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The low-temperature electrical resistivity of dilute alloys of aluminum is calculated by the variational
method, based on the special properties of the electron distribution function for electron-phonon scattering.
Excellent agreement is obtained with the resistivity data, both as a function of temperature and as a
function of impurity concentration. The calculation is based on a multiple-OPW (orthogonalized plane-
wave) description for all relevant properties of aluminum. The interference terms, resulting from the
coupling between the transition probabilities for electron-phonon scattering and electron-impurity scattering,
are explicitly calculated and found to be generally small. However, in the dirty limit, the interference terms
become important and are responsible for the observed lack of saturation of the resistivity as a function of
impurity concentration. Including the interference terms leads to agreement between theory and experiment
for the resistivity over five decades of impurity concentration. Finally, the “humps” observed in the
resistivity-versus-temperature curves at somewhat higher temperatures are accurately reproduced by the

calculation.

I. INTRODUCTION

The most striking feature of the temperature
dependence of the electrical resistivity of alumi-
num at low temperatures is the presence of large
deviations from Matthiessen’s rule (DMR). Al-
though large DMR are observed at low tempera-
tures for all polyvalent and noble metals,!'? the
DMR for Al have been measured more exten-
sively! ~%° than for any other metal because of the
experimental advantages of Al. The availability
of such comprehensive data is very fortunate be-
cause, from a theoretical point of view, Al is the
ideal polyvalent metal to study. Al is cubic, thus
simplifying all the resistivity integrals. More-
over, Ashcroft® has determined the detailed
structure of the Fermi surface of Al, as well as
the Fourier coefficients of the screened, elec-
tron-ion pseudopotential by means of an analysis
of the de Haas—van Alphen data. Finally, the
phonon spectrum of Al has been measured at two
temperatures (80 and 300 K) and has been used
to obtain®'®3 the Born-von Karman force con-
stants out to eight sets of neighbors.

In this paper, we present the details of a calcu-
lation of the temperature dependence and im-
purity-concentration dependence of the electrical
resistivity p(T) for dilute alloys of Al. The over-
all agreement between theory and experiment for
p(T) is very good, both as a function of tempera-
ture and as a function of impurity concentration.
The calculation is based on the physical ideas
presented in the preceding article,* and the good
agreement with experiment thus serves as a con-
firmation of these ideas. The principal new fea-
tures of the calculation are the introduction of an
electron distribution function that takes explicit
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account of the localized regions on the Fermi sur-
face of extremely strong electron-phonon scat-
tering and the detailed calculation of the unex-
pectedly large normal-scattering contribution to
p(T). Moreover, the multiple-OPW (ortho-
gonalized plane-wave) character of Al is taken
into account by introducing what we call the piece-
wise 2-OPW framework. This framework is shown
to give a very accurate description of the elec-
tronic properties of Al, which proves to be a
particularly important feature of the calculation
at low temperatures.

All phases of the calculation of p(T) are based
on the known electronic and lattice properties of
Al. This detailed knowledge of the properties of
Al permits one to carry out realistic calculations
of p(T), including its magnitude, its temperature
dependence, and its dependence on impurity con-
centration. The absence for Al of a host of ad-
justable parameters lends special significance to
a comparison between theory and experiment for
p(T). Quantitative agreement with experiment
implies a confirmation of the physical ideas on
which the calculation of p(T) is based, whereas
discrepancies between the calculated values and
the data point to shortcomings in the theory.
Therefore Al provides a valuable proving ground
for examining the validity of general physical con-
cepts concerning transport in dilute alloys of
polyvalent and noble metals.

In Sec. II, the general formalism is presented
for the resistivity calculation and the various re-
sistivity integrals are defined. The new electron
distribution function for electron-phonon scatter-
ing is introduced in Sec. III and forms the basis
for an accurate variational solution to the Boltz-
mann equation. In Sec. IV, the piecewise 2-OPW
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framework is developed and is shown to lead to a
reliable description of the properties of Al rele-
vant to the resistivity calculation. In Sec. V, the
resistivity integrands are evaluated, both for
electron-phonon scattering and for electron-im-
purity scattering, based on the 2-OPW description
of Al. Our results for the calculated resistivity
of Al are given in Sec. VI and comparison is made
with experiment. The interference terms are de-
fined in Sec. VII and their contribution to the re-
sistivity is calculated. In Sec. VIII, a discussion
is given of previous work. The summary follows
in Sec. IX.

II. GENERAL FORMALISM

The most convenient formalism for the calcula-
tion of the electrical resistivity is the variational
formulation of the Boltzmann equation. We follow
the notation of Ziman,* according to which the
total resistivity is given by

_<<1>|13 |®
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where (d)leI<I>> is the matrix element for all
electron scattering processes and (®|X) is the
matrix element for the electric current in unit
field. The total electron scattering operator P,

consists of the sum
~P +P 2.2)

imp ?

where the operator ﬁph describes the scattering
of electrons by phonons, and hence depends on
temperature through the phonon occupation num-
bers, and the operator ﬁimp describes the scat-
tering of electron by impurities, and hence de-
pends linearly on the (dilute) concentration of im-
purities. Equation (2.2) is approximate because
we have not included the interference term Isim
which depends both on the temperature and on the
concentration of impurities. The contribution of

B, will be explicitly included in Sec. VII, and
shown to be generally small. The function & (K)
describes the deviation, caused by the electric
field, of the electron distribution function f(K)
from its equilibrium value fo(ﬁ),

AR) = £,(K) - & (K) [o/,(K) /2 E(K)] . (2.3)

The explicit expression®® for the matrix elements
is

(@18, 12) = (1/k57) [ [ ak,aR,l8 (R) -8 &)
x 2 [ @PR®, K, ),
(2.4)
(@1B,,1%) = (1/2%,7) | f aR ak, o (R) - &))*
(Kl’ KZ) b

1mp

where the wave vectors ﬁl and ﬁz characterize
the initial and final states, respectively, of the
electron being scattered by an impurity or by a
phonon of wave vector 4, polarlzatmn A, and fre-
quency w,(@). The quantity P, ( K,,K,) is the
transition probablllty for electron-impurity scat-
tering and P9 h(Kl, KZ,T) is the temperature-de-
pendent transxtlon probability for electron-phonon
scattering via phonon destruction. Electron-pho-
non scattering via phonon creation contributes
equally to the matrix element and has been in-
cluded by multiplying the first equation of (2.4)
by a factor of 2. The matrix element for the cur-
rent®® is given by

@lx) = - [ ake @8 @) (o, R)/s BR)

= — (e/47%K) f SR s (R ®) 2.5)

where the surface integral is to be evaluated over
the anisotropic Fermi surface of the metal and
v(K) is the velocity of the electron in state K

The expressions for the transition probabilities
are

P, (R, Ky) = 2n/1)| Wz, | AW [y, )| 2

X 8(E(K,;) - ER)f,(K)[1-£,(K,)],
(2.6)

PR K, Ky T) = [120/Mw, @)]15, (K, )|
XnpO(E(K,) - E(K,) - hw, @)
X 5(122 - Izl -q- é)fo(izl) [1 —fo(izz)] ’

where AW is the pseudopotential operator due to
the impurities, y3(T) is the pseudowave function
of the electron in state f(, 2, is_the volume of the
unit cell, M is the ionic mass, G is a reciprocal-
lattice vector, and ng, is the equilibrium phonon
distribuﬁog fgnction (Bose-Einstein factor). The
factor S, (K,, K,) is given by

Sy (Ky, Ko) = 85 (0) - Gz [VW lug,) 2.7)

where £, k) is the polanzatlon vector for mo-
mentum transfer k= K Kx, and W is the pseudo-
potential operator of the screened ions compris-
ing the pure metal. The integrals in (2.4) may be
reduced to double surface integrals over the
anisotropic Fermi surface by the method so
lucidly described by Ziman33;

wibutn = s | ()

<o) -a @ T BaEukdl’
qA?

(2.8)
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where
F(wy; T) = {expliiw, @) /k5T] - 1}
x {1 - exp[- 7w, (@)/ksT]}, (2.9)
and

dS(K

it s [ (554
x[@ (K,) - & (K)]* Kyz, |awlug,)].

(2.10)

Note that <<I>II’5imp |®) is independent of temperature
and proportional to the concentration of impuri-
ties ¢, whereas (<I>l13phl<1>) is strongly dependent
on temperature through the function F(wgy;T).
This completes the presentation of the forma-
lism. The expression for the resistivity that is
embodied in (2.5)-(2.10) is perfectly general. No
assumption has been made concerning the shape
of the Fermi surface, the form of the electron
pseudo-wave-function d}ﬁﬁ‘), or the nonequilibrium
part of the electron distribution function @(12).

1II. VARIATIONAL SOLUTION TO BOLTZMANN EQUATION

The central problem in the calculation of the
DMR is the determination of ®(K), the solution
to the Boltzmann equation in the presence of an
electric field. An exact solution for @ (K) is out
of the question because of the enormous com-
plexity of the electron-phonon scattering integral,
Eqgs. (2.6)-(2.8). One approach®'%? to the problem
has been to approximate the electron-phonon
scattering integral to a form simple enough to
permit an exact solution for <I>(IE). This approach
generally involves making rather drastic simpli-
fications to the electron-phonon scattering inte-
gral, such as replacing the real metal by a model
characterized by a spherical Fermi surface and
single-plane-wave functions. Since the multiple-
plane-wave character of the Fermi surface and
of the pseudo-wave-function is essential to the
description of a polyvalent metal, such model
calculations cannot of course lead to quantitative
agreement with experiment for p(T). Neverthe-
less, exact model calculations are extremely
valuable because they fhed important light on the
qualitative form of & (K).

The central result of the exact model calcula-
tions®3" for & (K), based on an idealized single-
plane-wave spherical-Fermi-surface metal is
that, in the absence of electron-impurity scatter-
ing, & (K) is dramatically reduced in the im-
mediate vicinity of the intersections of the Fermi

surface and the Brillouig-zone boundaries. Such
unusual behavior for ®(K) has been previously
proposed®® on physical grounds and is, in fact,
the key to understanding the large, observed low-
temperature DMR for the polyvalent and noble
metals. The exact model calculations®®'®” thus
confirm, at least for an idealized model, the va-
lidity of the proposed®® functional form for & (K)
for a polyvalent metal.

As valuable as exact model calculations are, a
quantitative comparison between theory and ex-
periment must be based on a realistic description
of the metal. Therefore we calculate the electron-
phonon scattering integral without approximation,
including the multiple-plane-wave character of the
metal. However, ®(K) is treated approximately
by means of the variational formulation of the
Boltzmann equation. The variational theorem®®
states that, for the exact ® (K), Egs. (2.4) and
(2.5) give the exact result for p(T), whereas for
any other form of ® (K), Egs. (2.4) and (2.5) yield
a larger value for p.,. (T). This variational
theorem is the source of the great power of the
variational method. In particular, it is not neces-
sary to prove that a newly proposed choice for
<I>(12) is a more accurate solution to the Boltzmann
equation than previous proposals. To establish
its superiority over previous proposalsl itis
quite sufficient to show that the new @ (K) leads
to a lower value for P (T). _

A successful choice for ¢ (K) must simulate the
functional form that is expected on physical
grounds. In particular, when only electron-pho-
non scattering is present, one must explicitly
include in @ (K) the dramatic reduction in the
vicinity of the intersections of the Fermi surface
and the Brillouin-zone boundaries. The details
of this reduction, as well as its temperature de-
pendence, are handled by means of a variational
parameter. The following functional form® for
@ (K) is a convenient choice

b (K) = [0(K)/vp]¥(K) - E, (3.1)

where vp is the Fermi velocity over the spherical
portion of the Fermi surface, E is the electric
field, and the power n is determined by minimiz-
ing P, (T) at each temperature. The subscript
“ph” in ¢, (K) denotes that this choice for & (K)

is appropriate in the presence of electron-phonon
scattering only, with no impurities present.

For the spherical portions of’the Fgrmi sur-
face, v(ﬁ) =~yp, and hence ¢, (K) ~V(K) - E, which
is the standard relaxation-time solution. How-
ever, for all polyvalent metals, for those portions
of the Fermi sgrface near the Brillouin-zone
boundaries, v(K) is considerably smaller than vy
implying that [v(K)/vg]" is negligible for large



2294 MOSHE KAVEH AND NATHAN WISER 21

values of n. The value of n that makes ¢ph(K) the
optimum choice for <I>(K) is fixed automatically
by the variational theorem. One would expect »n
to vary with temperature for the following reason.
The reduction of ¢,,(K) from the relaxation-time
solution occurs because the transmon probab1l1ty
for electron-phonon scattering Pg (Kl, KZ,T), and
hence the electron-phonon scattermg integral, is
very large for those portions of the Fermi surface
near the Brillouin-zone boundaries. However,
PF,h (Kl, Kz, T) is a strong functlon of temperature.
At low temperatures, Pl (Kl, Kz,T) is orders of
magnitude larger for K, and K near the Brillouin-
zone boundaries than for K and K2 in the spherical
portions of the Fermi surface. This implies that
at low temperatures, » must be large to eliminate
these regions of strong electron-phonon scattering
from the resistivity integral. Athightemperatures,
however, this enormous anisotropy in electron -pho-
non scattering is nolonger present and Pp_h(Kl’ K%z T)
varies by only about a factor of 2-3 as K, and K,
vary over the Fermi surface. This situation is
very reminiscent of the alkah metals For such
a modest anisotropy in PY h(Kl, K,;T), the re-
laxation-time solution is quite a good approxi-
mation for ¢y (K), implying that n=0. Thus 7
is expected to decrease from large values at low
temperatures to nearly zero at high temperatures.
Such a temperature dependence for ¢ph(K) is con-
firmed by explicit calculation. -

It should be emphasized that the factor [v (K)/vg I"
is introduced in (3.1) as a device to reduce
¢4 (K) from the relaxation-time solution in the
regions of strong electron-phonon scattering.
However, it is not the anisotropy of the Fermi
surface that is the cause of the reduction in
Don (f(). As the exact model calculations®®'37 have
shown, even if one assumes a sphq.rical Fermi
surface, one still obtains that ¢,,(K) is nearly
zero for K in the vicinity of the intersections of
the Fermi surface and the Brillouin-zone boun-
daries. For a spherical-Fermi-surface model
of a polyvalent metal, the factor [v (ﬁ)/vF]" is of
course unity for all n. Therefore, a different
device would have to be used to reduce ¢ (K)
near the Brillouin-zone boundaries from the re-
laxation-time sglution. One could, for example,
simply set ¢,,(K) equal to zero for K in the region
of strong electron-phonon scattering, as was dis-
cussed in the preceding paper,3*

¢m(K)=V(K)- E for K not in K*,
. . (3.2)
¢p(K)=0 for K in K*,
where the region K* denotes the portions of the
Fermi surface of very strong electron-phonon
scattering for which ¢, (K) is set equal to zero.

The width of the region K* would be allowed to
depend on temperature and would thus play a role
precisely analogous to the power z in (3.1). In
each case, the presence in ¢,,(K) of a variational
parameter that is determined automatically by the
variational theorem is essential to describe the
change with temperature of the functional form of
¢ph (K)'

In addition to its well-known advantage®® result-
ing from the existence of a minimization princi-
ple for p_,(T), the variational method is charac-
terized by an additional important advantage that
has not always received sufficient attention. The
calculation of p (T'), a number, is basically a
much simpler problem than the calculation of
&(K), a function. The variational method concen-
trates on P, (T) and permits one to avoid almost
entirely the difficult problem of calculating & (K).
This situation has an exact analogy in the varia-
tional method of quantum mechanics®® for solving
the Schrodinger equation for the ground-state wave
function ¢,(T) and ground state energy E,. It is
well known®° that one can obtain a highly accurate
value for E,, analogous to P, (T), even though
¥,(T), analogous to Q(K), is known only qualita-
tively. The price one pays in using the variational
method is that one cannot determine very ac-
curately the detailed form of ¥,(T) or ¢ (K). In
fact, one obtains®® nearly the same value for E,
for significantly different, although similar,
choices for zpo(f). However, the reward of obtain-
ing a highly accurate value (~1%) of E, or p_,.(T)
with relatively little effort is well Worth this price
of never knowing the true §,(t) or @(K)

So far, we have discussed the form of <I>(K) for
pure metals, for which only electron-phonon
scattering is present. For impure metals at
T=0K, for which only electron-impurity scat-
tering is present, one may use the standard re-
laxation-time solution

Dimp (K) =T(K) - E.. (3.3)

This form for ¢;,, (K) is not an exact solution to
the Boltzmann equation, even for electron-im-
purity scattering, because of the anisotropy of
the Fermi surface and the multiple-plane-wave
character of the electron pseudo-wave-functions.
However, Sorbello® has shown that the use of
(3.3) for ¢inp(K) leads to a value for the residual
resistivity p, of Al that is within a few percent

of the exact value obtained by iterating the Boltz-
mann equation to convergence.

We are now in a position to consider the func-
tion & (K) appropriate to a dilute alloy, for which
both electron-impurity and electron-phonon scat-
tering are present. For an alloy, it is sufficient
to take a linear combination of (3.1) and (3.3).
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Thus,
& (K) = imp (K) + 2 % (K) , (3.4)

where the value of a is determined by the varia-
tional requirement that the total resistivity po
be minimized. Hence a depends both on the con-
centration of impurities ¢ and on the temperature.
The superscript * on the function ¢} (K) denotes_
the following. For an alloy, the power n of ¢,,,,(K)
is determined by minimizing p,,, and thus n de-
pends on both ¢ and T. Therefore, for a given
temperature, the function ¢} (K) in (3.4), ap-
propriate to the alloy, is not the same as the
function ¢, (ﬁ) in (3.1), appropriate to a pure
metal. The value of n differs for the two cases.
It is not hard to show that for very impure sam-
ples, the power n of ¢> (K) approaches zero even
at low temperatures, whereas the power n of

bon (R) is very large. Indeed, the use of ¢, (K)

in (3.4) would lead to significant errors in the
calculation of p,, for certain ranges of ¢ and T.

IV. ALUMINUM

Thus far, we have described the details of the
calculation of p(T') that apply in general to any
simple polyvalent metal. We now turn to the
specific calculation of p(T) for Al and describe
the particular electronic and lattice properties
of Al that serve as input for the calculation. These
properties include (i) The Fermi surface, (ii)
the pseudo-wave-function, (iii) the screened elec-
tron-ion pseudopotential matrix elements (form
factor), and (iv) the phonon frequencies and
polarization vectors.

A. Fermi surface

There are 15 reciprocal-lattice vectors G,, that
are important for representing accurately the
Fermi surface and the pseudo-wave-functxon of Al.
These are G 0, the eight G of length G,,,, and
the six G of length G,,,. Although a complete
descnptlon of the Fermi surface of Al requires
all 15 G,', for almost the entire Fernu surface,
only two G are important, namely, G and one
of the other 14 G The only exceptions to this
are the small portions of the Fermi surface near
the points U, K, and W on the Brillouin-zone
boundary, where three G (near U and K) or four
G (near W) are needed®! to describe accurately
the Fermi surface. Therefore it is sufficient to
use two G,, to describe almost the enﬁIe Fermi
surface, provided that for each point K on the
Eermi surface, oOne uses the important nonzero
G in addition to G,. We shall denote this descrip-
tion of the Fermi surface as the piecewise 2-OPW
framework. We shall see that the piecewise

2-OPW Fermi surface closely resembles the high-
ly accurate multiple-OPW Fermi surface.

Within the piecewise 2-OPW framework, the
extended-zone-scheme Fermi surface is calcu-
lated | using two normahzed plane waves IK) and
IK G). For each point K, the most important
G is clearly* that G that leads to the greatest
distortion of the Fermi surface from the free-
electron sphere. Thus, for K lying exactly on
the Brillouin-zone boun‘darz, the most important
G is the one for which K — G also lies on the
I}rillouin-zone boundary. However, for general
K, there are two factors which determine the
distortion of the 2-OPW Fermi surface. One is
the distance between the point K-G and tlxe Bril-
louin-zone boundary, to be denoted by D(K - G,
and the second is the magnitude of w(G), the ma-
trix element of the screened electron-ion pseudo-
potential operator between states |K) and |K -G).
The distortion of the Ferm1 surface is greater
for smaller values of D(K G) and for larger val-
ues of |w (G)I Therefore, for each point K, we
choose the G that minimizes the ratioD (K — G)/ |w(@).

As previously noted, the piecewise 2-OPW

(a)

FIG. 1. Calculated Fermi surfaces for [110] cross
section near the point U (a) and for [100] cross section
near the point W (b). The light solid lines are the Bril-
louin-zone boundaries, on which are labelled the points
W, U, and X. The dotted and solid curves are the piece-
wise 2-OPW and multiple-OPW Fermi surfaces, respec-
tively.
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Fermi surface is least accurate near the points

U, K, and W of the Brillouin zone, where one
needs®! three, three, and four OPW’s, respec-
tively. In Fig. 1, we compare the piecewise
2-OPW Fermi surface with the 3-OPW Fermi surface
fora[110] cross section of the Brillouin zone near the
point U [Fig. 1(a)] and with the 4-OPW Fermi
surface for a [100] cross section near the point
W[Fig. 1(b)]. The light straight lines in the
figures are the Brillouin-zone boundaries, on
which are labeled the points W, U, and X. The
dotted and solid curves are the piecewise 2-OPW
and multiple-OPW Fermi surfaces, respectively.
Note the discontinuities in the piecewise 2-OPW
Fermi surface of Fig. 1(a), which indicate that
for d1fferent regions of the Fermi surface, a
different G minimizes the ratio D(K - G)/|w (G)|.
As expected, the piecewise 2-OPW framework

is least accurate in the vicinity of the point W.
Nevertheless, the general fit is really quite good
except for the very small portion of the Fermi
surface closest to W, and even there, the fit is
qualitatively reasonable. We have explicitly veri-
fied that one may safely use the piecewise 2-OPW
Fermi surface for the calculation of p(T) by cal-
culating the resistivity integrand at a few selected
points on the Fermi surface near W and U and
comparing the results with those obtained using
the highly accurate multiple-OPW Fermi surface.

B. Pseudo-wave-functions

For the sake of consistency, we used the same
piecewise 2-OPW framework to calculate the
pseudo-wave-functions ¥z (¥). Thus,

Uz®) =C,(K)|K) +C2(K)|K -G), (4.1)

where the appropriate linear combination dgpends
of course on mivalue of IT(_, and hence the K de-
pendence of C,(K) and Cz(K). It should be pointed
out at once that the piecewise 2-OPW framework
is less reliable for % (¥) than for the Fermi sur-
face. Indeed, its use leads to a certain error in
the calculated values of p(T') whose magnitude is
hard to fix precisely. However, numerical tests
that we have carried out at selected points of the
resistivity integrand lead us to estimate this er-
ror at no more than 10% for any temperature.

It is readily shown*! that for a general point on
the Fermi surface, to be denoted KF, the values
of C (KF) and Cz(K) are related by

Cz(Ky) Ep —H2K2/2m
_ﬁLco( 5 ‘J_GL'_W( ; ) (4.2)

Equation (4.2) immediately leads to the following
well-known results.** For K, lying on the Bril-

louin-zone boundary, Ep - #*K2/2m =+ |w @,
implying that C*(K,,.) +C (K,.-) and thus the second
plane wave i is very important for szG' By con-
trast, for K,.- not too near the Brillouin-zone
boundary, Ep - 1°KZ/2m lw(G)|2/E, implying
that C‘(KF)/CO(KF)OC lw(G)|/Ep < 1. Thus, for
such values of KF, the single-plane-wave approxi-
mation to Yz (T) is very good.

We now turn to the normalization of y%(T). It
is, of course, the true wave function that must be
normalized to unity and not the pseudo-wave-
function 3 (¥). The theory of electron-phonon
scattering in terms of pseudopotentials and pseudo-
wave-functions was first described by Austin,
Heine, and Sham,*? who showed that the proper
normalization of ¥ (T) requires that

ICol2+ICzP=1= Y KKelydP=1-2,  (@4.3)
c

where |K;) is a normalized plane wave of wave
number K, and y, (¥) is an ionic core function.
The core functions have been calculated and tabu-
lated by Herman and Skillman.*®* Performing the
indicated integrals of (4.3) yields for Al the value
Z =0.076. Including the proper normalization of
Y% (T) leads to a much smaller effect in p(T) for Al
than for K, for which Z is about twice as large.**

C. Form factor

The form factor for electron-phonon scattering
is the matrix element of the screened energy-
dependent electron-ion pseudopotential operator
&)(EF) between normalized plane-wave states

W(I-El, ﬁz; Ep) =<E1Iﬁ) (EF)IRZ) . (4.4)

Since the pseudopotentlal is a nonlocal energy-
dependent operator w (Eg) rather than a simple
function of T, the matrix elementw(Kl, Kz,EF) is,
Ln general, a function of the six variables K and
K,. The nonlocality of the form factor has been
the object of some confusion in the literature.
Thus, it is not out of place to elaborate somewhat
on this point.*® For a spherical ion, such as Al,
(I‘Zl, EZ,EF) depends only on the magnitude of 12
and K2 and on the angle between them, which is
conveniently given by k=|K,-K,|. Thus,

w (K, Ky; Ep) = w (R, K, Kp; Eg), (4.5)

where w(k, K,,K,; Eg) is now a function of only
three variables. For the calculation of p(T), or
any transport coefficient for that matter, one re-
quires the form factor only for both K1 and K
lying on the Fermi surface. Therefore we denote
by Kz, and K, the magnitude of the Fermi mo-
mentum in the directions K1 and Kz, respectively,
and we denote by K3 the average value of K over
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the nonspherical Fermi surface. For a spherical
Fermi surface, such as for the alkali metals, K,
is constant over the Fermi surface and thus K,
=Kp,=KQ. For a metal having a nonspherical
Fermi surface, one retains the more general
form w (k, Kp,, Kpo; Er). However, for a simple
polyvalent metal such as Al, K, varies very little
over the Fermi surface. Indeed, the Fermi-sur-
face calculation of Ashcroft® for Al has shown
that the maximum deviation of K, from K¢ is 3%
in the [111] direction, 1% in the [100] direction,
and even less in other directions. Therefore,
unless the K, and K, dependences of

w(k, Kp,, Kp,; Ep) are unusually severe, it is quite
a good approximation to replace K, and Ky, by
K everywhere on the Fermi surface. Thus,

w(k, Ky, Ky; Ep) = w (R, Kp, Kpp; Ep) ~w(k, K§, K@; Ep).

(4.6)

Because K? and E; are constants throughout the
low-temperature calculation of p(T'), one usually
writes w (k) in place of w(k, K2, K2; E;), bearing
in mind that w (k) contains an explicit dependence
on K¢ and E and that the maximum value of & is
kmax = IKZ - K].Imax = ZKF = ZKI'?‘

The central point of the above discussion is that
the form factor w (k) contains in full the nonlocality
of the pseudopotential operator, even though w (%)
is written for brevity as a function only of the
single variable k. Nowhere has the local approxi-
mation®® been made. The only approximation ap-
pearing in w(k) is the very minor approximation
given in (4.6). However, it should be added that
although the form factor w (k) is all that is re-
quired to calculate the transport coefficients,

w (k) is insufficient for calculating most other
properties of the metal. For example, for the
calculation of the band structure or of the phonon
spectrum, one requires matrix elements of the
screened pseudopotential operator for which both
I‘<1 and f(z are far from the Fermi surface. For
such properties, a complete pseudopotential cal-
culation is necessary.

The determination of w (k) for the calculation of
p(T) is greatly simplified by the following con-
siderations. At low temperatures, the significant
contributions to the resistivity integral are
strongly concentrated around the region 2=~0
(normal-scattering term) and the regions #=~G,,
and k=~ G,,, (umklapp-scattering terms). There-
fore, any form factor w (k) that is accurate for
the three values k=0, G,,,, G,y is perfectly ade-
quate for the low-temperature calculation of p(T).
The value of w(0) is known exactly***° to be
-3Ep. Moreover, the values of w(G,,,) and w (G )
have been determined experimentally for Al. An

analysis3! of the de Haas~van Alphen data yields
w(G,,,)=0.0179 Ry, w(G,y,)=0.0562 Ry. (4.7)

Therefore, knowing w (k) for the important £, one
is naturally led to an empirical approach to deter-
mine w (k) for all k< 2K2. One may use the Ash-
croft* form factor, whose single parameter is to
be chosen to yield the experimental values for
w(G,,,) and w(G,y,). Thus

w (k) = —21Ze*cos(kR,) (4.8)

2ok . (k) ’
where R, is the single empirical parameter in
w(k), 9, is the atomic volume, Z is the valence,
and € (k) is the effective screening function that
includes,*” in principle at least, a many-body
dielectric function, the quasiparticle renormaliza-
tion factor, and the irreducible vertex correction.
However, it has already been shown?®® for Al that
when using an empirical w (k), reliance on the
simple Hartree dielectric function introduces an
error of only ~0.001 Ry in w (k) in the vicinity of
G,,; and G,,. Therefore, it is certainly an ade-
quate approximation for our purposes to replace
€cir (B) DY €4,ee (B). In Fig. 2, we plot w(k) as a
function of k/2K2, with the experimental w (G,,,)
and w (G,y,) indicated by the solid circles. Taking
for the empirical parameter the value R, = 1.146

T T T
0.2 -
°° Pt
Giii G200
-02 -
=
FY
-0.4|— -
Al
-06 |
1 l i
0.0 0.5 1.0
K/2KE

FIG. 2. Form factor w (k) in Ry as a function of /2K%,
where K% is the Fermi wave number averaged over the
Fermi surface of Al. The solid circles indicate the two
experimental points w(G ;) and w (G,9) and the arrows
give the positions of the two reciprocal-lattice vectors
that are shorter than 2K'},-
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a.u. leads to values for w(G,,,) and w(G,,,) that
are within 0.003 Ry of the experimental values
given in (4.7). This gives a good estimate of the
maximum error present in w (k) in the important
region of k.

D. Phonon spectrum

The final properties of Al that enter the calcu-
lation of p(T') are the phonon frequencies w, (q)
and polarization vectors & »@ for the phonon of
wave vector  and branch A. The experimental
Born-von Kdrman force constants have been de-
termined® for Al and their use leads to the ex-
perimental values for w, (@) and &, (q) for all §
and A. However, the evaluation of the resistivity
integral is greatly simplified by exploiting the
following two considerations. First, for the low-
temperature calculation of p(T), one needs w, @
only for very small q. Therefore it is quite suf-
ficient to neglect dispersion and assume a linear
phonon spectrum. Second, for small ¢, the angu-
lar anisotropy of w,(q) is very small. This is
readily established by examining*! the anisotropy
factor A =2¢,,/(c,, —c,,), where ¢,,, ¢, and ¢,y
are the three independent elastic constants of the
cubic crystal. If Aequals unity, there is complete
elastic isotropy and the two transverse modes are
degenerate.*’ Thus, the deviation of A from unity
gives a quantitative measure of the elastic aniso-
tropy. For Al, inserting the values®! for the
elastic constants yields A —1=0.2. To appreciate
how nearly isotropic Al is, one need only contrast
Al with the strongly anisotropic metal K, for
whichA -1=6.6.

In view of the small magnitude of A -1 for Al,
it is sufficient to assume an isotropic Debye
model for w, (@) and £, (@), with the following
values for the longitudinal and transverse veloci-
ties of sound, as obtained from the experimental
force constants,3?

vy =6.56x 10° cm/sec,
(4.9)
1=V =3.25X10° cm/sec .
Explicit calculation shows that assuming com-
plete elastic isotropy leads to a maximum error
in vy, and vy of 2% and 5%, respectively, and a
maximum error in the direction of £, (qQ) of
0.0005 rad. Thus, the approximation of elastic
isotropy is very appropriate to Al.

In summary, all the input data needed for the
calculation of p(T) for Al are available. In the
next section, we turn to the details of the calcula-
tion.

V. RESISTIVITY INTEGRANDS
The calculation of p,(T') requires evaluating

the resistivity integrals (2|5, |®) and (& |5, | @),
which are given by Eqs. (2.8) and (2.102. Both
integrals contain the factor [®(K,) -®(K,)]2. This
factor is of utmost importance because in the
present analysif, the DMR are attributed to the
variation of ® (K) with impurity concentration. We
use the form (3.4) for #(K), with ¢p, (K) given by
(3.1) and ¢>i,,,p(K) given by the relaxation-time so-
lution ¢, (K) = ¥(K) « E, where %(K) is the velocity
of the electron in state K. Let us first con51der
the low- -temperature limit, for which & (R)

- ¢1,mp(K) ¢RT(K) One may exploit®® the cubic
symmetry of Al to average over all possible di-
rections of the applied electric field f. to obtain

[2(K) -2 (K))2ex [W(K,) -¥(K,))2. (5.1)

As is well known, for low temperatures, the
dominant contribution to the electron-phonon in-
tegral arises from umklapp scattermg for small
values of §, where 4= K K -G. ThlS corres-
ponds to both 1mt1al electron state K and final
electron state K being in the distorted portion
of the Fermi surface near its intersections with
the Brillouin-zone boundaries. For such scatter-
ing events, one obtains

V&) - V(K,))? = (5/m )2 [5%G?/4m |w (G)|]?¢?
(5.2)

If one were to ignore the multiple-plane-wave
character of ¥%(T) in the calculation of v(K), one
would obtain the familiar single-plane-wave ex-
pression

F(K,) - ¥(K,)]?= (i/m)*¢*. (5.3)

The factor in brackets, which distinguishes (5.2)
from (5.3), is enormous. For example, for G,,,
for Al, one finds [%#2G?/4m|w (G)|]?~ 10°. In other
words, the single-plane-wave approximation to
(5.1) leads to an error of three orders of magni-
tude for the important region for which K, and 122
both lie near the Brillouin-zone boundaries.

For the more general case, for which & (K)

« [v(K)|"¥(K) - E, averaging over the directions of
E leads to an obvious generalization of (5.1)

(@ (K,) - & (K,)]?<{ [0 (K)]"¥(K,)
- E))"FEK, )P . (5.4)

Once again, the portions of the Fermi surface
near the intersections of the Brillouin-zone
boundaries play a crucial role, as has already
been explained in detail in Sec. III.

In the pure limit, the value of the power 7 in
(5.4) that minimizes the resistivity integral de-
creases with increasing temperature, with n;,
varying from 50 at about 20 K to 10 at about
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50 K. At all temperatures, it was found that the
resistivity integral as a function of » has a rather
broad minimum. Varying n from n,, to %min = 20%
increases the resistivity integral by less than
5%. It is satisfying to find that our choice
(3.1) for ¢pm (ﬁ) is rather insensitive to the exact
choice for n,,;,. We also wished to check how
sensitive the calculated resistivity is to the spe-
cific functional form’(3.1). To this end, we re-
placed (3.1) for ¢, (K) by the step function defined
by (3.2) and repeated the calculation. We found
that the calculated resistivity was quite close
(within 10% at all temperatures) for the two
choices of ¢ph(ﬁ), with (3.1) always giving the
lower result. This lends support to our thesis
that the particular functional form chosen for

bon (K) is not important. Any choice for ®pn(K)
that is negligible in the regions K *‘of the Fermi
surface and resembles ¢,,,(K) for K not in K*
will give good results for the calculated resis-
tivity.

The remaining factor in the integrals (¢|P,,|$)
and (¢|B,, |¢) is the transition probability for
electron-phonon scattering and for electron-im-
purity scattering, respectively. Their evaluation
is straightforward. Inserting the two-plane-wave
expression for Yz (F) into the matrix element
S, (K,,K,), given by (2.7), yields*®

S\(K,, K;) = E,(k) - [k(a, +a, +a;+a,)
+(§2(a2+a4) -G,(a;+a,)], (5.5)
where
a,=a,(K,, K;) = Co(K,)Co (K Jw (k)

a,=a5(K,, Ky) = Co(K,)C 3, (K w (|G, +KI)
(5.6)
as = as(Kp Kz) = CEI(K)CO(KZ)W (IGl - kl) ’

a,=a,(,,K,)=Cz (K)Cz,Kw (G, - G, +Kk|) .

Here, C o(f() and C&(K) are the coefficients of

the two-plane-wave pseudo-wave function sz('x"),
given by (4.1) and (4.2), GLand G are the G, that
are appropriate to K1 and K,, respectively, and
k= K, - ﬁ, The arguments of the form factor are,
of course, always less than 2K} $. The above ex-
pression for S)‘(Kl, Kz) mcludes the contributions
of both normal scattering (k=) and umklapp scat-
tering (k=4 +G).

The use of two plane waves fo‘r tlle pseudo-wave-
function leads to a form for S,(K,, K,) that is sig-
nificantly different from the single-plane-wave
approximation. The most dramatic difference
occurs for small values of g and is a matter of
utmost importance at low temperatures.*® The
importance of small g scattering events is readily
established by writing explicitly the sum

IS, (K, K12, 157K, K[
t]

FloinT) 2 FlasmT) 6.0
where the factor 2 expresses the degeneracy of

the transverse modes for Al. The denominator
F(wg; T), defined by (2.9), contains expressions
of the form exp(%wy/ksT). According to (4.9),

for a given ¢, w,r=3w,.. It follows, therefore,
that the second (transverse) term in (5.7) is much
larger than the first (longitudinal) term, except
when S7(K,, K,) exactly vanishes. This effect is
particularly dramatic at low temperatures.
Another important property of F(wg,;T) is that

for g~ 0, F(w3;T) vanishes as [wy(@)]*« ¢*. By
contrast, for Zw,\(Q) > kzT, F (wqx,T) is exponen-
tially large. From this follows the well-known
result that at low temperatures, the dominant
contribution to (5.7), or equivalently to (2.8),
arises from the regions of integration for which
qg-0.

The main point to keep in mind is that the trans-
verse polarization and the small-q regions of the
integrand are of decisive importance for electron-
phonon resistivity integral. This result applies
both to umklapp scattering and to normal scatter-
ing.

The resistivity integrals over the double Fermi
surface were performed on the IBM 370/168 sys-
tem of the Bar-Ilan University Computation Cen-
ter. The multidimensional integrals were evalu-
ated using the Harwell Library subroutine for
multiple integration, based on Chebyshev poly-
nomials. To obtain the desired 3% numerical ac-
curacy, a different integration mesh was needed
for each variable, typically ranging from 40 to 70
points per variable. However, at the lower tem-
peratures (~10 K), the angular integrations re-
quired a 100-point mesh. The cubic symmetry
of the Fermi surface was of course exploited to
reduce the range of the angular integrations.

We now turn to the electron-impurity scattering
integral (¢|P,,,|¢), given by (2.10), whose struc-
ture is much simpler than that of the electron-
phonon scattering term. This simplification
arises from the fact that electron-impurity scat-
tering is not dominated by very-small-qg scatter-
ing events. This is, of course, due to the absence
of the phonon distribution function and its expon-
ential temperature dependence which limits the
electron-phonon scattering integral to very small
q at low temperatures. However, this by no
means implies that the single-plane-wave ap-
proximation is adequate for calculating the residual
resistivity Py (Pimp| Pimp|bimp) - Indeed, Fukai®
has shown that the single-plane-wave approxima-
tion underestimates p, by a factor of about 2 for
Al and of about 3 for Pb.
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This unexpected failure of the single-plane-wave
approximation for p, raises a questlon regarding
the form for the function ¢>|mp(K) The standard
relaxation-time solution ¢, (K) < v(K) E is exact®®
only if a single-plane-wave adequately represents
the pseudo-wave-function. Since we have just
noted that the single-plane-wave approximation is
poor, one may well ask whether it is justifiable
to use Ppr (K) for ¢mp(K) in the calculation of p,.
Fortunately, this question has already been ans-
wered in the affirmative by the work of Sorbello.*!
He calculated p, for various different impurities
in Al and found that the use of ¢, (K) leads in all
cases to a value of p, that is within a few percent
of the exact p, obtained by an iterative solution
of the Boltzmann equaiion. However, Sorbello
pointed out® that ¢,;(K) did not give a particularly
accurate representation of the electron distribu-
tion function over the Fermi surface. This is
another illustration of the point we made in Sec.
III, namely, that one can obtain a very accurate
value for the resistivity even if one uses a dis-
tribution function that is not all that good.

It is worth emphasizing that the Sorbello calcu-
lation dealt with p, due to impurities and vacan-
cies, for which the scattering potential is rea-
sonably isotropic. However, if one were to con-
sider samples for which electron-dislocation scat-
tering makes a significant contribution to p,, then
the Sorbello conclusion would no longer follow.
Dislocation lines are very anisotropic entities,5*
and the electron distribution function relevant to
electron-dislocation scattering is significantly
different® from ¢, (f(). However, the present
analysis of p, is limited to impurities, vacancies,
and other reasonably isotropic scattering centers,
and hence we may safely use ¢pr () for 4>,mp(K)
without further discussion. In a subsequent paper,
we plan to treat the interesting changes in p, (T)
that result from the presence of electron-dis-
location scattering.

Since we are dealing with a low concentration
of random impurities or vacancies, the structure
factor is unity3® for all k and we concentrate on
the matrix element <1P1<1|Aw|¢xz> where A® is the
screened pseudopotential operator of a single
scattering center. The matrix element is not a
form factor because y%(T) is a two-plane-wave
pseudo-wave-function. Inserting the two-plane-
wave expression for yz(T) yields

(Wr,|awlyr,) = Co(R,)Co(K,)Aw (k)
+Co(K,)C 5, (K )aw (|G, +kl)
+C&,(R)Co(K)aw (|G, —El)

+Cg, (K )CGZ(Kz)Aw(le G, +kl),
(5.8)

where Aw (k) is the form factor (K,|aw|K,) be-
tween normalized plane waves. For the simplest
case of a substitutional impurity, the screened
pseudopotential operator Aw is the bare pseudo-
potential operator of the impurity %3 minus the
bare pseudopotential operator of the host @
(Al, in the present case), screened by the screen-
ing function of the host. One may safely neglect
the slight change in electron density in going
from the pure host to the dilute alloy. Using the
Ashcroft*® form of the form factor, one readily
obtains

- Zimp cos(kR."7) )

Aw (k) w‘"’“(k)(_;_——_Zhostcos(kR'c“”') -1), (5.9)
where Z;, and Z,, are the ionic charges of the
impurity and of the host, respectively. The val-
ues for RI™ for various impurities were taken
from Table I of Fukai.* It is clear from (5.9)
that for all k£, Aw (k) is the same order of magni-
tude as w,, (k). Thus, there is no qualitative dif-
ference between an impurity and a vacancy, char-
acterized by Zin, =0, for which Aw (k) = — w,, (k).
Therefore we shall henceforth use the general
term “impurity” to include either a vacancy or a
substitutional impurity.

VI. RESULTS AND COMPARISON WITH EXPERIMENT

In Secs. IV and V, the parameters characteriz-
ing Al were presented and the resistivity inte-
grals were defined in terms of these parameters.
With this information, one is in a position to
evaluate the integrals (2.5), (2.8), and (2.10) over
the true anisotropic Fermi surface of Al to obtain
numerical results for the calculated resistivity
Pwt(T). The quantity of physical interest is of
course not the total resistivity, but rather its
temperature-dependent part Ap(T), whichis givenby

Ap(T) =ptot (T) -po . (6°1)

Since Ap(T) depends both on temperature and on
p, (through its dependence on the impurity con-
centration), one may display the data for Ap(T)
as a function of T for various fixed values of p,
(the usual graphs) or a function of p, for various
fixed values of T (the DMR graphs).

We compare our calculated results for Ap(T) for
Al with detailed measurements of Papastaikoudis,
Papathanasopoulos, Rocofyllou, and co-
workers.!4"16:21=23 n Fig. 3, the solid curve rep-
resents the calculation and the various symbols
represent the data for Ap(T)/T? for four different
samples containing two different types of im-
purities (Ga and Ge). The values for R for Ga
and Ge were taken from Fukai.®® The agreement
between theory and experiment is evident from
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* PolGe)=224 nfdcm
* Po (Ge)=41 ,
& P, (Sa)= 11
° Py (Ga)= |
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FIG. 3. Temperature dependence of A p/T? for four
different samples of Al containing two different types of
impurities, Ga and Ge. The various symbols are exper-
imental points and the solid curves give the calculated
values.

the figure. At 20 K, the sample dependence is
very marked, with Ap(T) varying for different
samples by a factor of 5 as p, varies from 1 to
224 nQ2 cm. However, by 60 K, the Ap(T) data
have become almost sample independent, varying
by only 20% over the same range of p,. These
results are in precise agreement with the theory.

A point of particular interest is that neither
theory nor experiment yields power-law behavior
for the temperature dependence of AP(T). Al-
though the dirtiest sample does exhibit T3 behavior
fairly closely for Ap(T) over the entire tempera-
ture range, this is clearly not the case for the
purer samples. In fact, there is no reason,
neither experimental nor theoretical, to expect
T3 behavior for Ap(T) for all samples, as has
sometimes been proposed.''? Similar remarks
apply equally well to the Ap(T) data below 20 K,
which we have discussed in an earlier publication3®
dealing with the lower-temperature regime.

There exist of course additional data''? for
Ap(T) for Al. However, the data'*~'6:21-23 of the
research group of the Democritos Nuclear Re-
search Center of Athens are unusually complete
and care was taken to identify the impurity pres-
ent in each sample, features which make these
data particularly useful for comparison with the
theory. We therefore focus our attention on the
comprehensive data of the Athens group. How-
ever, it should be clear that comparing our cal-
culated results with other data''? leads to com-
parable agreement.

The other curves of interest are the DMR
graphs, giving AP(T) as a function of p, for various
fixed values of the temperature. Such curves are
presented in Fig. 4 for T =14, 20, and 77 K, for

250

200

Ap(nfem)

0.8

0. | 10 100 1000

po(nﬂcm)

FIG. 4. Plots of Ap as a function of p, for three differ-
ent temperatures. The experimental points were taken
from the compilation of data given in Ref. 2. The solid
curves are the calculated values. The dashed lines for
large p, (21000 nQ2 cm) represent the values for Ap cal-
culated without including the contribution of the inter-
ference terms A pjy (T). The hatched area of each curve
gives an estimate of the spread in A p;, (T) due to the
dependence on the type of impurity present.

P, ranging from 0.1 to 10* i cm. The data were
taken from the compilation of Cimberle, Bobel,
and Rizzuto.? It is convenient to discuss sepa-
rately two different regimes for p,. First, con-
sider p,<1 Kk cm. For this regime, it is evident
from Fig. 4 that the calculated curves accurately
reproduce the data for all temperatures. It should
be noted that the temperature range 14-77 K
corresponds to a range of three orders of magni-
tude for Ap(T). The DMR are very large at 14 K
@bout a factor of 6) and drop to only about 20% at
77 K. Note also that for each temperature, the
observed pure-limit value for Ap(T) is quantita-
tively given by the calculation.

For both the pure limit and the dirty limit,
AP(T) is independent of the type of impurity pres-
ent. However, for the intermediate regime,
AP(T) does depend on the type of impurity. Since
this information is not available for many of the
samples reported, we arbitrarily assumed vacan-
cy scattering for all samples, corresponding to
an “impurity” with Z,,=0. This will lead to an
uncertainty that approaches nearly 20% in the
middle of the intermediate regime and becomes
negligible as one approaches the pure and dirty
limits. It is just possible that at least part of
the scatter of the data in the intermediate regime
is a real effect due to different impurities present
in different samples. This matter deserves fur-
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ther study.

We now turn to the large-p, regime, p,>1
u2 cm. The calculation described thus far pre-
dicts a dirty limit, characterized by saturation
of Ap(T) for large values of p,, as given by the
dashed lines in Fig. 4. By contrast, the data
show no signs of saturation, continuing to rise
with increasing p,. This additional rise of Ap(T)
for p,>10° nQ cm is due to the interference terms
Ap, (T), first discussed by Kagan and Zhernov.®
Although the calculation of Ap,,,(T) for Al will be
presented in Sec. VII, we here anticipate the re-
sults. The hatched curves in Fig. 4 include the
contribution of Ap,, (T) to Ap(T). The calculated
values for Ap,, (T) vary with the type of impurity
present by as much as a factor of 2. The width
of the hatched curves thus expresses our lack of
knowledge on this point.

The values for Ap,, (T) are negligible for p,
<1 pQ cm. For p,=10 UQ cm, Ap,, (T) is about
30% of AP(T) in the dirty limit at 14 K and de-
creases to about 5% of Ap(T') at 77 K. Thus, the
magnitude of Ap,, (T) is not particularly large at
any temperature. However, without including
Ap, (T), one cannot explain the continued rise
in ApP(T) in the dirty limit. We note with satis-
faction that including Ap.m,(T) leads to close agree-
ment between theory and experiment for all tem-
peratures over five orders of magnitude for p,.

A third type of graph that has frequently been
plotted is that shown in Fig. 5. One introduces
A(T), defined as the deviation from Matthiessen’s
rule,

A(T) = plot (T) - po - ppure(T)
= Ap(T) - ppure(T) ) (6'2)

where 0, (T) is the ideal resistance in the ab-
sence of impurities. The graph gives A(T)/p,

as a function of temperature. The solid curves
represent the calculation and the various symbols
represent the data for four different concentra-
tions of Mg impurities in Al. Once again, the
agreement between theory and experiment is evi-
dent for all four curves. To illustrate that the
theory also reproduces the data of workers other
than the Athens group, we used the data of Seth
and Woods® for p,=681 n2 cm. As before, the
solid curves include the contribution of Ap,, (T),
whereas the dashed curves give the results with-
out the interference terms. It is seen that Ap,, (T)
is significant only for the more impure samples
and only for higher temperatures.

The most characteristic feature! of the curves
in Fig. 5 is the so-called “hump,” a maximum in
A(T) that occurs at a temperature T,,,,. The value
for T,,, is about 0.1-0.2 of the Debye temperature

P (Mg)=26 nflem
* P, (Mg)=45
* P, (Mg)= 132
© p, (Mg)= 681

0.4I™

T(K)

FIG. 5. Temperature dependence of A(T)/p, for four
different concentrations of Mg impurities in Al. Note
the characteristic “hump”, the observed maximum in
A(T), for each sample, except the most impure one.
The various symbols are the experimental points. The
solid curves give the calculated values. The dashed
lines for the two more impure samples at high tempera-
tures represent the values of A(T) calculated without in-
cluding the interference terms.

and increases slowly with increasing impurity
concentration. The Athens group reports®? that
for Mg impurities in Al,

Ty 035, (6.3)

ma:

until for sufficiently large p,, the hump is washed
out. It is seen that these results are reproduced
by the calculation. Another feature! of the data,
and of the calculation, is that for sufficiently high
temperatures, the values for A(T)/p, approach a
constant. The constant varies somewhat with p,,
but for each sample the constant lies in the range
0.1-0.2. This feature is also present for other
alloy systems. Note that the observed tempera-
ture dependence and the p, dependence of the hump
are reproduced by the same theory that accounts
for the low-temperature DMR. In particular, the
Kagan-Zhernov interference terms Ap, (T) con-
tribute but little to A(T)/p,, except at higher tem-
peratures and for larger values of p,; they cer-
tainly do not produce the hump, as has sometimes
been suggested. In fact, for the most impure
sample, the effect of the contribution of Ap, (T')
is to wash out the hump, rather than to produce
it.

In spite of the rather close agreement between
the calculation and the data, as indicated by Figs.
3-5, one should not form the impression that the
present theory is correct to the last percentage
point. This is most certainly not the case. We
are interested in obtaining calculated values for
Ap(T) that are accurate to about 10%. A more
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accurate calculation would require a number of
refinements to the theory that would significantly
complicate the analysis, as well as the numerical
calculations. These refinements include_ (i) in-
clusion of the energy dependence of ¢pn(K), (ii)
an improved expression for Pimp, (iii) a more rea-
listic phonon spectrum and (iv) a more accurate
representation of the pseudo-wave-functions and
of the Fermi surface. We shall briefly discuss
in turn each of these improvements to the theory.
The approximate functional form chosen for
Don (K), given by 3.1), includes the angular de-
pendence of ¢ (K), but not its energy dependence.
The reduction in Ap(T) due to the energy depen-
dence of ¢ph(ﬁ) is expected® to be small for poly-
valent and noble metals. An explicit calculation
has recently been carried out® for Al in the dirty
limit, and it was found that Ap(T) is reduced by
about 10%, the magnitude of the reduction de-
pending on the temperature under consideration.
The expression for f’m that we used is approxi-
mate in several respects. No account was taken
of lattice distortion.*® Moreover, the pseudo-
potential representation of the screened electron-
ion interaction matrix elements, based on a single
empirical parameter, may not be adequate for
electron-impurity scattering. Indeed, one should
properly rely on a full phase-shift analysis,?®
rather than using the Born approximation to cal-
culate the transition probability for electron-im-
purity scattering. (It should be emphasized that
these remarks do notf apply to electron-phonon
scattering, for which the resistivity integral is
dominated at low temperatures by the pseudo-
potential matrix elements evaluated at the re-
ciprocal-lattice vectors, a quantity directly mea-
sured®! in the de Haas-van Alphen experiment.
Moreover, the Born approximation is certainly
valid®® for the weak electron-phonon interaction.)
The error resulting from these approximations

to Py, is hard to determine accurately, but 10%
is the right order of magnitude.

The true phonon spectrum differs from our as-
sumed spectrum in two respects. We neglected
dispersion, assuming that w, (qQ) is linear in ¢
for all ¢, and we neglected the angular dependence
of the velocity of sound. For low temperatures,
for which only low-g phonons enter the calculation,
the neglect of dispersion is justified, but at higher
temperatures, say T >40 K (3 of the Debye tem-
perature), phonon dispersion should be included.
Regarding the neglect of the angular dependence
of w,(@), this is not serious, except at very low
temperatures, because of the near isotropy of the
true phonon spectrum of Al. Numerical tests that
we have carried out indicate that the resulting er-
ror in the resistivity does not exceed a few per-

cent.

The piecewise 2-OPW approximation that we
used throughout for the pseudo-wave-functions
and the Fermi surface is quite accurate. We have
confirmed that the artificial discontinuities that
it introduces into the Fermi surface do not affect
AP(T) by more than 1-2% at any temperature.
However, there are certain regions of the Fermi
surface for which the electron-phonon scattering
matrix elements require three or even four plane
waves for highly accurate values of Ap(T). This
is particularly true at very low temperatures. In
fact, for T = 2 K (345 of the Debye temperature),
the piecewise 2-OPW approximation probably
leads to quite serious errors in Ap(T). However,
for the temperatures that we consider here, the
piecewise 2-OPW approximation is accurate to a
few percent.

The above list of possible improvements to the
theory is by no means exhaustive. Each item on
this list implies an error in Ap(T) of ~5-10%.
Even taking into account the inevitable partial
cancellation of errors, their cumulative effect
probably leads to a rms error of about 10%. In-
deed, the agreement between theory and experi-
ment shown in Figs. 3-5 is really somewhat better
than would have been expected. Therefore it
seems pointless to expend the considerable effort
required to include some of the above improve-
ments in the theory, if one is not ready to include
them all. We are here primarily interested in the
simplest realistic calculation of Ap(T) for Al that
includes all physical effects associated with dra-
matic low-temperature anisotropy of the electron-
phonon scattering probability and the important
multiple-OPW character of the electron wave func-
tions, of the Fermi surface and of the electron
velocities. It should be emphasized that failure
to include all these effects in the calculation of
Ap(T) may lead to gross errors at low tempera-
tures, ranging from a factor of 2-3 to more than
an order of magnitude. By contrast, it is our
goal to show that if one includes all these proper-
ties of the polyvalent metal in a consistent man-
ner, then one will faithfully reproduce all aspects
of the Ap(T) data. In particular, there is no need
whatsoever to introduce ad hoc assumptions to
account for the resistivity data. Figures 3-5
testify to the extent that we have achieved this
goal.

VII. INTERFERENCE TERMS

The calculation of Ap(T) described thus far is
based on the approximation that one writes the
total scattering operator ﬁ,m as the sum of the
electron-phonon scattering operator ﬁph and the
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electron-impurity scattering operator P p» aS
given in (2.2). We now remove this approx1ma-
tion by including explicitly the contribution to
Ap(T) arising from the “interference” scattering
operator P, , which takes into account the coupling
(or “interference”) between the transition prob-
abilities for electron-phonon scattering and for
electron-impurity scattering. The operator P,
gives rise to several terms, as first discussed
by Kagan and Zhernov.*® These terms are col-
lectively called the interference terms and will
be denoted by APy, (T). Over the last few years,
the explicit calculation®~% of Ap,,(T) has been
carried out for several metals at various levels
of approximation. The most detailed work is that
of Kus, Carbotte, and co-workers, who calcu-
lated Ap,,(T) for sodium,% potassium,®” lithium,5®
and aluminum.*® Thus, the formalism for calcu-
lating Ap,, (T) is by now well established.

An important conclusion to be drawn from these
studies®~% is that the usual idealized-model cal-

culations (spherical Fermi surface, single plane
]

waves, approximate electron-phonon scattering
integral, etc.) do not yield quantitatively reliable
values for Ap,,(T). Therefore, in the absence of
values for Ap,,(T) for Al that are based on a rea-
listic description of the metal, we carried out the
calculation of Ap,,(T) based on the representation
of Al that is given in Sec. IV. It emerged from our
study that of the various terms that contribute to
APy, (T), only two are important for the tempera-
ture range we are considering. These are the
change in the electron-phonon resistivity due to
the fact that the vibrating lattice is altered by
the occasional presence of a substitutional im-
purity in place of the host ion, to be denoted by
Ap‘i:l)t (T), and the change in the residual resistivity
due to the fact that the impurities are vibrating
along with the lattice, to be denoted by AP (T).
The physical origin of these two terms has been
lucidly discussed by Bass.! We remark only that
APY(T) and AP (T) correspond to coherent and
mcoherent 1ne1ast1c scattering, respectively. The
2-OPW expressions for these terms are

@ aS(K))) (aS(Ky) SL(K), Kp)S, (K, K,)
M&,.”.(T)—ﬁ%”};fff(v( 1))(712;?‘)[@(1(2) & (K,)? E 1) (1.1)

2 dS(K))\[dS(K,) = =2 T2 | AT N2 2 d’q
AP(T) = 321:5szkBT ff(v(ﬁ))( v(§2)>[¢(Kz)'¢(K‘)] (K; = K)oz, [aW v, ) 2_'4;7?;/”%“”’

where the impurity concentration ¢ is related to
P, through (2. 10) in the standard way,* the primed
function S} (Kl, Kz) is the same as the unprimed
function SX(KI, Kz), given by (5.5), except that

w(k) is everywhere replaced by Aw(k), given by
(5.9), and the temperature-dependent denomina-
tor F(wg; T) is defined by (2.9). In (7.2), the in-
tegral over q is taken over the first Brillouin
zone.

A few comments are in order concerning (7.1)
and (7.2). We have included the Debye-Waller
factor but not the mass-change correction, which
has been shown®® to make only a small contribu-
tion to Ap,,(T) for Al for the temperature range
under consideration here. However, for higher
temperatures approaching the Debye tempera-
ture, the mass-change correction is no longer
small®® and should be included. The form factor
of the substitutional impurity Aw(k) can be either
positive or negative, and hence Ap(’) (T') can be
positive or negative, depending on the type of
impurity present and on the weighting of the in-
tegrand at differing temperatures. In particular,
for a vacancy, for which Aw(k)= -w(k), it follows
that Ap(Y (T) will be negative for all temperatures.

(7.2)

The possibility that Ap,,(T) may become negative
at higher temperatures for certain impurities

was first pointed out by Bhatia and Gupta.®® Turn-
ing now to Ap?,(T), the integral over q is just

the phonon specific-heat integral at low tempera-
tures. Therefore including the factor T-' multi-
plying the integral yields that AP (T') < T2 at very
low temperatures, as first pointed out by Kagan
and Zhernov.%:%

We have evaluated the integrals (7.1) and (7.2)
for various substitutional impurities in Al. Mag-
nesium impurity is chosen to illustrate the re-
sults in Fig. 6 because Mg was the impurity pres-
ent in the samples whose A(T) is given in Fig. 5.
The results for Ap,,(T)/Ap(T) are given by the
solid curve (vertical scale on left-hand side) in
Fig. 6 for p,=10 UQ cm, corresponding to a very
impure sample. This value of p, is near the
largest value of p, that one is able to obtain ex-
perimentally, and it corresponds to the dirty limit
even for temperatures as high as 100 K.

From the solid curve, one sees that Ap,, (T)/
ApP(T) decreases rapidly with temperature, drop-
ping from about 30% at 14 K to about 5% at 40 K.
However, this does not imply that Ap,,(T) is most
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FIG. 6. Calculated temperature dependences of the
ratio A pyu (T)/Ap(T) and of the magnitude of the DMR,
denoted by R(DMR) and defined by Eq. (7.3). Note that
the left-hand scale for A p, . (T)/Ap(T) is a factor of 10
smaller than the right-hand scale for R (DMR).

important at low temperatures. In fact, exactly
the opposite is the case. Only at higher tempera-
tures does Ap,, (T) contribute significantly to the
DMR. The reason for this is best seen by ex-
amining the temperature dependence of the magni-
tude of the DMR [calculated without Ap,,,(T)], de-
noted by R(DMR) and defined by

= AP(T)] irt
R(DMR) L_—L[Ap(T)iu,e -1, (7.3)

where the unity has been subtracted to insure that
R(DMR) =0 when there are no DMR. The calcu-
lated values for R(DMR) are given by the dashed
curve (vertical scale on right-hand side) in Fig. 6.
Note in particular that the scale of R(DMR) is a
factor of 10 larger than the scale of &p,, (T)/2p(T).

At low temperatures, say 14 K, the 30% con-
tribution of Ap,, (T) to Ap(T) is a very much
smaller effect than the very large DMR, i.e., the
factor-of-6 increase in AP(T') in going from the
pure to the dirty limit. By contrast, at higher
temperatures, say 77 K, the 5% contribution of
Ap,, (T) to AP(T) is the same order of magnitude
as the 20% DMR. Accordingly, as is clear from
Fig. 5, it is at high temperatures that Ap,, (T)
contributes measureably to A(T) for larger-p,
samples, whereas at lower temperatures (<50 K),
the effect of Ap,, (T) on A(T) is negligible for all
samples.

In summary, at each temperature, the impor-
tance of Ap,,(T) is determined by comparing
AP, (T)/Ap(T) to the magnitude of the DMR. The
calculation shows that only at higher temperatures
and only for the dirtier samples is the ratio
APy, (T)/Ap(T)R(DMR) not completely negligible.

From the preceding discussion, one may con-

clude that the contribution of Ap;,(T') is not es-
pecially important for calculating the general
properties of the DMR for polyvalent and noble
metals. Nevertheless, the role of Ap,, (T) has
assumed an unexpected importance due to the issue
of “saturation.” Without Ap,,,(T), the values for
Ap(T) are predicted to saturate at large p,, where-
as the data continue to rise with increasing p,.
This observed lack of saturation has sometimes
been used? as “evidence” for discarding entirely
the present theory of the DMR that is based on

the isotropi_gation of the electron distribution
function ®(K) with increasing electron-impurity
scattering. However, one sees that it is possible
to explain quantitatively the lack of saturation of
Ap(T) at large p, on the basis of AP, (T).

VIII. PREVIOUS WORK

The calculation of Ap(T) at low temperatures
for polyvalent metals in general and for Al in
particular has been the subject of considerable
theoretical interest for many years. We shall
not, of course, attempt to give a complete dis-
cussion of all the many important papers dealing
with the low-temperature calculations of Ap(T).
Our discussion will necessarily be restricted to
those papers that are directly related to the
present calculation. These papers fall naturally
into two groups. One group of papers deals with
the calculation of the DMR for polyvalent metals
and the second group deals with the low-tempera-
ture calculation of Ap(T) in what we have called
the dirty limit, without calculating the DMR.

We first discuss those papers that deal with the
calculation of the DMR, the major subject of the
present work. Of particular interest is the analy-
sis by Trofimenkoff and Bhatia®® (TB) of the DMR
for a polyvalent metal based on an exact solution
of the Boltzmann equation for an idealized model
of the electron-phonon scattering transition
probability. Although the model assumed for the
scattering is not directly applicable to any real
metal, nevertheless, the analysis is extremely
valuable because TB obtain, without approxima-
tion, two crucial results whose importance can
hardly be overemphasized for an understanding
of the low-temperature DMR. First, in the pure
limit, the low-temperature electron distribution
function d>(f() is dramatically reduced in the
vicinity of each of the intersections of the Fermi
surface and the Brillouin-zone boundaries.
Second, in the pure limit, the umklapp-scattering
term py is negligible compared to the normal-
scattering term py, even though the reverse is
true for the dirty limit. To be specific, for the
model parameters chosen by TB, the umklapp-



2306 MOSHE KAVEH AND NATHAN WISER 21

to-normal scattering ratio p;/py equals 10 in the
dirty limit, but only 0.005 in the pure limit, a
drop of 3 orders of magnitude. It is clear that any
calculation that does not yield these two crucial
results cannot possibly lead to quantitatively re-
liable values for the DMR.

In spite of the importance of the TB analysis,
one cannot of course compare ApPe,(T) for a spe-
cific metal with APy (T) obtained from an idea-
lized model for the electron-phonon scattering
transition probability. Therefore, we have com-

bined in the present work an accurate real-metal
representation of the electron-phonon scattering

transition probability for Al with a variational
solution to the Boltzmann equation that explicitly
includes the correct behavior of the electroll dis-
tribution function. The form chosen for @ (K) in
the pure limit, given by (3.1), contains the factor
[v(K)/vg]", where n is determined by the varia-
tional theorem. For large n, one au}omatically
obtains the required reduction in & (K) near the
intersection of the Fermi surface and the Bril-
louin-zone boundaries. As a result, our calcula-

tion yields that for low temperatures, the umklapp-

to-normal scattering ratio p;/py varies from being
large in the dirty limit (=8.1 at 10 K) to being

very small in the pure limit (=0.12 at 10 K). The
reduction of py/py from >1 to <1 is central to
obtaining the correct low-temperature values of
the DMR, as TB so clearly showed. Indeed, all
aspects of our results for AP(T) are completely
consistent with the exact results of the TB analy-
sis of the model system.

Other important previous calculations of the
DMR include those of Ehrlich,®® Schotte and
Schotte,* Kagan and Zhernov,* Dosdale and
Morgan,®? Kus and Carbotte,*® and Gorham-
Bergeron and Dworin.*” The Ehrlich® and Schotte
and Schotte®! calculation of the DMR are based
on a generalization of the Klemens-Jackson®®
diffusion-equation approach to Ap(T) to include
impurity scattering and they will be discussed
together with the Klemens-Jackson calculation.
The other four papers3”*56:%9:62 present Boltzmann-
equation calculations of the DMR, with various
levels of approximation used to describe the elec-
tron-phonon scattering transition probability of
Al and the electron distribution function. All
these calculations®”'%6:%°7%2 gbtain qualitatively
correct results in that they find the required re-
duction of @ (K) in the pure limit near the Bril-
louin-zone boundaries and the resulting marked
increase in Ap(T) in going from the pure limit
to the dirty limit. However, in none of these cal-
culations is there proper appreciation of the im-
portance of normal scattering. In each case, Py
turns out to be negligible even in the pure limit

because of the inappropriate use of 1-OPW elec-
tron wave functions and/or the use of an incorrect
electron distribution function and/or the explicit
(incorrect) assumption that py does not contribute
to the DMR. Nevertheless, this shortcoming
should not obscure the fact that each of these
papers®7'%:5-62 makes an important contribution
to our understanding of the low-temperature DMR
for Al.

We now turn to the group of papers which deal

with the low-temperature calculation of AP(T) in
the dirty limit only. These calculations are rele-

vant in that they include, at least partially, the
multiple-OPW character of the electron wave
functions, of the Fermi surface, of the electron
velocities, of the electron-phonon scattering
transition probability, etc. The pioneering calcu-
lation of Ap(T) for Al is surely the 1967 calcula-
tion of Pytte,® who used a 2-OPW electron wave
function and included the Fermi-surface distor-
tions from sphericity that had shortly before been
determined by Ashcroft.3! This was the best cal-
culation at that time. However, it is now recog-
nized that the resulting Ap(T) is not accurate at
low temperatures because of certain approxima-
tions introduced to facilitate the angular integra-
tions, which prevent a correct treatment of the
crucial small—q*region of the resistivity integrals,
and because @ (K) was taken to be proportional to
K- E instead of ¥(K) - E. Improved versions of the
Pytte®* calculation subsequently appeared, such
as that of Truant and Carbotte,® but still based

on ®(K)xK+E. A major advance in the calculation
of AP(T) for Al was the detailed study of Lawrence
and Wilkins,®® whose completely realistic descrip-
tion of Al also includes the correct dirty-limit
electron distribution function, & (K) < ¥(K) - E, and
a correct calculation of the normal scattering con-
tribution to Ap(T). As a result, meaningful results
were obtained for Ap(T) for Al, unmarred by the
commonly-made approximations. The Lawrence-
Wilkins calculation has recently been generalized
by Leung ef al.’” by the use of 15 plane waves to
describe the electron pseudo-wave-functions.

The present dirty-limit calculation of Ap(T) is
most closely related to the Lawrence-Wilkins
calculation,®® except that we have included certain
important refinements, such as the piecewise
2-OPW framework, which are of particular sig-
nificance at the lowest temperatures, where the
numerical work is especially treacherous.

An entirely different approach to the calculation
of Ap(T) for polyvalent metals is that of Klemens
and Jackson,®® who showed that under certain as-
sumptions, the Boltzmann equation can be trans-
formed into a diffusion equation. Owing to elec-
tron-phonon scattering, the electrons move over
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the Fermi surface, assumed spherical, in random
steps sufficiently small that the process can be
regarded as taking place by diffusion. The result-
ing diffusion equation is solved to yield Ap(T).
Including impurity scattering, as was done by
Ehrlich®® and by Schotte and Schotte,®* permits an
explicit calculation of the DMR. However, the
Klemens-Jackson-Ehrlich-Schotte-Schotte ap-
proach is not an alternative to the present calcu-
lation because the “diffusion cqefficient” that re-
sults from electron-phonon scattering is not cal-
culated. Rather, it is treated as an empirical
parameter with an assumed temperature depen-
dence. Moreover, as with the other calculations
of the DMR, the important contribution to the
DMR of the normal-scattering term was not
properly taken into account.

IX. SUMMARY

A detailed analysis has been presented of the
low-temperature behavior of the electrical re-
sistivity of dilute alloys of Al. Our principal re-
sults are the following:

(i) A new electron distribution function has been
introduced for electron-phonon scattering which
takes explicit account of the enormous anisotropy
at low temperatures of the transition probability
for electron-phonon scattering. Based on this
new distribution function, the variational method
is employed to solve the Boltzmann equation and
to obtain the resistivity.

(ii) The piecewise 2-OPW framework is intro-
duced and shown to yield an accurate description
of the relevant properties of Al. This multiple-
OPW description of Al is used for evaluating the

resistivity integrals and leads to accurate values
for the calculated resistivity.

(iii) In the pure limit, the normal-scattering
term is found to be much larger than the umklapp-
scattering term. This surprising result is in
precise agreement with the exact model calculation
of Trofimenkoff and Bhatia.

(iv) The dependence of the resistivity on im-
purity concentration is calculated for various val-
ues of temperature, and the temperature depen-
dence of the resistivity is calculated for various
values of impurity concentration. In each case,
excellent quantitative agreement is obtained with
the experimental data for Al.

(v) The interference terms are explicitly cal-
culated within the piecewise 2-OPW framework
and are shown to be small in most cases. How-
ever, in the dirty limit, the interference terms
are important and are shown to be responsible
for the observed lack of saturation of the resis-
tivity as a function of impurity concentration.

(vi) The observed “humps” in the resistivity-
versus-temperature curves are accurately re-
produced by the calculation. In particular, the
humps are shown to be unrelated to the inter-
ference terms.
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