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Effect of three-body interactions on the ordering of bcc binary alloys
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The composition dependence of the order —disorder critical temperature is investigated for a
model binary alloy equivalent to an Ising system with both the nearest-neighbor interactions (J)
and the three-particle interactions (P) present. Using a real-space renormalization-group
method for calculating the phase. diagram, we find that for small three-body forces, the max-
imum critical temperature shifts from the 50-50 atomic percent composition proportionally to
P/J The pr. oportionality constant is determined both from the renormalization-group method
and from Griffith's smoothness postulate. The results of the two calculations agree with each
other, and they are used to estimate the relative strength of the three-body potentials in iron
cobalt. The estimate P/J =0.11+0.06 indicates that three-body forces are small, so that the
nearest-neighbor Ising model is a good first approximation for the description of ordering in
FeCo.

I. INTRODUCTION

Studies of the Ising model have contributed much
to our understanding of second-order phase transi-
tions. This model is thought to give a realistic
description for a variety of systems, the simplest
among them being the binary alloys which undergo
critical order —disorder transformations. As far as the
critical properties such as exponents and amplitude
ratios are concerned, experiments on p brass, ' '
Fe3A1,~' and FeCo ' confirm the nearest-neighbor
(NN) Ising model predictions. The measured quanti-
ties are universal, however; so the agreement
between theory and experiment means only that the
order parameter of binary alloys in one dimensional
and the interactions are of short range.

Of course, the NN Ising model is only a first ap-
proximation, and to find out the details of the in-
teractions which are responsible for the phase
transformation, one must look at the nonuniversal
aspects of the ordering. An example of nonuniversal
quantities is the ordering temperature. Its composi-
tion and pressure dependence has been investigated
extensively for p brass, s 'o and the findings do not
agree with the corresponding NN Ising-model predic-
tions. " This discrepancy led to the conclusion that
the next-nearest-neighbor interactions play an impor-
tant role in the ordering process.

Although this conclusion is probably correct, the
quantitative analysis of p brass is quite difficult. In
order to compare the measurements with the rigid
Ising-model calculations, one must correct for the
thermal expansion of the lattice. This correction
turns out to be significant. but quite uncertain since
its calculation involves the use of unverified assump-
tions about the composition and temperature depen-
dence of the thermal expansion coefficient. Another

source of inaccuracy is that the ordering curve exists
only in a narrow composition range (44—49 at. % Zn)
where no maximum critical temperature (To) is ob-
served. So, the analysis of the data is necessarily
biased by the usual assumption that To is at the
stoichiometric composition. Since the results are sen-
sitive to the possible asymmetry of the ordering
curve, the present-day experiments allow only quali-
tative conclusions about interactions other than the
NN ones.

The situation in iron-cobalt alloys is much clearer
since ordering occurs over a wide composition
range'" (30—70 at. % Co), and the correction for
thermal expansion seems to be negligible. " The
phase diagram (Fig. I) is obviously not symmetric
about the stoichiometric composition. Within the
framework of Ising-model calculations, this fact can
only be explained by taking into account the intera-
tomic potentials among odd numbers of atoms.
Another solution would be to make the NN interac-
tions concentration dependent, but if the dependence
is analytic this approach is equivalent to the introduc-
tion of a series of special, concentration-independent
multisite interactions.

The asymmetry of the phase diagram is relatively
small; it can be characterized by the composition no

(n =,oo at. /o Co) at which the maximum critical

temperature To is attained. The shift of no from the
stoichiometric composition,

Sn = no —0.5

will be called the asymmetry parameter and in the
following we show how this shift can be explained in
terms of the simplest multisite interactions, namely
the three-body ones. We obtain thereby an estimate
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FIG. l. Order-disorder transition temperature of FeCo
as a function of composition. The ordering curve is normal-
ized by the maximum critical temperature To. The solid and
open circles are, respectively, the data of Oyedele and Col-
lins (Ref. 7) and Asano et al. (Ref. 12). The nearest-
neighbor Ising-model result of Bienenstock and Lewis is
shown by the solid line, while the dashed curve is a parabol-
ic fit to the experimental points.

of the strength of the three-body potentials in iron
cobalt.

The effects of many-body interactions in alloys
have been reviewed by Clapp, ' and a partial updating
of that paper can be found in Ref. 1S. Their effects
on phase diagrams were studied first by van Baal'
who used a sophisticated molecular-field approxima-
tion for calculating the ordering properties of face-
centered cubic (fcc) alloys of the CuAu and Cu3Au
type. He concluded that most of the variations in the
actual phase diagrams could be explained by the in-
clusion of quite weak three- and four-particle iriterac-
tions.

In contrast with fcc alloys in which the ordering
takes place by a first-order phase transition, body-
centered cubic (bcc) alloys like CuZn and FeCo un-

dergo critical order —disorder phase transforma-
tions. "' Since critical fluctuations are known to in-
validate the quantitative predictions of the
molecular-field theory, one must use better calcula-
tional schemes for bcc alloys. In this paper we
proceed in two ways: first (Sec. II), observing that
the asymmetry of the phase diagram in Fig. 1 is
small, we assume the three-body interactions to be
small, and treat them as perturbations to the NN in-
teractions. Since three-body forces do not change the
nature of the symmetry breaking in the ordering pro-
cess, one can use Griffith's smoothness postulate, '~

and it follows that the calculation of the asymmetry
parameter is reduced to that of the critical correla-
tions of the NN Ising model, which can be handled
by decoupling schemes and by using high-
temperature series expansions.

Second, in Sec. III we carry out a real-space
renormalization-group calculation for finding the
asymmetry parameter when three-body interactions
are present. Although the problem of complicated
interactions arises naturally in the renormalization-
group framework, the phase diagram of binary alloys
has been investigated by this method only for the
simple case of NN interactions. ' ' An exception is
the work of Schick et al. in which the plane-
triangular lattice with NN and three-particle interac-
tions was studied, and the results were compared
with the experiments on the ordering of helium on
graphite. Even in this case, however, the three-
particle interactions were used only for calculational
purposes; they were not needed for explaining the
experimental data.

In our renormalization-group calculation we found
that for small three-particle interactions the upper
part of the phase diagram shifts proportionally to the
strength of those interactions, thus justifying the in-
troduction of the asymmetry parameter. The propor-
tionality constant is close to that determined from the
smoothness postulate; so we feel that the estimate of
the three-body potentials in FeCo following from
these calculations (Sec. IV) is quite reliable.

I

II. SMOOTHNESS POSTULATE

Using spin terminology, a nonstoichiometric binary
alloy is described as an Ising antiferromagnet in a
magnetic field. The addition of three-body poten-
tials leads to the following Hamiltonian:

H = —If X o'( +J X rrl og —P X o;OJok, ''(2)'
i &IJ& OJk&

where cr; =+1; H, J, and Pare, respectively, the
magnetic field, the NN, and the three-spin coupling
constants. Throughout this paper we shall be con-
cerned mainly with the bcc lattice, but our calculation
yields results for the simple cubic (sc) and square
(sq) lattices, too. In all cases the summation (ijk)
runs over the smallest triangles consisting of two NN
and one next-nearest-neighbor bonds. Although the
terminology of NN and three-spin interactions is
used, it must be remembered that the parameters J
and P are actually linear combinations of atomic po-
tentials2; so they characterize the contribution of NN
and three-body potentials to the ordering energy of
the alloy. .The claim of determining the magnitude of
three-body potentials in fact means the estimation of
their contribution to the ordering energy without ac-
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tually being able to calculate energies for individual
three-body configurations.

Given the Hamiltonian (2), in principle one should
calculate the free energy and from its singularity
determine the critical temperature T, (H, J,P). Then
the maximum critical temperature Tp is found at
fixed J and P and the magnetization Mp at the max-
imum gives the shift of Tp from the stoichiometric
composition by

Sn= —Mp .1

2

For small P, one excepts Sn to be proportional to
P. Since the only other disposable dimensional
parameter is J, for small Pwe have

Sn= —r—P (4)J
where r is a dimensionless parameter. Our aim in
this section is to determine r. Then, knowing Sn
from the experiments, the ratio of the strength of the
three-body and the pair potentials can be found.

In practice, the above program cannot be carried
out exactly. In three dimensions not even the solu-
tion of the NN Ising model is known, although in the
last two decades much information has been gathered
through approximate methods like high-temperature
series. ' %e shall make connection with this infor-
mation through the application of Griffith's smooth-
ness postulate'9 to the parameters H and P, thereby
reducing the calculation of r to that of the susceptibil-
ities of the NN model.

The smoothness postulate has been designed to
deal with parameters which do not alter the dimen-
sionality, the range of interactions, and the nature of
the symmetry breaking in a system. In
renormalization-group language these parameters are
called irrelevant. A well-known example is the mag-
netic field H at the antiferromagnetic critical point.
The effect of three-spin interactions is quite similar
to that of the magnetic field: they try to increase the
magnetization, and they do not favor any of the sub-
lattices of the antiferromagnet. Furthermore, in the
renormalization-group calculations of Sec. III, both H
and P turn out to be irrelevant parameters. So we
shall assume that P also qualifies for the smoothness
postulate, which implies that the free energy of the
system can be expressed as

F(THP) =Fp(THP)

+ $(H, P)f(8(H, P) [ T —T,{H,P) ])
(5)

where Fp, P, 8, and T, are smooth functions of their
respective arguments (the dependence on J is impli-
cit; the temperature is scaled by it), and the singular
part of F is proportional to a function of single vari-
able f(x). The phase boundary is given by
T, = T, (H, P) with T~ = T(0, 0) being the Neel tem-

and the ratio Tt'~/Tt2~ can be found by calculating
the singular part of the temperature derivative of the
susceptibility X-(8M/8H) yg p p p and the "three-
point" susceptibility X3 = (dM/dP) yg p p p From.
Eq. (5) it follows immediately that:

(8)

and

so the ratio of the amplitudes of the singularities of
X'3 and X' is T, ' /T,

Since P, and consequently Hp, are small, the mag-
netization Mp at (Hp, P) can be obtained as

Mp = X3NP + XgHp

~here X3~ and X~ are, res'pectively, the values of X3

and X at TN. Substituting Eqs. (7)—(9) into Eq. (10)
we arrive at

3
Mp= X3g ——Xg P

This formula contains no other approximation than
the smoothness postulate, which is unproven but al-
most certainly correct. Unfortunately, only X~ and X'

are known reliably from high-temperature series. "
For X3 we must design an approximation which yields
the required proportionality of the singular parts of X
and X3, Eqs. (8) and (9). This can be done by writ-
ing X3 as a sum of four-point correlation functions

TX3 = X X (a;a.pa..a.,), (12)

where i goes over all the lattice sites while in the
second sum o., and orb are next-nearest neighbors to
each other and nearest neighbors to the spin at the
origin cd. l3ecoupling the four-point correlations

perature. The functions $ and 8 are normalized at
T~, i.e., $(0,0) = 8(0, 0) =1.

It follows from the form of the Hamiltonian (2)
that the free energy does not change if the sign of
both H and P is reversed. Consequently, for small H
and P,

T, (H, P) = Tg+ T, ' PH+
2 T, H +

with T,"'= (d'T, /'dH'dP) ~ and T,"'= (O'T, /8H')
the subscript N indicating that the derivatives are tak-
en at the Neel point with all the other parameters
fixed. At fixed P the maximum critical temperature
Tp is attained at
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(13)

into the sum of all possible pair-correlation products,
we find

TX3 = c(2 (o'Oo' ) + (o o'b) ) X (o'ptr;)
l

~here e is a geometrical factor giving the number of
smallest triangles belonging to one point; its values
for different lattices are listed in Table I. The NN
correlation I't = (ooo.,), the next-nearest-neighbor
correlation I'2 = (o,aq), and the susceptibility
TX= X, (ooo;) have common singular structure,
since 'they are all finite at T~, and their temperature
derivative has the same singularity. If follows then
from Eq. (13) that, as required, the singular struc-
tures of X3 and X are the same. An additional benefit
of the above decoupling scheme is that it correctly
reproduces the leading term in the high-temperature
series of X3.

Denoting the singular part of di'~/dT and dI'2/dT
by I"I and I"2 and substituting Eq. (13) into Eq. (11),
we obtain

c(2I"
t + I"2) XN

Mo I' 14

c(2 —p) P PSn=- —= —r-
zq J J (17)

Here c and z are geometrical factors while p and q
are found from high-temperature series. The results
for each lattice are presented numerically in Table I.

The above calculation suffers from the approxima-
tion introduced for calculating the four-point correla-
tions. In order to assess the accuracy of our results,
in Sec. III we determine r by using a completely dif-
ferent calculational scheme, namely, the real-space
renormalization group.

Further simplification occurs by noting that, for the
case of the NN Ising antiferromagnet in a magnetic
field, the smoothness postulate predicts a parabolic
phase boundary near T~ (Refs. 19 and 24)

Tc 1=1 ——qM +'
~N

with q =X'/C, X~. Using q in Eq. (15) and
remembering how Mo is related to the shift in com-
position, we arrive at

TABLE I. Values of the parameters for calculating r in

Eq. (17). The meaning of these parameters is described in

the text in connection with formulas (13)—(16). rR~ 'is the

renormalization-group result of Sec. III.

bcc sc sq

8
12
1.4(1.2~)
4.3

6
12
1.4
4.7

4
4
1.4

18

rRG

0.21
0.25

0.26
0.33

0.033
0.17

In the case of the square lattice, I"~ and I 2 are re-
lated by I"~ = —pI"2 with p = v2. A similar situation
exists in sc lattices where high-temperature series'5 in~

dicate p = 1.42. %e shall arbitrarily adopt p =1.4 for
all the lattices, althougb p might have a geometrical
meaning (the ratio of the distances between the
next-nearest neighbors and the nearest neighbors),
and then for the bcc lattice we should use
p=2/&3=1. 2. This difference is, however, not sig-
nificant, especially in view of the decoupling approxi-
mation which probably introduces more uncertainty
in our final result.

Since I"I =2C,/zJ, with C, being the singular part
of the heat capacity and z the number of nearest
neighbors, Eq. (14) simplifies to

2c(2 —p)C, Xp'g p
Mo 15

zX' J

III. RENORMALIZATION-GROUP METHOD

The calculation of phase boundaries by the real-
space renormalization-group method is now well es-
tablished. The lattice is divided into cells and, by
deriving an effective interaction between the cells, a
transformation is generated in the space of coupling
constants of the Hamiltonian. From the fixed points
and flow properties of this renormalization-group
transformation, one determines the critical surfaces
which are directly related to the phase boundaries.
The various renormalization-group schemes are dif-
ferent in their choice of cells and in the approxima-
tion which is used to obtain the effective interaction
between the cells.

Apart from computational conveniences, the choice
of cells is governed by the requirement that the
renormalization-group transformation should leave
invariant the ground states associated with the com-
peting phases. In our case there is competition
between the antiferromagnetic phase, favored by the
NN interaction, and the ferromagnetic phase, which
is favored by the magnetic field and the three-spin
interaction. In order to leave both the ferro- and an-
tiferromagnetic ground-state invariant, we divide the
lattices into two sublattices and for each sublattice a
square (for sq lattice) or a tetrahedral (for sc and bcc
lattices) arrangement is chosen as a basic cell (Fig.
2). This type of cell arrangement has been success-
fully used for investigating the ordering of NN anti-
ferromagnets in a magnetic field.

Using the above choice of cells, one is faced with
the difficulty that, under the renormalization-group
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FIG. 2, Sublattice cell arrangements for sq, sc, and bcc

lattices.

transformation, spatially inhomogeneous couplings
are generated. Kinzel has devised an approxima-
tion for calculating the interaction between the cells
which avoids the problem of inhomogeneity. In his
method the interactions (X) are separated into intra-
cell (3CO) and intercell ( V) parts. The intercell part
is not considered to be small as in the cumulant ex-
pansion; instead it is treated in the mean-field ap-
proximation ( V VMs), and the effective Hamiltoni-
an of the cell spins (a,') is calculated from

3C'(o') =in T(o', cr) exp(XO+ VM&)
(cr

(18)

where T(o', cr) is the cell-spin weight factor (we
shall use the Niemeijer —van Leeuwen majority
rule26 z~) and the spin expectation values in the
mean-field form of V are calculated self-consistently

(a,.),= T(o', a) o;

x exp(HO+ VMp)/exp[DC'(a')] . (19)

At this point the problem is still very complicated.
Equation (19) should be solved for all the cell-spin
configurations. Substituting the results into Eq. (18),
one expects that all possible interactions are generat-
ed in X (o ). The crucial assumption to be made
here is that only a few of those interactions matter,
and they can be obtained from a few cell-spin confi-
gurations. For instance, if only the NN interactions
are kept, Eqs. (18) and (19) are calculated for the
ferromagnetic (F) and antiferromagnetic (AF) cell-
spin configurations, and the transformation is defined
as K' = [3C'(F) —3C'(AF) ]/zN' with K' = J'/kT and—
N' being the number of cell spins. Now the calcula-
tion is greatly simplified because the high symmetry
of the F and AF configurations reduces Eq. (19) to
the solution of two independent transcendental equa-
tions and the construction of those equations in-

volves the spins in one cell only. With this remark-
ably simple approximation, Kinzel obtained reason-
able results (10—20% accuracy) for the critical prop-
erties' of the two-, three-, and four-dimensional Ising
models and for the phase boundary of the two-
dimensional Ising antiferromagnet in a magnetic
field.

In the choice of the cell-spin configurations which
are to be kept for evaluating Eqs. (18) and (19), one
is guided by the symmetries and ground-state proper-
ties of the system. In our case the renormalization-
group transformation is in the space of the coupling
constants K = J/kT, —H = H/kT—, and P = P/kT, —
and the basic symmetry in this space is the invariance
of the renormalization-group flow under the mapping
(K,H, P) ~(K, H, P)—wh—ich follows from the re-
versal of all spins under the trace of the partition
function. The competing ground states of the system
are the ferro- and antiferromagnetic configurations
but, because of the three-spin interactions, the fer-
rornagnetic configurations with all spins up or down
should be distinguished. In order to incorporate the
above properties and have a renormalization-group
transformation which does not enlarge the space of
coupling constants, we shall use the following cell-
spin configurations: antiferromagnetic (AF), fer-
romagnetic with all cell spins up (F]+), ferromagnet-
ic with the cell spins down (Fj+), the same fer-
romagnetic configurations in a magnetic field of the
same magnitude but pointing in the opposite direc-
tion (F]—) and (Fj—). Then the renormalization-
group equations are as follows:

K' = [3C'(F]+) +3C'(F j+) +3t".(F]—)

+3C'(F j—) —43C'(AF) ]/4zN'

H = [3C'(F]+) —X'(F j+)
+3C'(F j—) —X'(F]—) ]/4N',

P = [3C'(F]+) -3C'(F j-)
+3C'(F]—) —X'(F j+) ]/4cN'

(20)

where z and c are given in Table I and the number of
cell spins N' enters Eq. (20) only formally, since the
calculation of 3C' reduces to the calculation of in-

dependent cells and so all K' are proportional to N'.

Having set up the recursion relations (20), one
next finds the fixed points of the transformation. As
expected, there exists a ferro- and an antiferromag-
netic fixed point (K'=+K„P=0, and H =0), and
the fields H and P, which break the up —down sym-
metry, are relevant at the ferromagnetic fixed point
while they are irrelevant at the antiferromagnetic one.
This result supports the smoothness postulate ex-
plored in Sec. II, although it should not be taken as a
proof, since in several real-space renormalization-
group calculations H turned out to be relevant at the
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antiferromagnetic fixed point. 20 2"0
Other fixed points of interest are located at

(E"=E„P'=+P„and H"=0). As can be seen
from Fig. 3, they govern the phase transition in the
model with pure three-spin interactions. This model
has been investigated ' by deriving low-temperature
series for the magnetization and analyzing it under
the assumption that the phase transition is connected
with the disappearance of the magnetization. The na-

ture of the transition is not clear, however, since it
has been proved thai in the bcc 1attice the magnetiza-
tion persists up to arbitrary high temperatures. "
(The proof can easily be extended to the sc and sq
lattices, too.) Our simple approximation indicates
that, although the magnetization exists at any tem-
perature, its fluctuations diverge at the critical point
I' =P„ i.e., the magnetization versus I' curve has an
inflection point at P, with dM/dP being infinite. This
picture might be simpler than the real situation, since
the above calculational scheme can treat only ferro-
and antiferromagnetic orderings; it would be
nevertheless interesting to reanalyze the series along
the lines of the above findings.

In the following we shall restrict ourselves to the
neighborhood of the Weel point, where an idea about
the accuracy of our results can be obtained by com-
paring our results for EC, and the thermal (yT) and
"sublattice" magnetic (ysH) exponents with the avail-

able exact and high-temperature-series23 results
(Table II). The discrepancies are of the order of
20%, indicating that the method compares with the
first-order cumulant expansion and with the. simple-
cluster and sublattice approximations.

The critical surface near the Neel point is traced
out by watching the renormalization-group flow.
Since both 0 and I' are irrelevant variables, one sim-

ply finds the points which are-taken by the
renormalization-group transformation to the antifer-
romagnetlc fixed point. The only complication is that
the critical surface must be found accurately since we

want T, as a function of M, and typically the magnet-
ization varies rapidly at the phase boundary. The
magnetization itself is determined as the derivative of

Kc

FIG. 3. Renormalization-group flow in the (E,I', H =0}
plane. Only the P & 0 part is shown, since the picture is

symmetric about the EC axis.

the free energy M = "dF/'dH, F being calculated as a
sum along the renormalization path F = Xg„/4".
In our case the contribution in the nth step is

(21)

where &„' are the3C' of Etl. (18) evaluated in the nth
step of the transformation. %e note that one can
also derive recursion relations directly for the mag-
netization. Usually they converge rapidly and give
better accuracy; however, these recursion relations
are too lengthy to write out here.

Having determined the magnetization, and conse-
quently the composition on the critical surface, one
can draw the phase boundaries at fixed P/J P/J
ratios. We find that for small P/J (&0.5), the upper
part of the phase boundary practically retains its para-
bolic shape, but it shifts in composition proportional-
ly to P/J. The proportionality constant rao gives the
shift of the maximum critical temperature; its value
for different lattices is listed in Table I, One can see
that for the bcc and sc lattices the agreement between
the smoothness postulate and renormalization-group

TABLE II, Critical parameters at the antiferromagnetic fixed point. RG refers to our
renormalization-group results, while "exact" labels the values obtained from high-temperature series
or exact calculations (Ref. 23}.

"exact" "exact" "exact"

bcc

sc
sq

0.273
0.410

0.222
0.441 0.816 1.0 1.87 1.875
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IV. COMPARISON KITH THE EXPERIMENT
ON FeCo AND CONCLUDING REMARKS

For the three-dimensional lattices the results of the
above two calculations are consistent with each other;
so we feel that they can be used for estimating P/J in
FeCo. To do this, let us look at Fig. 4, which shows
the phase boundaries for the bcc case obtained from
the high-temperature series, from our
renormalization-group calculation, and from a para-
bola fit to the experimental points. One can see that
the shift in composition (gn =—0.025) of the max-
imum critical temperature To can be explained by
adding three-body interactions of relative strength

—=0.10P
J (22)

or if we use the value of r obtained from the smooth-

)) Tc
To

0.96-

0.94—
I

0.40
I

0.50
0

0.60
FIG. 4. Composition dependence of the ordering tem-

perature of a bcc binary alloy. The following curves are
drawn: (a) High-temperature series for P/J=0 (——);
(b) the same curve but shifted by Sn = —0.025 (—-);
renormalization-group results for (c) I'/J =0 ( "")and for
(d) P/J =0.1 (—————); and (e) parabola fit to the ex-
perimental results FeCo ( ).

calculations is good. For the sq lattice, ho~ever,
there is a factor of five difference between the two
results, indicating that one or both of the calculation-
al schemes break down. This could be due to the
larger fluctuations in two dimensions which might in-

validate the decoupling scheme employed in Sec. II.
Another possibility, however, is that the quite irregu-
lar variation of M on the phase boundary observed
for the sq lattice in the series analysis" is a real
feature. The different renormalization-group approxi-
mations" do not seem to be able to reproduce this
detail properly.

ness postulate,

—=0,12
P
J (23)

0.11 + 0.06P
J (24)

An independent estimate of P/J could be obtained

These numbers support the view that the NN Ising
model is a good first approximation for describing the
ordering. But in order to believe in them, it remains
to be explained why the lines (d) and (e) have dif-
ferent curvatures at their common maximum.

The discrepancy is only partly due to the approxi-
mation used. Figure 4 shows that some of the
discrepancy would remain even if a method would
reproduce the presumably accurate high-temper-
ature-series curve (a) for P/J =0, and then this
curve would be shifted into (b). For small P/J one
cannot expect that during the shift the shape of the
curve ~ould change significantly; it follows from the
symmetry of the critical surface discussed in Sec. III
that the parameter q characterizing the parabolic
phase boundary in the neighborhood of To (Sec. II)
changes from its NN Ising value proportionally to
(PIJ)'.

The parameter q can be effectively changed by
next-nearest-neighbor (J(21), four-spin (J4), or in
general by some even-spin interactions (J2k). For
small J2k/J the change in q is proportional to J2k/J,
but the shift of T0 is effected only in second order
(-PJ2k/J') Thus to .first order the effects of P and

J2k are independent and Eqs. (22) and (23) are esti-
mates of the three-body interactions under the as-
sumption that small additional even-spin interactions
take care of the discrepancy between the theoretical
and experimental curves in Fig. 4.

An idea about the relative strength of the even-
spin interactions can be obtained from examining the
effect of next-nearest-neighbor interactions. Harbus
and Stanley " used high-temperature series to deter-
mine the phase boundary for J(2&/J = —0.5.
Although the calculation is for sc lattice, the result is
probably also representative for the bcc case, since
for. the NN Ising model the phase boundaries for the
two lattices are practically identical. " For the NN Is-
ing model q =4.7 (Table I), while in the case of
J(2)/J =—0.5 we deduce q =2.4 from the high-
temperature series. '4 The latter value is close to the
experimentally observed q = 2.0; so J&q&/J -—0.5 is
about the relative strength of the next-nearest-
neighbor interaction needed to explain the discrepan-
cy between the theoretical and experimental curves in
Fig. 4. The above argument puts an error bar on our
results [Eqs. (22) and (23)]: since the second-order
contribution to the shift of To would be of the order
)PJ(21/J2[ =0.05, our final estimate of P/J is
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by measuring the composition and temperature
dependence of the short-range order in Fe„Co~
weil above the ordering temperature. This measure-
ment would be important because it could decide the
correctness of the very recent idea ' that the asym-
metry of the ordering curve of Fe„Co~ „ is caused by
magnetic interactions. If this is the right description,
then one expects that at high temperatures
(T =1250'K) where the magnetic phase transition
takes place, the asymmetry in the composition depen-
dence of the short-range correlations should change
quite rapidly. If, on the other hand, the asymmetry
is caused by three-body potentials, one should expect
smooth variation through the magnetic phase boun-
dary.

If the three-body description turns out to be
correct, the short-range-order measurements will

probably yield an estimate of P/Jwhich is more accu-
rate than Eq. (24). This is because the experimental
results can be compared with the high-temperature-
series estimates of the short-range correlations. At
high temperatures a few terms of the series should be
sufficient for an accurate description, and they can
easily be derived even with the many-particle interac-
tions present. A project along these lines has re-
cently been carried out for Cu„Ni~ „systems. Vrijen
et al. found strong asymmetry in the composition
dependence of the short-range order and their pre-
liminary calculation indicates that any quantitative
comparison with the Ising model must involve at
least the NN, next-nearest-neighbor, and three-
particle interactions.

One can see that the explanation of relatively sim-
ple details of the ordering phenomena requires
distant-neighbor and multisite interactions to be in-
cluded in the Ising model. Their strength is small as
compared to the NN interactions, but nevertheless
they make the calculations tedious, and one might
wonder if instead of the phenomenological parametri-
zation of the problem, the same effort could yield a

microscopic calculation, i.e., a calculation based on
the electronic properties of the alloys.

An interesting work in this direction has been un-
dertaken by Kittler and Falicov. '8 They calculated
the short- and long-range-order dependence of the al-
loy internal energy from a tight-binding Hartree
Hamiltonian by using an extended cluster-Bethe-
lattice method. The configurational entropy was
determined by applying the cluster-variation method
and then the thermodynamic properties were ob-
tained by minimizing the free energy with respect to
the order parameters. In this way Kittler and Falicov
found ordering temperatures of CuAu, Cu3Au, and
CuAu3 alloys that were in reasonable agreement with
experiments. The fact that they did not use adjust-
able parameters shows that their method is powerful.
It has, however, a shortcoming: it is basically a
mean-field theory, so any attempt to apply it to criti-
cal order —disorder transformations would encounter
the difficultly that the critical exponents would not
agree with the experiments.

It would be most interesting, but perhaps extreme-
ly difficult, to combine the above electronic theory
approach with the renormalization-group ideas. Until
this problem can be solved, the Ising model remains
the best description of critical ordering transforma-
tions. A problem that remains for the future is the
development of renormalization-group schemes
which are easily applicable to the three-dimensional
case and give more reliable results than those given
by the present methods.
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