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Effect of surface charge fluctuations on the spectral density of chemisorbed atoms
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Basing our analysis on the Anderson-Newns model for H chemisorption, we develop a systematic method

of calculating the adatom self-energy arising from the effect of substrate charge fluctuations. Using the

method of functional derivatives, we generate a Dyson equation for the adatom Green's function and

evaluate the self-energies due to the hopping and Coulomb interactions between metal and atom to second
order. The latter involves the substrate density response function, and this allows us to include the effect of
surface plasmons, bulk plasmons, and the particle-hole continuum of the metal surface on an equal footing.
The latter become increasingly important close to the surface, where simple image-potential arguments are
no longer adequate. We formulate our theory treating the adatom Coulomb repulsion U perturbatively

(Newns, Hertz and Handler) as well as in the atomic limit (Brenig and Schonhammer, Bell and Madhukar).
Keeping only surface plasmons, we discuss the relaxation shifts and surface-plasmon satellites of the H-

atom spectral density within the context of the Brenig-Schonhammer approximation. In particular, we show

how the effective Coulomb repulsion U is reduced to U —2V, . We also prove that the substrate-induced

self-energy term which gives rise to the above changes on the spectral density has no effect on the net

chemisorption energy. The small image-potential energy shift of the main resonance is canceled by the large
shift associated with the weak surface-plasmon satellite. Much of our theoretical analysis is applicable to the
core-level spectrum, and not just the valence electrons involved in chemisorption.

I. INTRODUCTION

Considerable progress has been made in recent
years in the theoretical understanding of chemi-
sorption on metal surfaces, using a variety of
approaches (see Ref. I). In the present paper,
we shall be concerned with the effect that collec-
tive charge fluctuations in the substrate have on
the electronic density of states N(&g) of chemi-
sorbed atoms. Basing our calculations on the
well-known Anderson-Newns Hamiltonian, "we
develop a systematic way of dealing with substrate
charge fluctuations which are coupled to the ad-
atom electron density via the Coulomb interaction
(K). To second order in K, the adatom self-ener-
gy is given directly in terms of the substrate den-
sity response function y", and thus surface plas-
mons, bulk plasmons, and particle-hole modes of
the metal substrate enter on an equal footing.

Our systematic approach avoids the somewhat
ad hoc manner in which surface plasmons are
often introduced in discussions of the electronic
states of adsorbed atoms. Our general self-
energy expressions can be used when either the
adatom Green's function G (ar) or the substrate
density response function )P(ru) have a complicated
frequency dependence. If we consider the simple
case when both exhibit sharp resonances, our
results lead to the usual relaxation shifts and
surface-plasmon satellites exhibited by the ad-
atom spectral density N(&o) We shall de.velop our

theory with the specific example of H chemisorbed
on a transition-metal surface in mind. However
the formalism is obviously applicable with minor
changes to the problem of the core-level structure
of chemisorbed and physisorbed atoms, as studied
by x-ray photoemission spectroscopy (XPS). This
has been an area of very active research in recent
years (see, for example, Refs. 4 and 5). In ad-
dition, while in applications we shall mainly con-
centrate on the case for which there is no signi-
ficant charge transfer between metal and adatom,
our general formalism allows such effects to be
considered in a self-consistent manner. In a
related topic, we note that recent work has
emphasized the importance of treating the changes
in the valence electronic states due to charge
transfer which results from exciting a core elec-
tron in x-ray photoemission experiments.

The Anderson-Newns parametrization of the
chemisorption of hydrogen includes the Coulomb
interactions (U) between two electrons of opposite
spin in the 1s state of the adatom and a hopping
interaction (V) which allows the transfer of elec-
trons between the adatom and the metal substrate.
We augment this model to include the Coulomb
interaction (v) between metal electrons (this will
give rise to plasmon modes) and the Coulomb
interaction (denoted by K) between metal and ad-
atom charge densities. The first part of our
program is to develop equations of motion for the
adatom self-energy using the functional derivative
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technique. ' We then evaluate the self-energy to
second order in the Coulomb interaction K. This
involves the density response function of the sub-
strate and the adatom Green's function. The hop-
ping self-energy is given to second order in V,
and involves the substrate electron Green's func-
tion. The adatom Coulomb repulsion is treated
perturbatively' in Sec. II (appropriate to case
V» U) and exactly (appropriate to the atomic
limit U» V) in Sec. III.

In order to evaluate the self-energies obtained
in Secs. II and GI, we must decide on some model
for the substrate. In dealing with the transition
metals, it has often been assumed that the hopping
interaction V mainly involves the narrow d-band
electrons. While this seems to be the case "
with H on Pt and Pd, there is some evidence that
the broad sp band is just as important as the d
band when dealing with H on Ni. ' In our numer-
ical calculations, we have simply used the semi-
elliptical model for the substrate Green's function
involved in the hopping self-energy. In the pres-
ent paper, our main interest is in the effect of the
Coulomb interaction K, in conjunction with some
nontrivial approximation for the hopping self-
energy. Similar calculations may be carried out
with more realistic hopping self-energies as ap-
propriate to studies of specific metal surfaces.
In this connection, we note that Schonhammer and
Gunnarsson ' have had some success with the
use of semielliptical models for both the narrow
d band and the wide sP band.

As we have indicated above, the effect of the
Coulomb interaction K is to couple the adatom
electrons into the density response function of the
metal substrate. In Sec. IV, we assume this
coupling is mainly to the s electrons and use the
semiclassical infinite barrier model in conjunc-
tion with the random-phase approximation (RPA).
This model has been extensively studied in recent
years in a variety of surface problems (see, for
example, Refs. 15-17). It has previously been
used by Gadzuk4 as well as Newns and cowork-
ers' ' in computing the relaxation shift of core
electron states. If we also use a local approxima-
tion for the bulk dielectric function of the metal,
then our expression for the self-energy to second
order in K is identical to what we would have ob-
tained if the substrate was treated as a Bose gas
of dispersionless surface plasmons. In this limit
(which is not really adequate when the adatom is
very close to the surface as in chemisorption),
Hewson and Newns have discussed the image
potential shifts and surface plasmon satellites of
an adatom with a single broadened level.

In Sec. V, we examine the effect of the surface
plasmons on the adatom spectral density given by

the Brenig-Schonhammer approximation' as de-
rived in Sec. III. In this atomic limit, the adatom
Green's function may exhibit up to four peaks and
each is found to exhibit characteristic image-
potential shifts and surface-plasmon satellites.
However, in Sec. VI, we prove that the total
chemisorption energy is uneffected by all these
spectral-density changes as long as there is no
net charge transfer. This is an illustration of
Lundqvist's "zero-work" or compensation theo-
rem, "first studied in connection with the effect
of charge fluctuations on the bulk binding energy
of core electrons.

In transition metals, the charge fluctuation
spectrum is in fact still not very well understood,
whether in bulk or systems with a surface. There
is considerable indication that band- structure
effects are quite important in understanding bulk
and surface plasmons in transition metals. '
Moreover the surface plasmons resonances are
quite broad (width of several eV). The advantage
of our general formulation is that we can easily
work with more realistic models of the density
response function when they become available in
the future.

In concluding this introduction, we remark that
we have also carried out an analogous study ' of
the effect of substrate d-band spin fluctuations on
chemisorbed atoms, with emphasis on the critical
effects which occur near the ferromagnetic trans-
ition temperature. Much of the theory is formally
very similar to that given in Secs. II-IV. Some
of the notation in this paper has been chosen with
this generalization in mind.

II. ADSORBATE GREEN'S FUNCTION VIA FUNCTIONAL
DERIVATIVES: HARTREE-FOCK

To begin with, let us write down the model
Hamiltonian we shall base our analysis on. For
our purposes, the adatom can be described by'

U~
~a —~ ~a~aaCaa + —~ Soatlae-a y

a a
(2.1)

where c„andc~ are the creation and annihilation
operators of an adatom electron in state a with
energy e, and with spin o (we limit ourselves to a
single valence level). It will be convenient to de-
scribe the metal electrons in a site representa-
tion

A A

Hyatt= ~ Tg& ~a ga+ ~ V~~S~S~ .
4)e Cg

(2.2)

Here T;& is the appropriate hopping matrix ele-
ment, c&, is the creation operator for an electron
in a localized state labeled by i and spin 0. The
Coulomb interaction v between the metal elec-
trons is represented by the last term in (2.2), with
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n] = zify, lge= c]fycfa ' (2.3)

H =Q(V.;c'c„+V;,c'„c )

+ K,)n] n, —1, (2.4)

Finally, the adatom is coupled to the metal elec-
trons through the hopping interaction and the Cou-

lomb interaction

which can be iterated to give a systematic expan-

sion for the adatom self-energy. However we

shall only use it to find the self-energy to second
order in V, U, and K. In the absence of the Cou-
lomb coupling K, our results are identical to those
obtained by Newns appropriate to V» U. In Sec.
III, we shall treat the hopping interaction V using
the Brenig-Schonhammer approximation" (U» V).

Following Kadanoff and Baym, we define therm-
al Green's functions in the standard way":

where the -1 takes into account the (+) charge
on the adatom nucleus.

The electronic state label i includes both site
position and band index. It is convenient in for-
mal Green's-function calculations not to differen-
tiate between the s and d electrons. However,

at the final stage, we can take into~ccount that
usually (a} it is the mobile s and sP-band elec-
trons in the metal which dominate the charge fluc-
tuation spectrum of the metal and also are most
important in coupling (screening) to the adatom.
That is, the interactions v&, and K„areonly con-
sidered for the wide-band s and p electrons. (b}

Only the d-electron wave functions overlap strong-
ly on to adatom and thus the hopping interaction

V,&
is generally only kept for the (narrow-band)

d-electrons (see, however, Refs. 11-13}.
In the usual discussions of chemisorption, the

Coulomb interactions (v and K) are ignored. With

their inclusion, the adatom can couple directly
(via K) into the plasmon oscillations (which arise
as a result of v) involving the conduction electrons
of the substrate.

Our aim is to find the spectral density of the
adatom Green's function. We shall do this by

taking functional derivatives with respect to auxi-

liary fields. We derive formally exact equations

.(&[sc (~)c'„(~')1}
(&(@&

-=((c,,(p)c (7.'))) . (2.8)

Here and elsewhere, r and s include metal states
(i, j) as well as the orbital state (a) of the adatom,
0 and cr' represent the spin label, T is the usual
time-ordering operator (largest times to the left),
and the times are restricted to the domain 0 ~ ~,

ip (w-e set 6 = I). The operator S contains
the auxiliary external scalar fields

This will enable us to generate higher-order
Green's functions in terms of lower-order ones
and their functional derivatives.

The equation of motion of the adsorbate Green's
function is easily shown to be

-kg

S=exp —i dy X'„~c' ~')c . 2.6)
0 YO

The functional derivatives with respect to X;(i)
are given by

5G;,(~, ~') j5X~(~,)

=-i((c'„,,(~[)c„„(~~)c„(g)c' (~')})

+ G'„'„,( „r',)G'„,(~, 7'). (2.7)

+g V.,C;;.(,, ~')+g K~((n, (&)c„(~)c'„(~'))). (2.8)

In terms of functional derivatives, we can rewrite (2.8) in the form
fy 1

[Gca(&i )I Gee(&i& }=8(&—~ )+2 VN4G40(&i & }+U ~i i +y'~a (&i &}Gaa(&) ~ }

'I «" ()x (.) ' )x-( )
'

where we have defined the first-order (Hartree) self-energy

Z, (7, 7") =——UiG;,(r, r )6(r —r') -Q K,(i[G(;(7, 7 )+ G(((7, 7 )]5(T —r')
i

and the inverse of the noninteracting adatom Green's function is given by

(2.8)

(2.1O)
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[o].(„.)]-'-=(;—' —~. x:(,))&(.—,'). (2.11)

A bar over time coordinates means that these are integrated from 0 to -iP.
The hopping term in (2.9) involves the mixed metal-adatom Green s function G», and this cannot be ex-

pressed as a functional derivative of the adatom Green's function. The equation of motion for |"&„is given
by

+ V,»G', „(T,T')+K«((n, (T)c„(r}c(r'))) .
This is valid for r=a (adatom) or r=j (metal electron). This equation can be rewritten in the form

(2.12)

Q [0;»(r& r)] 'G», (r& r') = 5(r —r') 5„+V&»G«(T& T') —Q v»», , + X-„&~zG»„(T& T')

(2.13)

where we have introduced

[G»»(T, T')] '-=3—-X;(T)+ zg v»»[G»»(r& T') + G»» (T& T')]

+tC.,(i[G:.(, ')+('.:(, ')] —1])&„-1'„&(— '). &2.14)

The function G&& is the inverse of the metal Green's
function 6&& in the Hartree approximation in so
far as v and E are concerned. However, we em-
phasize that (2.13) is exact.

It is clear that (2.9} and (2.13) with r= a give a
closed system of coupled equations for G„,G„,
and their functional derivatives. These equations
can be solved to any degree of accuracy desired
by simple iteration. At the end of the calculation,
the auxiliary fields X„areset to zero (S=1).

In solving (2.9) and (2.13}, it is convenient to

I

define inverse Green's functions

[G'..(, T)] 'G'..(T, T') = 5(r - r ')
(2.15}

The self-energies are given by the appropriate
Dyson equations

[G», (r& T')] '= [G„(T,T')] ' —z», (T& r'),
(2 1 )

[G«(r, T')] ' = [G,.(T, T')] '- Z'. (T& T') .

By the usual manipulations, ' (2.9} can be rewritten

G«(T& T') =G.".(T, T') +g G.".(T, T,) V, »G «(T» T')

+ G(&(&(T& T») I (T&»&Tz)G;, (Tz& T ) G(&(&(T& T») UiG«(T» T3) ~(&&

(2.11)

If it were not for the second term on the right-hand side involving the mixed adatom-metal Green s func-
tion G„,we could read from (2.17) a self-consistent integral equation for the adatom self-energy Z;(T, T').
The equation of motion for G«, in (2.13}may be rewritten in the form

G»» (T T') =G»» (T ')(IT5}+»QG'-»»
—i~ G»»(T& T»)v»»

—i~ 6;,(T, T,)K~ ~~gLT1
(2.1s)
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g.(...') =g G;,(..«}I,.G:.(«, .') . (2.19)

In the absence of the Coulomb interactions v and K,
the mixed t reen's function G&, is given exactly by
the second term in (2.18). This is not the case in
our problem, but we could use this as a first ap-
proximation to G&, and proceed to calculate the
functional derivatives in (2.18) by iteration. We
shall use the lowest-order approximation

. 5C,,', ( „„')5G,;( „„')
Xgy'L«& «~ 5Z»( ) 5K»( )

=-i&T([n, (r,}—&ng][n, (r2) —&n,)]}).
(2.23)

In the last step in (2.23) we have used the fact that
(5G&&/5X~') vanishes. The mixed density response
functions are defined by

We might note that this is exact if we assume that
the hopping term V only couples to the d electrons
while the Coulomb interactions v and K only in-
volve the s electrons.

Using (2.19) in (2.11), we can read off a self-
consistent equation for the adatom self-energy
from (2.16}:

+ &.'~(~, r')

X»j(«& T2) $=5Gjl(~2& T2)/5K»(T))

i&T-[n (~,) —(n )][n,,(«)-&n(,)]) .
(2.24)

It is easy to verify that these mixed density re-
sponse functions X„areat least of order K and
thus the last two terms in (2.21) are really of
order UK . We have let the auxiliary fields X'„go
to zero and as a result, all functions in (2.21) only
depend on the time difference. We recall that, to
second order in V, the hopping self-energy is
given by

5Z;(«, r'')
+ UiG«(Q& «) 5~( )a &1 ~"."(.—.') =g I .,I,.G &,(.—.') .

$ef
(2.26)

+~ KN)x G»»(r& «) 5' &

fy I'5~() """'
(2.20)

To obtain Z,
' to second order in U and K, we need

only compute the functional derivatives using Z',

correct to first order in U and K. The final result
is

~~ (r- r') =ZKo(KgiG'. .(r- ~')X(,(~- r&)
jag

+ U iG&»&(r —r')X„(r r')

+Q UK»gtG»»(r —r )X,((r —r')
i

a&UiG&e(r - r')Xi:(r- r'). (2 21)

Here the response function of the adatom electrons
is given by

x'..(.„;)=--i5G:.(;,«)/5~(«)
=-i&TGn..(«) —&nd]ln. .(-2}—&n )5),

(2.22)

The second term in (2.21) gives the expected
adatom self-energy to second order in U . This
arises from the adatom electron (of spin o} ex-
citing a density fluctuation in electrons of spin 0
on the adatom. This adatom self-energy has been
considered at length in a recent paper by Hertz
and Handler. It is this term which Schonham-
mer ' 7 has used in going past the simple Har-
tree-Fock (HF) approximation for U. Schonham-
mer has pointed out that it makes a significant
improvement on the HF solution. In particular,
in the symmetric case (c,= e&, ——,'U), it gives the
correct atomic limit for U» V. Thus it is an al-
ternative to the Brenig-Schonhammer approxima-
tion to be discussed in Sec. III.

The first-order self-energy (2.10) is given ex-
plicitly by

Z',"'(r- r') = U&n.„}5(&-r')

+Q K.,(n,)5(~ —r') . (2.26}
t

It is important, however, to realize that the ther-
mal average (n„)includes the perturbation pro-
duced by the metal, while &n&) includes the effect
of the adatom on the metal substrate. Rather
than computing &ng directly from the equations of
motion for G«(r, r ), it is simpler to use linear
response theory to obtain the perturbation to low-
est order in K. One finds

while the density response function of the metal
electrons is

(ng =&ng, +Q X"„((u= 0)K~,(&ng —1}. (2.2"i)
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It is mell known that if we had kept the ion-ion
and ion-electron interaction terms in describing
the metal, they would give rise to self-energy
contributions which exactly cancel the Hartree
self-energy arising from the (ng)0 term in (2.27}.
In this connection, we also note that the Coulomb
coupling of the metal ions to adatom electron is
canceled out by their coupling to the adatom nu-
clear charge.

We Fourier transform with respect to the im-
aginary time variable in the standard way

mfa

A(i~„)= dr exp(-&u„g)A(r),
0

A(r) = . Q exp((u„g)A(i(u„),
1

-~~ n

(2.23)

where &u„=nv/P with n =0, +2, +4 for response
functions and n=+1, +3, +5 for Green's functions.
The Fourier coefficients can be analytically con-
tinued to real frequencies (f&u„-&u+f0'). The
final results are

P
I

x Imt"'„co'Xqf u —w' tanh

I

+ 1m'."„((u'}G'..(&u —(u') cotanh '

2

(2.30)

For completeness, we have given the finite-tem-
perature expression (P =1/ks T). These adatom
self-energies have a simple diagrammatic rep-
resentation, as shown in Fig. 1. Z' corresponds
to a direct (or Hartree) term while T is an ex-
change self-energy, the effective interaction being
given by

K((u) =Q K„)P~((u)K„. (2.31)

The direct term vanishes if (ng =1 and describes
the shift of the adsorbate electron levels due to
the interaction of the average charge on the ad-
atom with its image change. The exchange term
involves a dynamically screened interaction medi-
ated by the charge fluctuations of the substrate
conduction electrons. The main advantage of the
functional differentiation method over decoupling
methods is that it leads to self-energy approxi-
mations which are capable of a diagrammatic
interpretation and which involve the full adatom

Z', ~(&u) = U(q, ) +g K,&K~y";q ((u = 0)((n$ —1),
if

(2.29}

and (keeping only the term involving K)

IK

,
'K K ,K

Gaa

OIR'EC7 ENCHaNGZ

FIG. 1. Diagrammatic representation of adatom self-
energy to second order in the adatom-metal Coulomb
interaction E. y is the density response function of the
substrate [see (2.29) and (2.30)].

G'.,((u) = [(u —e.—U(n, ) —r((u)] '. (2.32}

The density (n, ,) must be determined self-consis-
tently from G;,(&u) using

Sp
(n,g =- — d(u ImG;, ((o +f0') . (2.33)

The hopping self-energy is given by

I'(&u) =- T', ((o) = Q V„V~,G „(s)), (2.34)

where G~&(to) is the metal Green's function de-
scribing the metal substrate electrons. Since our
major interest is in the effect of the conduction-
electron charge fluctuations, we shall content
ourselves with the often-used one-dimensional
tight-binding chain with the chemisorbed atom at
the end. The resulting expression for I'(u&) is
summarized in an Appendix.

Green's function. This allows us to calculate the
adatom self-energies to order K' self-consistent-
ly, if this is important.

We might remark that Pfuff and Appel have
recently discussed the adatom self-energy treat-
ing all Coulomb interactions (v, U, and K) in a
self- consistent Hartree- Fock approximation.
Their work is an extension of earlier work by
Grimley, and Einstein. In addition, Bagchi and

Cohen as well as Bell and Madhukar have con-
sidered the Coulomb interaction v between the
substrate conduction electrons but only to first
order. Qur analysis goes beyond such studies to
include adatom self-energy terms which are sec-
ond order in K and U and, in principle, to all
orders in v through the full density response func-
tion X of the metal substrate. In order to include
the dynamical effect of substrate charge fluctua-
tions such as surface plasmons, it is necessary
to go beyond the Hartree-Fock approximations
used by previous authors.

As a first approximation, one can calculate
Z,' (&o} in (2.30) using the Hartree-Fock G' (ur).
This is given by the well-known expression '
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For later use, we conclude this section with a
few remarks about the HF Green's function and its
relation to the correct atomic limit. In the ab-
sence of the hopping interaction [I'(&o) =0], the
HF adatom Green's function given by (2.32) has a
single pole at the Hartree-Fock energy

e"' = e.+ U&n. ) . (2.36)

In this case, of course, the adatom is completely
uncoupled from the metal substrate, and we ex-
pect (say)

&n„)=1, &n„)=0. (2.36)

Hence, defining the adatom spectral density by

N, (&u) =-21mG~ (&u + i0'), (2.37)

we would have

N(&u) = 2v5((u —~.),
N, (~) =2v6[~ —(e, + U)].

(2.36)

The energy level c, is referred to as the atomic
ionization level &, + U is the atomic affinity level.

In the presence of the hopping self-energy, the
adatom Green's function will have poles at ~ =0
where the equation

0 —c,—U(n, ,) =Rel'(0} (2.s9)

~( )
1 —&n ) &n,Q

(al —f~ (0 —(eo+ U)
(2.40)

This can be used to find &n ) from (2.33). At
T =0 K, for &,«~ and &,+ U& &~, one finds the

has solutions outside the d band, i.e. , where
ImF(e) =0. We may have zero, one, or two
split-off peaks depending on the strength of V and
the magnitude of the Hartree-Fock energy ~",

In addition, we always have a solution of (2.39}
which lies inside the d band, but this only gives
rise to a broad resonance. When the bandwidth
W» V and (n„)=&n„&, there is only a single broad
peak in N(&u} near the Hartree-Fock energy esv

=~.+-,'U.
The value of (n, ,) must be determined self-con-

sistently using (2.33). A convenient way of doing
this is to plot (n„)as a function of (n„)and (n„)
as a function of (n„),the intersections giving self-
consistent solutions. We emphasize that the HF
result is really only appropriate for V~ U. When
V«U, one often finds magnetic solutions (n„)
w &n„&as well as nonmagnetic solutions (n„)=&n„)
and the magnetic solutions correspond to a lower
total energy. The Hartree- Fock approximation,
of course, can no longer be trusted in this regime
where magnetic solutions are obtained. In actual
fact, in the limit V-O, the exact Green's function
can be found exactly. Instead of (2.32), we have

magnetic solutions (2.36} as well as nonmagnetic
solutions given by

&n, & =&n, ) =-. (2.41)

In this case, however, both (2.36) and (2.41}are
degenerate and one must choose the correct non-
magnetic solution before turning on the hopping
interaction (just as in degenerate perturbation
theory). Thus in the atomic limit V-O, the ad-
atom spectral density is given by

No((u) = v(5 ((u —e,}+ 5[(u —(e, + U)]) (2.42)

and not by the Hartree-Fock result (2.38). Equa-
tion (2.40} is the starting point of the Brenig-
Schonhammer approximation'0' to be discussed
in Sec. III. This is more appropriate in the atom-
ic limit where U» V and, as we shall see, only
exhibits nonmagnetic solutions.

(3.1)

we shall base our analysis on the so-called Hub-
bard Green's functions (o, P =+)

. &r[sy..(r)j8.(,')]&

&I"(5&
(3.2)

=-«i..(.)j' (r'))&, (3.3)

where 0 is defined as in (2.6). We shall develop
equations of motion for this 2~2 matrix Green's
function using a simple decoupling method for the
hopping self-energy and functional differentiation
for the Coulomb self-energy terms. %e note that

Ctfa =~ gtz(y, City (s.4)

and thus the real adatom Green's function is given
by

(3.6)

The advantage of working with the more com-
plicated matrix Green's functions g'~ becomes
clear when we write the equation of motion

III. BRENIG-SCHQNHAMMER APPROXIMATION

Here we turn to a discussion of the effect of sub-
strate charge fluctuations on the adatom spectral
density which is appropriate to the case V«U,
such as occurs in chemisorption on transition
metals. This regime is more complicated be-
cause one must develop a theory which has the
correct atomic limit (2.40) when the adatom is
uncoupled from the metal (V, K-0}. The pro-
cedure we adopt for treating V will be that used
by Brenig and Schonhammer. ' ' Defining the
Hubbard operators
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I—f —X ('7) 8 ()(T —T') =i«n, (v)»6.,5(v —'v') +Q V~&&I (v(v}c).(v))l)()()(r')&&
~ ~

—o Q V„(&c, (r)c, (~)c (v)gttN(~')&&+ ug Vz&&c', (r)cz, (r)c„(~)g,(&')&&
f

(3.6)

where

&, +U, a=+,
Eo:—I f Qt

ey

and

(3.V)

G—„(r—r') =5(~ —r')5), +Q I'g, G„(r—~'),

(3.11)

and 6&„is defined by

n, , n=+,
So@ A

1 —n, , o. =-. (3.6) = 5(r —r') +Q Ts G~„(r—~') . (3.12)

If we consider the isolated adatom (V, K-0) and
set the auxiliary fields X; to zero, (3.6) is easily
solved and we find

g'()((u) = [&n,&,/((u —&,)]5„)). (3.0)

A. Hopping self-energy

We next set up equations of motion for the
Green's functions entering into the hopping con-
tributions in (3.6) and solve these by making a
simple HF decoupling approximation for the metal
electrons. One finally finds that the three hopping
terms in (3.6) can be written 3

Inserting this into (3.5), we obtain the exact atomic
limit adatom Green's function (2.40).

Q [nn(gv(+ T1) uyg(T1 T)]8b()(& —T )
red

and expand the expression in the square brackets
to second order in V. The end result is that we
find the hopping terms on the right-hand side of
(3.6) can be written in the form

(3.13)

Q ~'.() (r- r)&1,( —r'), (3.14)

These results are identical to that obtained by
Dworin'4 in connection with the Anderson model
of a magnetic impurity and, independently, by
Bell and Madkukar. ' However, the first two
terms on the right-hand side of (3.10) [—=dud~(y
—r')] are not in a form for which we can write
down a Dyson equation of motion and hence find a
self-energy Z', (7 - r').

Our procedure is to rewrite M'~ in the form

—up ,.V'G( -r~')&c,', )})l,.,&

f

+ uQ V„G(,(r- r')&P(') c, ,&

4g

+g g V.;G&,(r- r) V,.5.,
keg

+ aQ V„G)„(z~}V~(6„v—&s~ g}

P v. ,G„(,—,)v,.(n. ,, —(v), .)))
lg

XG„',(~, r'), (3.10)

where the 2 x 2 matrix hopping self-energy is
given by (after Fourier transforming)

2I'((u) + n((u) —[I'((u) + n, ((u)]
'

Z~() (u) =
[I'((u) + n((u)] 21'((u) + a((u) i

(3.15)

(3.16)

while

Here 1((u) is the hopping self-energy which arose
in the Hartree-Fock approximation [see (2.34)]

I'((u) =Q —~I V~ I

where the metal electron Green's function is given
by [see (2.12)] (3.1'?)
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Here f(e) is the Fermi distribution, and c~ is the
metal electron dispersion relation. In our work,
we shall evaluate I'(u&) and A(&u) using the one-di-
mensional tight-binding model summarized in the
Appendix. Gur expressions for the matrix ele-
ments of Z ~~(u&) are identical to those of Brenig
and Schonhammer (BS}"if we set (ng =-,' in their
results. In neutral chemisorption such as we are
interested in, this should not make too much dif-
ference because the charge transfer is small.

Before turning to the determination of the self-
energy due to the Coulomb coupling term K in
(3.6), it will be useful to briefly remark on some
of the qualitative features of G'„(~}which results
from the BS theory. Introducing the auxiliary
Hubbard Green's function

(s.16)

one finds that it satisfies the 2 x 2 Dyson equation

(3.19)

Solving this using (3.15), we find from (3.5) that
the adatom Green's function is given by

(3.20)

where R-=21'(ru) + A(~) and S=—I'(u&) + &(~). We
recall that (3.20) treats U exactly but V perturba-
tively. The poles of G;,(&u} are given by the solu-
tions of

expected to be of the order of a few eV. In evalu-
ating the hopping self-energies, we introduce a
finite electron lifetime 7 in our semielliptical
model (see Appendix) for the d band. The origin
of this broadening need not concern us, although
it may be interpreted as partially due to coupling
with the substrate sp-band electrons. ' Following
Brenig and Schonhammer, "we take I/~=1 eV.

In Fig. 2, we plot the functions S,(v) given by
(3.22) and S for the case V=3 eV. We also show
the resulting adatom density of states. In this
case of small hopping, we only get two peaks (P,
and P„),which become the atomic ionization and
affinity levels for V-0. For V sufficiently large
(see Fig. 3), two new solutions appear outside the
d band (S, and S„}.As V increases, the peaks P,
and P„arerepelled from the d band and their
weight decreases, while the weight of the SI and
S„peaks increases. Ultimately one reaches a
region in which the S peaks dominate. The origi-
nal atomic levels (PI and P„)are of zero weight
and (3.20) reduces to the Hartree-Fock solution
discussed in Sec. II. For intermediate "realistic"
values of the hopping strength V, PI lies below the
atomic ionization level &, while S„lies above.
At the present time, it is not clear whether the
experimentally observed peak in the photoemis-
sion spectra of H chemisorbed on Ni should be
interpreted ' as PI (shifted upward by screening
effects due to K—see Sec. V) or as S„,as argued
by Brenig and Schonhammer. '

(&u —z, —R)(u& —e, —U- R) —S' =0 (3.21}

outside the d band [i.e. , where ImZ"~z(&u) = 0]. It
is convenient to find these isolated roots by plot-
ting the solutions S, of (3.21) viewed as a quad-
ratic in S,

6 [(2&8- f~ —6 ) —3((d —f~)((d —E,)] },
(3.22)

where (d =—co+ ~, and seeing where these solutions
intersect the curve S(&u) = I'(~}+A(&u}.

As a specific case, let us consider H chemi-
sorbed on Ni and assume (for simplicity) that the
hopping interaction is mainly to the d-band elec-
trons. Following Newns, we take the d bandwidth
2W= 3.8 eV. With the Fermi energy (-4.5 eV
below the vacuum level) as our zero of energy,
the top of the band is at 0.14 eV, the bottom at
-3.66 eV and the band center is &, =-1.76 eV.
Taking U= 12.9 eV, we have E =- E,=-9.1 eV and
&, = &, + U= 3.8 eV. The strength of the hopping
between the adatom and substrate (V) will be
viewed as a parameter to be varied, but it is

V =3eV
0=/29eV

I

/ Si I pA
(

3 I'
(

z I
/

/
/ sI s

~l/
/

/
/

/
d BAND

-15

/
/

-10" -5 0

ENERGY (eV)

FIG. 2. Adatom spectral density N((d) as a function of
the energy co, using the Brenig-Schohammer approxi-
mation for the hopping self-energy. As discussed in the
text, the intersections of the dashed curves give the
poles of adatom Green's function in Eq. (3.20).
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In concluding this brief study of the Brenig-
Schonhammer approximation, ' we would also
like to stress that one of the satisfying features
of (3.20) compared to the HF result of Newns
given by (2.32) is that when one uses (2.33) to
compute (n. ..), the BS result never gives rise to
magnetic solutions ((n„}w(n, ,)). This is not un-
expected when one notes that in the BS approxi-
mation, the poles of 6;,(&o) do not depend on the
value (n„),in contrast to the poles of the Har-
tree-Fock result in (2.32}.

In contrast to the nonsymmetrical cases shown
in Figs. 2 and 3, BS only gave results for the

symmetrical case where «, +-,'U= «~, which in
our notation means « =--,'Uand «, = —,'U, with the
center of the band at «, =0. Moreover they took
28'= U. The results in Figs. 2 and 3 correspond
to weak chemisorption in so far as V«U.

B. Selfwnergy due to substrate charge fluctuations

Having now determines the hopping self-energy,
we now return to the general equation of motion
(3.6). Writing the last term on the right-hand
side in terms of functional derivatives, the auxi-
liary Green's function defined in (3.18) satisfies

Z[~al'(~i r)1 Br~a~~i & } 6a])6(T & )+g ~a) (~i &)~i])(~i & }+Faa(&i &}Ba])(&i& }
T r

(S.2S)

%e have introduced the inverse Hubbard Green's
function

[t) .",(...')]'-=('——a. -X:( )}i( — ') 5.„(324)
T

and Z' corresponds to the self-energy which is
linear in K given by (2.10). We see that (3.23)
is a closed Dyson equation for 9'~. Defining

Z [S (7' T)] 9 „(&T ) = 6 6(T —T'), (3.25)

g]2~ (~, y ') =g K,]K~i5' g(T —T')X/g(T —7 ') i (3.28)
fej

where the substrate density response function is
defined in (2.23). As in the Hartree-Fock case,
the nice feature of (3.27) is that the various con-
tributions may be interpreted diagrammatically
and also involve the renormalized propagators.
The direct Z" and exchange Z"~ self-energies
are once again given by Fig. 1. In summary, we
have (after Fourier transforming}

and the 2 X 2 self-energy by the usual equation

[j:,(~, v')] '=[g."],(v, ~')] '- &:,(~, v), (3.26)
with

(s.29)

we find the self-energy obeys the following equa-
tion:

(3.27)

This should be compared to the analogous equa-
tion (2.19) obtained in the Hartree-Fock approxi-
mation. The Coulomb repulsion U does not appear
explicitly, as it does in (2.20), because it has
been incorporated exactly into g ~. The price
we have to pay for this is the necessity to work
with the 2 X 2 Hubbard Green's functions.

As with (2.20), (3.27} can be used to generate
various approximations to the self-energy due to
K by simple iteration. To second order in K, we
obtain immediately

9= /29eV
V=5eV

p
Z'

I r)Sz z

l

/

l

lS ~ PA

l

l y S

SA~

l
/

BA

-20 -15 -10 -5

ENERGY (eV)

FIG. 3. Same as Fig. 2, except that now the hopping
strength V is large enough to cause states (Sz and Si)
to split off from the d band.
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~.'".=K(~ = 0)[(ng —I], (3.30)
OO /

Z'
~ (&u)=- sgnur'

2r
x [ Imp' z(&u')K(&u —&u')+ ImK((v')g '

&(&u —rd'}],

K0=1). We proceed by Fourier transforming the
density-density response function, with

X"(z, z'; ks) = . z, exp[ -iks ' (xi' —x(i)]
(271')

(3.31)

where the effective interaction K(&ii} is defined
in (2.31) and is a function of the charge fluctuation
spectrum of the sP-bands of the substrate. The
hopping self-energy is given by (3.15) and is de-
termined by the appropriate metal electron Green's
function. In (3.31), we have taken the T-O limit
of the analogous expression in (2.80).

lV. MODEL FOR SUBSTRATE CHARGE FLUCTUATIONS

1 ~x~ ~ cosA~ cosk,'z
kgskg

x X"(&„k.'; kii, (v),

where

k„k,'=nv/L, n=0, +I, s2, . . . .
Using this in (4.1}, calculation gives

K(iv) =(Kpe')' j dkiiexp(-2klld)

(4.2)

(4.3)

x s e X"(r, r', s)),
I r —R, l I

r' —R, l

(4.1)

where the factor Eo reminds us that we are work-
ing to second order in Coulomb interaction between
adatom and metal sp-band electrons (of course,

In Sec. III, we showed that within the BS atomic
limit model for chemisorption, the Coulomb in-
teraction in (2.4) leads to "direct" and "exchange"
adatom self-energies given by (3.30) and (3.31}.
These involve the metal substrate density re-
sponse function through the effective interaction
K(&ii) given by (2.81}. In this section, we shall
calculate K(cu) and the resulting self-energies
(8.80) and (3.31) using the well known classical
infinite-barrier model for the metal substrate. ""
In this model, the surface gives rise to classical
specular reflection of the electrons. The advan-
tage of this simplified model is that the density
response function Xi, in (2.81) may be obtained
analytically but it still exhibits the complete spec-
trum" of a bounded electron gas (surface plas-
mons, bulk plasmons, and the particle-hole spec-
trum). When electron-gas dispersion is com-
pletely neglected, only surface plasmons are
important, as we shall see.

We assume that our substrate is a slab of thick-
ness L and the two surfaces (z =0 and z =L) are
simulated by infinite potential barriers. While
in previous chapters, it was convenient to work
in a discrete (Wannier} site representation for the
substrate electrons, we will now go over to a
electron-gas model appropriate to the conduction
electrons of interest. The site labels i now will
refer to the position variables r=(xa, z). Thus
K(iv) is given by

rc( ) =&i f & r f&

X (~s& ~xi }~"~ ~) Xs(k& ~)5a ~ +ii'

2k)i 1
y'& + y& X (k, &o) ~ „-,v(k'}Xs (k', iv),

$,g~i}y +~

where k—=(kg, }t,), k'-=(kii, k,'), and

(4.5)

D, „(k„,~}=- I+ —g, „.. . (4.6)L g k}}+ k g E~ jk, w)

The sum in (4.6) is restricted to even (odd) values
of k, if k, and }t,' in (4.5) are even (odd). The bulk
RPA density response function is given by

X'(k, iv) X'(k, iv)

1 —v(R)X'(R, (u) ~s(it, ~) ' (4.V)

which also defines the bulk dielectric function
which appears in (4.6). Xo(k, &v) is the usual Lind-
hard function and v(k) is the Fourier transform
of the Coulomb interaction between the metal sub-
strate electrons. Loosely speaking, one may
view the second term on the right-hand side of
(4.5} to be the surface-induced part of the density
response function, especially in the I.- limit.
In this case, (4.4) describes an adatom coupled
to a semi-infinite metal whose surface is at z =0.
We remark that the density response function for
a metal film of thickness L on a semi-infinite

X"(k„k,'; kg, iu) 2

L „~(k'+k')(kl+ 4,,)
[1 +exp(-k L)],

(4.4)

where we have assumed that the adatom is at Z,
=-d. We note X(k„fi,') is zero unless k, and k,'
have the same parity. The -(+) sign is used when
n and n' are even (odd).

The density response function for our semiclas-
sical infinite-barrier RPA model is given by (see,
for example, Ref. 15)
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dielectric (from z = L to ~) may be obtained by
specializing the expressions given in Sec. II of a
paper by Harris and Griffin. We do not discuss
this case any further, although it might be the

most relevant model in future studies of chemi-
sorption on supported metal films.

Making use of (4.5}, we find after a little alge-
bra that

X(k~ k'& h))& ~}
L (k +k )(k' +k')

g»

z —,'Dz[1 —exp(- k))L)] —[1—exp(- k)(L)]+ —,'D„[1+exp(- k))L)] —[1+exp(- k))L)]4we kii

2 1 1 ~
~ 2 1 1Dz —— , [1—exp(- k))L)] — Dz —— , } [1+exp(- k))L)]D~ 2 1 —exp(- k((L D„2" 1+exp'- ki)L

(4.6)

In the manipulations used to derive this, we have
used the identity

2k„ I+exp(- k))L) S: upper sign,
k', +k)) 1 +exp(- k))L) ' A: lower sign.

(4.0}

Using this in (4.4), we finally obtain
40 1

K(~) = (Koe) dk)( exp(- 2k))d) 1—
0 Dg k(), (d

1
&& (&„, ))'

(4.10)

In the half-space limit {L-~), we have D~ =D„
=D, where

()0

~(& ) &
d)&, &&» ) —& ()&„, )) ( )2v k)(+ kz es(it& (()}

As discussed at length in the literature, '7 the
zeros of D&,„(k)),(d) give the charge fluctuation
spectrum of the metal slab, including bulk and
surface plasmons. Thus the resultin (4.10) shows
in a very direct way how this spectrum determines
the substrate-induced dynamic interaction K{(d)
which enters in the adatom self-energy. If we
had simply approximated X"(k„k,') in (4.5) by the
first (bulk) term on the right-hand side, then we
would have obtained a completely different result,
namely,

Ke((()}=—' Jt, exp(- 2k((d)v'(k})(s(k& (()) . (4.12}

It has also been derived by Datta and Newns' as
well as Gadzuk in their discussion of the XPS
core hole spectra of adsorbed atoms. In terms of
quantities introduced in these references, we have

(k ) 1
2 1 —es(k))& (())

D(k()& (L)) 1 + C~(k)(& (())

where

(4.13)

)) ))- 0 k)) + k',
(4.15)

in (4.14). Of course, we have e, (k(( =0, (d) =

as (k ((
= 0, (&)).

For later purposes, it is convenient to review
some of the results obtained in the case of XPS
from adsorbed atoms. Gumhalter and Newns'
have generalized the work of Langreth and others
to obtain an expression for the spectral density of
occupied core states N, ( )ofcan adsorbed atom.
Expanding this, one finds (in our notation)

1 "dk, 2k)) 1
c,{k))&(d)

' „2vk))+kg es(k&(d) '= D(k((& (()) —1 =

(4.14)

with &, being sometimes referred to as the "sur-
face dielectric function. " It is clear from (4.14)
that when the bulk dielectric function es(k, (d) de-
pends on k, c,(k)), &u) can no longer be approximated
very well by teak(), ro). The results obtained by
Gadzuk in several recent papers on the relaxa-
tion energy of adsorbed atoms using this particu-
lar approximation have no basis except in so far as
we can use

In this approximation, K((d) is determined by the
zeros of es(k, (d) instead of the zeros of D(k)), (()).

In the half-space limit, (4.10) is equivalent to
the expression obtained by Harris and Jones' in
their discussion of the dynamical image potential.

N, (E) =e 6 5(E —&a„)+
p

8(n~ —k')ImK(h, —E)
r

(4.16}

where 8(x) is the step function and
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"
d&o ImK(&u)

W (d

"
d&u ImK(&u)

11' (d0

(4.IV)

K((u) =K', (e'/2d)(u, ',/((u' —(u'.,) . (4.19)

In this limiting case, only the surface-plasmon
mode is coupled to the adatom and (4.16) reduces
to

The last equality in (4.1V) follows from using a
spectral representation and is quite general.
Here K(&u) -=K(&o —io') and E is measured relative
to the original occupied core orbital. We see that
in this Born approximation, N J&u} exhibits a main
resonance at the shifted frequency h„(the so-
called relaxation shift). The second term is a
satellite structure. If we neglect electron-gas
dispersion and set as(k, e}= 1 —&v~2/uP, then (4.13)
simplifies to (ru„=&u~/~

R(kii, ~) =~' /(&v'- ~,', ) (4.18)

and hence from (4.10)

quate as long as d ~ kp T. This is consistent with
the numerical results of Datta and Newns.

We note that in the local approximation, we have
R(kii, ur} =R(k, i =0, &u) and thus K(&u) is given by
(4.19). In fact, this result is exact to order d '.
Contributions to R(kii, ur) which are linear in kii

will lead to a correction to (4.19) which is of or-
der d, and so on. Thus the first contributions
to K(&u) from the bulk plasmon and particle-hole
continuum will at least be of order d

If one is interested in the relaxation energy b,
„

given by (4.17), one only needs K(&u =0). At &u

=0, one can use the Thomas-Fermi approxima-
tion

es (k, &u = 0) = I + kr T/k, k F r = PS&ue /vz

(4.28}

for wave vectors
~
k

~

& %. As a result, the inte-
gral in (4.11) is restricted to ~k, ~

«k, —= (k —k2) ~

and we find '

2 k
D(kii, ~ =0) =2 ——arctan —'

r k))

N, (E)=e (5(E —6„)+ p5[E —(n, —ra»)]],

with

P= Vl/(o», &, = Vg—= e /4d.

(4.2o)

(4.21)

(k' +kl)'" v (k»+k', )'" '

(4.24)

Thus we have a main resonance shifted up by the
classical image-potential energy V& and a surface-
plasmon satellite shifted down from this "relaxed
peak" by v„.Using the more general formula, s,
one finds a whole series of surface plasmon satel-
lites given by well-known formula' D(kn, (o =0) = 1+kg/(kvT + ku}' (4.28)

An appropriate cutoff would be 5=k». Newns
(see also Gadzuk4) first worked out the relaxation
shift a„using (4.24} with k, -~, in which case it
reduces to

pn
N, (E)=g (e-') —,8[E- (n.„n~.,}]-,

n~0
(4.22} and thus we have

but usually P «1.
When electron-gas dispersion is considered,

ImK(&u} has contributions from the bulk-plasmon
continuum and the particle-hole continuum as well.
Gadzuk has discussed the relaxation shift b„in-
cluding such effects, which come in automatically
when we use (4.10). The only analogous study of
the satellite structure [second term in (4.16}]is
by Datta and Newns. 9 However they only con-
sidered K(&o) for fairly large values of d (such as
found in physisorption) and in this case the surface
plasmon resonance still dominates. It is clear
from the structure of K(&o) in (4.10) that the dom-
inant contribution to k)) integral is from values
kii «d '. Since electron gas dispersion [i.e. , the
k dependence of ea(k, &o}] only becomes significant
for k a k» (Thomas-Fermi wave vector), the local
approximation (4.19) can be expected to be ade-

K(&v=0) =-(K,e')' dkIexp(-2ki~d}
0 Q+ k))

(4.28)

where Q = (kI+ k») . The leading-order cor-
rection of order d to the relaxation shift is4

n „=,'K(~ = 0) = (—e'/4d)(I I/k„d+ ~ -~ ~ ) .
(4.2V)

This result is equivalent to saying that the refer-
ence plane is at z0 ——-k~'T. Clearly if d ~ kF'»
then we must keep the cutoff k(=k») in computing

For completeness, we also note that one may
calculate K(a&) when the adatom is inside the
metal surface. For Z, =+d0, we find in place of
(4.4)
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)((re)=(deer)c fdic f ' f
„X"(k„k,'; k(), (u}
&(k +k, )('k ~'k„)2[exp(- k do} —2 coskp ]

x [exp(- k)(do) —2 cosk&0], (4.26)

L
k2~ 2k)lQ kF T

(4.29)

Using this in (4.26) we find, after some calcula-
tion,

K((u = 0) =—(Kpe) (t dkp
Q Q Q. k

xe p(-2()d, )). (4.30)

We note that for d, = 0, this agrees with (4.26)
when d=0, as it should. The first term in the
integrand, which is independent of the distance
(do} the atom is inside the metal surface, gives
the bulk relaxation energy. It follows immediate-
ly from (4.1) that for an atom in an infinite elec-
tron gas, K((u) is given by

Ke((u) =K', Jt, v'(k)Xs(k, (u) (4.31)

and in the Thomas-Fermi approximation, this
reduces to

k
Ke((u =0}=-—(K,e)' dk ., rT,

k'+ k~q

=-(K,e)'k„. (4.82)

It can be verified that the first term in (4.30} in-
volving (Q —k)))/Q gives the same result as (4.82).
Thus we have a simple estimate of surface-in-
duced relaxation shift of a deep core state of an
atom a distance do inside a metal surface, name-
ly

k)) Q- kH
dkp — exp(- 2kr Tdp) .

Q Q+kH

(4.88)

where for simplicity we only give the half-space
result (I -~). As an illustration, in the Thomas-
Fermi approximation based on (4.23), (4.5) re-
duces to

1 kFT
)t(k» k,'; k)(, (u =0}=-

z d z4me k +k~T

Combining (4.26) and (4.30}, we have the Thom-
as-Fermi approximation to the energy of a station-
ary charge (Kpe) as a function of its position rela-
tive to the metal surface at z =0. For further
discussion, we refer to recent work of Eguiluz,
who has obtained similar results based on a nor-
mal-mode analysis of the coupling of a charge to
surface and bulk plasmons (the hydrodynamical
model was used). His work shows how, as the
charge moves from outside the metal to inside
the metal, the surface-plasmon contribution be-
comes less important while the bulk-plasmon con-
tribution becomes the dominant one.

V. CALCULATION OF ADATOM SPECTRAL DENSITY

We are now ready to compute the adatom density
of states N((u). The hopping self-energy is given
by (3.15) while the Coulomb coupling self-energies
to second order are given by (3.30) and (3.31).
For simplicity, we shall evaluate these charge
fluctuation self-energies using (4.19) for K((u).
That is to say, we only include coupling of the
adatom to dispersionless surface plasmons.

Using the spectral theorem in (4.17), the direct
self-energy in (3.30) is given by

Z'.",=2n„(1—(ng) . (5.1)

To leading order in d ', n, is given by (4.21) and
thus we have (we drop the o.' subscripts)

Z' =K20(e /2d)(l —(ng), (5.2)

which is the image potential shift we would expect
if the adatom had a net static charge =e(1- (n,}).
We shall not compute Z" self-consistently in our
calculations. Moreover, in computing the ex-
change self-energy Z', ~' in (3.31), we shall use the
auxiliary Hubbard Green's function 5;,((u) given
by the solution of (3.19). The only self-consisten-
cy we include is in the determination of the aver-
ages (Rs,) in (3.16).

In order to first obtain some qualitative under-
standing, we shall briefly study (8.31}with the
single-pole approximation

5 ~((u) =[1/((u —i )]5 ~, (5.3)

where & describes the atomic energy levels re-
normalized to include the shift due to the hopping
self-energy. With (5.3) and (4.19), the exchange
self-energy reduces to Z'

z ((u) = Z' ((u}5 z, with

(5.4)

We have assumed that i + 0 and E, & 0, with the
Fermi energy set at 0. The Hubbard Green's
function is then simply (Z = Z" + Z' '

),
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9',((o) =(n„)5,/[(o —0 —Z ((u}].

The poles are given by the solutions Q of

x —Z'" = Vl [a)„/(x —n(u„)],

(5.5)

(5.5}

0' =4'+Z +Vg,
g(1& ~ + g(1& V On =&.+(&u„+V&) .

Thus both the ionization level (u =-) and the af-
finity level (o =+}are split into two peaks. The
relative weights of the two resonances is

(5.9)

The peak near the ionization level j which has
the largest weight is shifted up by an amount V,
+ ~ . It corresponds to the "relaxed elastic" or
"zero-plasmon" peak of the core level in XPS
studies discussed in Sec. IV. A second peak of
relative weight (V,/&o»} is shifted down by ((u»
+ V,) and is the "shake-up" or "one-plasmon"
satellite. Similarly, the renormalized affinity
level 4, is split into two peaks. The one with

largest weight is shifted down by VI —Z" and is
the analog of the relaxed "valence" level in core
level XPS. The surface plasmon satellite is
shifted up from 0, by (&u»+ Vz). If one of the main
resonances (Q'", &~,") crossed the Fermi level
(e~ = 0), of course, there will be a net charge
transfer between adatom and substrate. We have
not considered this possibility here, although it
is a topic of some considerable interest in con-
nection with XPS studies.

To summarize, we have seen that if we start
with a adatom Green's function with sharp reso-
nances at 4 & 0 and 0, & 0, the renormalized atom-
ic peaks occur at (assuming &u„»V, )

E =4 +2'(1 —(n)) + VI,

E, =e, +2V~(1 —(n, )) —VI . (5.10)

These results are often described by saying that
the Coulomb interaction R,&

between the metal
and adatom allows the substrate electron gas to
"screen" the bare adatom Coulomb repulsion U,

U off U 2 VI ~ (5.11)

It is quite gratifying that we are able to obtain
results such as (5.10) and (5.11) as the first ap-
proximation to a general theory of the effect of

where x -=0 —0 . One has two solutions for each
Q~

Q = 6~ + —,'(Z"'+ Q(d») ~ —,'[(Z' —Q(d»)' + 4 VI(d»]'" .
(5.V)

Making use of the fact that V, «co„,we have

substrate charge fluctuations. The only compara-
ble microscopic calculation given in the literature
is that of Newns and co-workers' ' but they only
considered a single sharp level (U-~). Another
nice feature of our calculation is how surface
plasmon satellites automatically arise. Their
relative weight [compared to the main peaks given
by (5.10)] is small. However, the shifts are
large (-&u»), and it is important to take ionization
level surface-plasmon satellite into account when
one calculates the effect of substrate charge fluc-
tuations on the total chemisorption energy. As
we shall discuss in Sec. VI, the large surface
plasmon downward shift exactly cancels the small
upward shift of the main ionization peak.

While (5.5) might be appropriate to deep core
states as well as physisorbed atoms, it is clearly
not very adequate for the valence electrons in-
volved in chemisorption, where the hopping self-
energy gives rise to an adatom propagator with a
fairly complicated spectral density (see Sec. III).
We shall now discuss some numerical results
based on calculating Z 's(cu) using the BS approxi-
mation' for 0 &(&u). We have ignored Z " in these
calculations. This is justified if (n„)=(n„)= —,

or (n, ) =1 (no net charge transfer). The result-
ing adatom Green's functions were found to be
consistent with this assumption (i. e. , (ng = 1 to
within approximately 10%).

In Figs. 4 and 5, we show the effect of the sur-
face charge fluctuations on the adatom density of
states N(~) given in Figs. 2 and 3. We use the
same model parameters given in Sec. IG. The
surface-plasmon energy was taken to be ~» ——8 eV.
The strength of the Coulomb coupling is conveni-
ently parametrized by Vz. In Fig. 4 (V=3 eV},
we have only one well-defined peakbelow (or above)
&F ——0, associated with the original atomic level

g, ( or e, +U). The resulting relaxation shifts and
surface-plasmon satellites are in accordance with
the results discussed above, based on (5.3). How-

ever, we find for larger VI, the relaxation shift
is considerably less than VI, although the surface-
plasmon satellites still occur at a(ur„+V, ) away
from the original resonance [compare with (5.8)].
The two broad resonances just outside the d band
also are found to exhibit weak surface plasmon
satellite structures. The kinks at ~ =+8 eV are
a result of the broad peak close to (d=0. For
Vz ——3 eV, the shoulder on the main line at around

ao = -12.5 eVis a satellite of the resonance at &u

=-4.5 eV. We also call attention to the large
loss of intensity of the renormalized ionization
peak compared to renormalized affinity level.

In the case shown in Fig. 5, VI is large enough
that extra resonances have split off from the d
band (denoted by B and C), and these also exhibit
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FIG. 4. Plot of the adatom density of states N(~) for three different values of the Coulomb coupling between adatom
and metal {parametrized in terms of the image potential V&). The extra peaks are surface-plasmon satellites.

surface plasmon satellites (denoted by &' and C').
In this connection, it is clear that if we calculated
Z (~} self-consistently with the renormalized
adatom Green's function, one would find that the
satellites would have satellites. Our final iterated
solution would have a series of surface plasmon
satellites approximately at -nrem„(n =1,2, 3, .. . )
belew (above) the ionization (affinity) levels e (&,).
The weight of the nth satellite would also be rough-
ly given by P", where P = V,/&u„«I. Of course,
a proper theory of these satellites requires more
diagrams than the subset summed by using our
self-consistent Born approximation (3.31}for
Z (&o). We refer to the work of Langreth36 as
well as Gumhalter and Newns' for further dis-
cussion.

The results in Figs. 4 and 5 are for the case of
a narrow d band which is almost filled (such as
nickel). In order to give further insight into the
effect of surface plasmons, in Fig. 6 we give
some results using a band model more appropriate
to something like tungsten. The band is almost
half-filled and has a width 2%=9 eV. The band
center is at -5.3 eV relative to the vacuum.

VI. EFFECT OF SUBSTRATE CHARGE FLUCTUATIONS
ON THE CHEMISORPTION ENERGY

In Sec. V, we have seen the strong effect sub-
strate charge fluctuations have on the adatom
spectral density. Here we shall show that, in
spite of this, these charge fluctuations have little

V=5 eV

Vi---- v =3 eVr

3

a
IgI g

-30
I
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a"
0
II
II
]I
]1 gg
I

-I5 -IO

D'
A

C I \

1'» ~ I

IO l5

ENERGY (eV)

FIG. 5. Same as Fig. 4, except that the hopping strength V is larger.
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FIG. 6. Spectral density of H atom chemisorbed on a metal with a wide d band. Hesults are shown for two values of

the image potential VI, which is a measure of the coupling to the surface plasmons (whose energy is taken to be 16 eV).

effect on the total chemisorption energy. This
result may be viewed as a form of Lundqvist's
compensation sum rule. '

The extra contribution (nE) to the chemisorp-
tion energy will be calculated by using the coup-
ling constant integration technique

t 1dA.

0

1

due. »(n, (n. —I))„.
4 0

(6.l)

Here ( ")„meansone is to calculate the expecta-
tion value of the operators with respect to the
exact ground state when the adatom-metal Coulomb
interaction M,~. The mixed adatom-metal elec-
tron response functions in (6.1) may be obtained
using the functional-derivative technique used in
Secs. II and III. Using (2.7), we have

&K4 =(K 4'"

1
+ -it} . ' 6X;( ) 6X, ( ))

y I6

—
}6&~(Tla T2}

Xg'»»(T2 T )(naa' }~ (6.4)

Q»a(T», T2) ig K—a-»G»»(T» Tl) 6(T1 —T2)6»a (6.6}

and thus (6.4} reduces to

6Xa» 1 Let L»a»»( 0 2}Ka»X»»(T» Tl)
Iy

OI aged

XB»S(T» T )(n»a), (6.6)

Combining all these results and Fourier trans-
forming to imaginary frequencies, we obtain,
finally,

Here we have neglected the functional derivative
of the density (n„),since we are only interested
in evaluating (6.4} to lowest order in K. In view
of this, it is also sufficient to use the first-order
self- energy

where

(K~}"'=QK„[-iG»»(—T& T')][-i('aa(T, T )]
Joa

o5

=Q K,»(n»)((ng —I}.

Using the results of Sec. III, we have

(6.2}

(6.3)

(K,}'„2'= -Q Q &2Zs+(i(o„)»»~(i»d„}(n»g, (6.'7)
I»Ig O tg

dna

where

I a»» ('&a) = Z Ka» a»&»»(i~») ~'as(i~a —i»d») ~

f 2) ~ I»»I~

(6.6)

the sum over ~& being over Bose-Matsubara fre-
quencies.

Recalling (2.29), we see that (6.3) is given by
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(Z.,}&"= ~' g ff.,fc,q"„(~= 0)((n, ) I)'
iI)

= &'Z'"((n, }—1} (6.9)

n. —~. —Z'.".(II.) =0,
while fi' is a pole of Zu (v):

gt2& (go)

(6.16)

(6.17)
and hence it vanishes if there is no charge trans-
fer, (n, ) =1. In evaluating the exchange contri-
bution (6.7) makes to the chemisorption energy,
we shall assume that the direct contribution to the
self-energy is zero. We shall approximate
Z" (i&a„)by (5.4) and use

g ~(i&u„)=6 ~j[iu&„-i -Z", (i~„)] (6.10)

The prime on the summation in (6.15) denotes the
fact that the contour in (6.14) only includes states
(g, Qo, and 4 ) which are occupied (i.e. , less
than the Fermi energy).

In the surface-plasmon approximation discus-
sed in Sec. V, we have

for the diagonal elements of the auxiliary Hubbard
Green's function in (6.7). Finally we shall ignore
any dependence of (n, ) on the coupling constant &.

The exchange contribution to the chemisorption
energy is thus

Z~ ((d}= Vg (dqy/((d —f~ —Q(dey) .
Clearly, we have

0' =4 + &~„,

(6.18)

(6.19)

(6.11)

—In(i(u„—e ))(n„).
(6.12)

Using standard methods, ' we can convert the
Matsubara frequency sum over ~„to a contour
integral

—In((u —C, ))(n„).
(6.13}

The contour c encloses the imaginary frequency
axis, which we deform to c' which encloses the
real frequency axis. In the limit of zero tem-
perature, the Fermi factor makes the integrand
vanish for positive frequencies (recall that er
= 0) and we are left with a clockwise contour c"
around the negative frequency axis. Integrating
by parts, we find

1 ~ d(d 1

x y
BZ~~~ 1

n
8co ) co —0

(6.14)

Using Cauchy's theorem to pick up the contribu-
tion of the poles (for a similar calculation, see
Ref. 17), we obtain

(6.15)

Here 0 is a pole of g
' (&u):

while fi is given by (5.7). We recall from the
discussion in Sec. V that for each &, there are
two solutions, corresponding to a "relaxed" main
line and a surface-plasmon satellite. We assume
that C„Q„and0, are all above the Fermi energy
(i.e. , positive} and hence are not occupied. Using
(5.7) and (6.19) in (6.15), we obtain, finally,

nd"=-g(n &(aP'+fIP' fl'- C. )

=(2 —(n, })[2a —(u„—(g - (u„)—g ]=0.
(6.20)

We conclude that while the exchange self-energy
in (6.8) gives rise to considerable changes in the
adatom energy spectrum (see Sec. V), it has no
net effect on the total chemisorption energy. This
is on the assumption, we emphasize, that none
of the energy levels cross the Fermi level and
there is no charge transfer.

Turning to the direct contribution in (6.9), we
can easily carry out the & integration if we ignore
any & dependence of (n, ), with the result

n,d" =-,'Z(~ =O)((n.}- I)' = V, ((n.}—I)'.
(6.21)

As expected, we see that the effect of the surface
charge fluctuations is to increase the chemisorp-
tion binding energy.

We emphasize that, if the effect of the renormal-
ization is to cause one of the resonances to cross
the Fermi level so that levels become filled (or
empty), then the whole question of charge trans-
fer must be treated very carefully and self-con-
sistently. We have not considered this possibility,
but our calculations could be generalized to do so.
Such effects have been considered recently in
connection with core-level spectra ' ' using a
model-Hamiltonian approach.
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(d -[
Rer(cu} = (o'+ [

&u'+ [

g x) ]1/2
&

(y x)]1/2

—,'(r+ x}]",
i~(&+ x)]1/2

0&co'& W',
—W'&(d'&0,
co'& W' )

&d' &-W', (A2}

APPENDIX

In our numerical calculations, we have evaluated

the hopping self-energy in (2.34} including broad-

ening rd -rd —i/r. In the semielliptical one-di-

mensional model used in this paper, we have 10

r((d) = (V2/W )[&d' —f/2. —[((d' —i/2)2 —W ] ~}.
(AI)

Here 2W is the bandwidth and co'-=(d+ &~- a„
where is the energy measured relative to the
Fermi energy E~ and e, is the band center. More
explicitly, we have

where

—I/2+ [-,'(r+x)]' ', iw'i & g/',
- I/2. + [-,'(2 —x) ]'",

~

&d'~ & g/',

(A3)

x:—
)

&d'2 —g/'[2

r =+[x' + (2(d'/2)2] "2

and the effective half bandwidth is
y/r~ —~[)IS+(1/ )2]1/2

(A4}

(A5)

In our numerical calculations, we took I/2 = 1 eV.
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