2h, p and vF are the dimerization energy gap and the Fermi velocity, respectively. These results agree
quite well with numerical results by SSH for the discrete system. Furthermore, we show that the above

h(x) is an exact solution of the self-consistent Bogoliubov-de Gennes equation.

I. INTRODUCTION

In recent letters Rice' and Su, Schrieffer, and
Heeger (SSH) (Ref. 2} have independently pointed
out the importance of solitons in polyacetylene and
emphasized the role of solitons in the charge-
transfer doping mechanism. While Rice analyzed
a phenomenological Lagrangian involving only the
lattice distortion, SSH have developed a micro-
scopic theory of solitons starting from the Hamil-
tonian including both the electronic and lattice dis-
tortion terms. To analyze the electronic states in
the presence of a soliton (i.e., an inhomogeneity in
the dimerization pattern of a CH chain), SSH have
made use of the Green's function in which the lat-
tice discreteness is explicitly included.

Here we shall report our analysis of neutral
solitons in the continuum limit of the SSH model.
The continuum limit should be valid when the di-
merization patterns vary on a scale much larger
than the lattice constant. With the help of a func-
tional integral, ' the problem is reduced to solve
the Bogoliubov-de Gennes (BdG} equation, ' which
has been developed to deal with an inhomogeneous
superconductor. Within the present model, we
can characterize the soliton almost analytically,
except those properties where the discreteness of
the lattice is essential, such as the activation en-
ergy associated with the soliton motion, for ex-
ample.

In particular, in the weak-coupling limit (40
lV 2&p and 8' being the dimerization energy

gap and the electron bandwidth, respectively) we
have determined analytically the creation energy
of the SSH soliton with the displacement order pa-
rameter ti(x)= &, tanh(x/]) as a function of the
width P, and found its minimum (2/v)A, at ]= to
(—= Snz/&~), vr being the Fermi velocity. Further-
more, we have shown that the above 4(x) with (
= ]p satisfies the BdG equation exactly in the con-

tinuum model. We would like to stress here also
that to investigate large-amplitude fluctuations,
such as solitons of the present interest, the BdG
theory provides the most natural theoretical
framework. On the other hand, the Ginzburg-
Landau-type functionals' ' are only appropriate
for analysis of small-amplitude fluctuations.

II. MODEL HAMILTONIAN

The SSH model Hamiltonian for a CH chain is
written as

0= — t„„„C~„,C„,+ H. c.

with

+ &n j. 1n +
n

t„„„=t, —&(y„„-y„}, (2)

where C„',(C„,) creates (annihilates) a v electron of
spin s on the nth CH group and y„ is a configura-
tion coordinate for the displacement of the nth CH
group. We follow the SSH notation for other pa-
rameters. Since in an undoped CH chain there is
one p electron per CH group, the present system
is identical to a one-dimensional charge-density-
wave (CDW) system with an exactly half-filled
electron band. The mean-field (MF) ground state
and small amplitude excitations around the MF
ground state in such systems have been extensively
studied. ' ' In these works, the electronic part of
the free energy is first eliminated by treating the
Hamiltonian with the locally uniform MF potential
n(x, t). By minimizing the resulting free energy
with respect to b(x, t), one obtains a kind of Ginz-
burg-Landau equation. The resulting equation is
shown to have no pure amplitude kink. ' However,
the absence of pure amplitude kinks is essentially
an artifact of the above treatment, as in the pres-

21 2388 1980 The American Physical Society



21 CONTINUUM MODEL FOR SOLITONS IN POLYACETYLENE 2389

H =—2 dx & (x) + Hu'r,

d ~' X - iv,~,a aX+ ~(X, e X,

where

ag= 4o —,~o —4K/M,
M

a is the lattice constant, and the order parameter
4(x) is directly proportional to the continuum limit
of the dimerization pattern y„=(-1}"y„as

a '"
&(x)= r ' — y(x) .

M
(5)

Here

( )
"u(x)'

ence of the kink; the electronic spectrum is dras-
tically modified from the one for a uniform case,
and therefore the electronic part cannot be elimi-
nated at the outset if one wants to deal with large
amplitude fluctuations, Indeed, we shall show

that, if the electronic part is treated self-consis-
tently by means of the BdG equation, the continuum
limit of Eq, (1) allows the soliton solution.

In the continuum limit, the Hamiltonian (1}is
transformed as

2

Z „r=Q e„+—, dx h'(x),

fthm

(9)

where again the sum is over the energy levels be-
low the Fermi level. At finite temperature both
Eqs. (8) and (9) allow simple generalizations. "

In the case of uniform dimerization [4(x)= n, ],
Eqs. (7}and (8) yield

e'=+ E =+ [( k)'+ &']'"
gee-1/ )I (10)

and

~= g /&Vg(dq y

2/ 2

where k is the wave vector of the solution. For
the CH chain of acetylene, ' we have S'=10 eV and

b, = 0.7 eV so that X= 0.38; the polyacetylene ap-
pears to be actually in the weak-coupling limit.
The small value of A. also justifies the continuum-
limit calculation.

III. SOLITON ENERGY

A. Static soliton

The creation energy of a soliton (i.e., the soliton
energy) is obtained as the difference between Z„„
in the presence of a soliton and E„„ofthe soliton-
free ground state

,v(x). Z, (~(x))=E„,(~(x)) —Z„„(~,) . (12)
is the spinor representation of the electronic
field, ' and o,. are the Pauli matrices. In deriving
Eq. (4) we have approximated the electron disper-
sion as

n, (x) = ~, tanh(x/~), (13)

Following SSH, let us consider &(x) is given by

-2t, cos [(k a k~)a] =+2t, sinka

= +2toak=—+vpk

which is valid in the weak-coupling limit.
From Eq. (3) we obtain the BdG equations' for

u(x) and v(x)

(6)

where $ is a parameter to be determined later.
As first noted by Bar-Sagi and Kuper, ' Eq. (7)
with &(x) given by Eq. (13}is exactly soluble.
Since there is extensive literature' on this, we
shall just sketch how to handle Eq. (7}. First we
introduce new functions by f,= ua iv (the suffix n

is omitted here} which obey the coupled equation
2

f„M„= iv.p —u„-+ +(x)v„,

&(x)= ——,Q v„*(x)u„(x},
ns

(8}

where u„and v„are normalized eigenfunctions of

Eq. (7). Equation (8) follows from the functional
derivative of Eq. (3) with respect to 54(x). The
sum in Eq. (8) runs up to the Fermi level, which
is chosen to be zero. The total MF energy of the
system is finally given

a
e„v„=i v~ v„+&(x)u„, —

BX

and &(x) has to sa.tisfy the self-consistent equation
(at T=0K)

ef, = iv~3f, /ax a-i&(x)f, .
From Eq. (14) we then obtain

, a', , a~'r
, + e' —&'(x) s v~ —

~
f,= 0 .

BX BX )

(14)

(15)

nses, =+&0 —2 ——,m=1, 2, 3, .. .&x, (16)'r

Solutions of Eq. (15}are then expressed in terms
of the hypergeometric functions. " Two sets of
special eigenfunctions f", " are obtained by first
solving Eq. (15) for fP~" and then by finding its
counterpart fa" from Eq. (14). The bound states
have eigenvalues

eo =0,



HAJIME TAKAYAMA, Y. R. LIN-LIU, AND KAZUMI MAKI 21

where r= (/( and ]0=kvE/Ao. There exists al-
ways one bound state (per spin direction} at the
center of the energy gap. As x increases, the
number of the bound states increases by two every
time z exceeds an integer; the total number of the
bound states is always odd. The continuum states,
on the other hand, have the same dispersion as in
the uniform system. However, they suffer phase
shifts due to the presence of a soliton. The proper
choice of the phase shifts with appropriate bounda-
ry conditions is crucial in the present analysis.
However, as it requires a detailed and delicate
analysis, we shall give the derivation of the phase
shift in the Appendix.

The soliton energy [Eq. (12)] is then expressed
in terms of the phase shift as"

E,=2 e + ~ong
m=1

dk
( )BE 2(gp

~ 2m Rk g
where the phase shift 8(k) is given by

8(k) = 6,(k)+ cot '(r/k),

r(1 fk)r( &k)""='"'(n +.— e (-.— ~))

and n~ is the number of the bound states

nz = 1-2 — = 2(r)+ 1.dk d5(k)
~ 2m dk

(18)

(20)

Here A = k„=zQ, k=(k, E,=[(vrk)'+ b,']' ', I'(z)
is the gamma function, and (r)—= n, if n& r ~n+ 1.
At first glance Eq. (20) looks like Levinson's theo-
rem. However, the first term unity in the equa-
tion is obtained only after the detailed analysis of
the phase shifts given in the Appendix. Since the
available bound states are odd irrespective of z,
the undoped soliton is expected to be neutral and
have & spin (see also the Appendix).

Substituting 8(k) given in Eq. (18), Eq. (17) can
be evaluated analytically. In particular for integer
r(= n}, the result is given as

l.o
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FIG. 1. The soliton energy E~ is shown as a function
of soliton width (solid curve). The thin curves are taken
from Su, Schrieffer, and Heeger and rescaled for com-
parison. The curves (a), (b), and (c) correspond to
their calculation for 40= 0.5, 0.7, and 1.0 eV, respec-
tive 1.y.

a universal function of r= (/$, . T-he result of its
numerical analysis is shown in Fig. 1. The soli-
ton energy takes minimum" at r= 1 (i.e., t' = (,)
with the value (2/v)&, . In Fig. 1 we have also
plotted for comparison the SSH result with the
same scaling as thin curves. In general the SSH
and our results agree qualitatively quite well with
each other, except for the region r «1, especially
that the soliton energy takes the minimum at y= 1
(i.e., ( = $0) is also found in the SSH theory. The
small deviation between the two results in the ab-
solute magnitudes is, however, not well under-
stood at this moment.

When r=1 all the eigenfunctions f", " in the
Appendix take simple analytical forms:

f, =$,'~'sech(x/$, }, fs =0,

)1/2
f',"(k)=

1 .' k [$ k cos(kx) —tanh(x/$, )sin(kx)],1+ i(,k

——1 — — tan ' —1—

(21)

and similar expressions for f',"(k), where f, are
normalized as

For r=0, 1, and 2, Eq. (21) gives E,= &0, (2/v)&0,
and (4/v —I/~)no, respectively. When r is a
noninteger the expression of F., becomes rather
lengthy [see Eq. (A10) in the Appendix]. Within
the present approximation [the continuum limit and
the weak-coupling limit (W» &,}],E,/6, becomes

c&c + f„
-X /2L,

Substituting these expressions into the gap equa-
tion (8), we recover Eq. (13) with ]=(0. More
explicitly the right-hand side of Eq. (8) is evalu-
ated as
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2 ~ 2
——.Q':(*) .tx)= —

4
—.(f'. )'+2 Z Z (f!'())-f!"(a)I'M"(It)+f"'()]))Q na 4o i~1, 2 ka 0

COg

Hence the function (13) is an exact solution of the
self-consistent BdG equation. Here the factor of 2

in the second term arises from the spin summation
(see for detail in the Appendix). This result is
easily extended at finite temperatures. In this
case Eq. (13) is still an exact solution if both n.o

and 4(T)[ Kvzl&-, (T)] are replaced by the temper-
ature-dependent terms.
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B. Moving soliton

The soliton mass is obtained by considering a
moving soliton given by

&(x, t)= ~, tanh [(x- v,f)/~], (22)

where v, is the soliton velocity. When the MF
order parameter is time dependent, we have to
add to Eq. (3) the kinetic energy

APPENDIX: DETERMINATION OF THE PHASE SHIFT
5(k)

f(')(- x) =f(,')(x), f'"(- x) = -f'"(x), (A1)

The eigenfunctions f, of Eq. (15}are classified
by their parity. Then it is easy to select those
satisfying Eq. (14}among them. Indeed, we have
two distinct sets of eigenfunctions f'," and f", ':

M By
' 14~', ,GEE-=dx = 2 v2a Bt 23g' (23) f(2)( «) f(&)(x) f(&)( «) f (2)(x) (A2)

14~, W5E" =———ln—
2 mv~

(24}

for the soliton with ( = ],. Indeed, the deviation
from the 5E", is extremely small, as 5E is much
less than the electron band mass and certainly
negligible in any circumstances.

where the last expression is obtained by substi-
tuting y(x, I) =g(M/a)' '&(x, t). This is exactly the
SSH result. In general the soliton energy E, given
in Eq. (12) also depends on v, which was neglected
by SSH. Within the present theoretical framework
we can calculate explicitly this additional contri-
bution 5E . The method is very similar to the
one used by two of the present authors (K.M. and
H. T.} (Ref. 14) in evaluating the inertial mass of
the sine-Gordon soliton; first, one solves the BdG
equation in the frame moving with the soliton, and
then by the Galilean transformation one obtains the
energy in the rest frame. With this procedure we
obtain

k")I —6" '(k"') = 2vn = kv'I, (A3)

where i=1, 2, n is a positive integer, I is the
total length of the chain, and k~' is the wave num-
ber of the electron state in the soliton-free sys-
tem. The phase shifts 6'"(k) and 6"'(k) are given
by"

6'"(k)= 6,(k)+ 6,(k),
6(2'(k) = 6,(k) —62(k) + 2 cot '(r/ k),

(A4)

(A5)

where 6,(k) has been given in Eq. (19) in the text
and

These sets of solutions are compatible with Eq.
(13). Here we assumed that the soliton is located
at the origin x= 0.

Then the phase shifts are defined separately for
these two sets of solutions by comparing their
asymptotic behavior for large x (i.e., ~ x~ » f}with
the solutions in the soliton-free state. In particu-
lar we obtain

IV. CONCLUDING REMARKS 6,(k)= ts.n '
S1Ilhg f (A6)

We have shown that the BdG approach in the
continuum limit can reproduce most of the inter-
esting features of solitons in the CDW system
within the weak-coupling limit. The method is
quite powerful whenever the BdG equation [Eq.
(7)] can be solved analytically.

The fact

6"'(k) ~ 6(2)(k) (A'I)

implies that the phase shift depends not only on
the wave vector but on the parity of the solution.
A very similar circumstance appears for one-
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dimensional Schrodinger equations with a 5-func-
tion potential. In this particular example, the
solutions with odd parity do not suffer any phase
shifts. " Then the total phase shift of the system
is given by the sum of two phase shifts 5& "(k) and
5")(k) for positive k; or alternatively, if the inte-
gral is defined for all k (i,e., positive as well as
negative), we may introduce 5(k) by

5(k) = —[5'"(k)+ 5"'(k)], (As)

which has to be integrated over all k. This phase
shift is the one introduced in Eq. (1S) of the text.

The change of the density of states due to the
presence of a soliton is then given by

~p(k) -=p(k) —p")(k}=-2—I d&)(k)

2m dk
(A9)

where a factor of 2 arises from the fact that there
are two states with energy ~E„for each k. The
total change in the number of continuum states is
thus

h
&N= dk &p(k) —1,

-h
(Al0)

which is Eq. (20) in the text. The second term -1
corresponds to the deficiency of one state with
k=0 in the presence of the soliton. This is re-
lated to the fact that there is no odd solution with
k=0. Since the change dN (per spin) consists of
those in the conduction band (e~=E„) and the val-
ence band (e, = E,), we m-ay interpret Eq. (A10)
[or Eq. (20) in the text] as the following: The
degrees of freedom nN/2 in each band are ex-
hausted by ns (= bN} bound states in the energy
gap. Then taking account of two spin directions,
we expect that in an undoped system the bound
state at the center of the energy gap (i.e., the one
at the Fermi level) is occupied by a single elec-

where «„' is the electron energy in the uniform sys-
tem (i.e., the soliton-free system), In terms of
the phase shift 5(k), the first term in (All) is re-
written as"

E"= «„' - «0

ns

=2+&'. +d,n, -2 f}(k)—dk BE~

h 2P
(A12)

where « 'gg, and E, have been already defined
in the text. Furthermore, the second term in
(All) is easily integrated to yield

Q d [&(( )2 g2] Q 05
0 g2 y Oy

(A13)

with X given by Eq. (10).
It is shown explicitly that (A13) is exactly can-

celed out of the cutoff dependent term (i.e., the
A-dependent term) of Eq. (A12), so that E,(4(x))
does not contain the term which diverges with X '.
In fact E,/n, becomes independent of W/4, in the
weak-coupling limit and depends only on r. When
z is not an integer, E, is given by

tron, while all the N~ -1 bound states below the
Fermi level are occupied doubly. Thus the un-
doped soliton is expected to be neutral and with
unpaired SpiIl

With help from the phase shift 5(k), the calcula-
tion of the soliton (creation) energy [Eq. (12)] is
straightforward. " The soliton energy [Eq. (12))
is decomposed into two parts:

2

E,(&(x))= Q (e„—eo}+—', &fr[a'(x) —rg],
ns

(Al 1)

Z, (r—= 2+ )=2, — +2+2 —2 +( —2F —2 —— +2()I,' r m=1 m=1

and

hg 22
C(e ) = —Re dkE, /&, [-2$(1+ik)+ (J)(I+ ik e)+ $(1+—ik+ e)] ——,

0

where n is an integer with 0 ~a & I, and p(s} is the digamma function,

(A14)
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