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An analysis is presented of the low-temperature deviations from Matthiessen's rule {DMR) for the
polyvalent and noble metals. For these metals, the Fermi surface intersects the Brillouin-zone boundaries,
leading to an enormous enhancement, at low temperatures, of the electron-phonon scattering probability for
the electrons near the Brillouin-zone intersections. An electron distribution function is introduced which
takes explicit account of these localized regions of extremely strong electron-phonon scattering. This
electron distribution function is shown to provide the basis for understanding (i) the large magnitude of the
low-temperature DMR, {ii) their temperature dependence, (iii) their dependence on residual resistivity, and

(iv) their variation from metal to metal. Moreover, it is found that by including the contribution of the
interference term, one may explain the observed lack of saturation of the DMR for large values of the
residual resistivity. Finally, it is demonstrated that normal electron-phonon scattering constitutes a large
part of the total calculated DMR.

I. INTRODUCTION

Since 1970, a vast body of experimental data"
has established the existence of large deviations
from Matthiessen's rule for the low-temperature
electrical resistivity of the polyvalent and noble
metals. Concurrent with the many experiments,
considerable theoretical effort has been directed
to understanding the observed deviations from
Matthiessen's rule (DMR). Bass' has described
and critically reviewed the various theoretical
approaches to account for the DMR. The present
approach is based on the fact that, at low temper-
atures, the electron-phonon scattering probability
is very anisotropic over the Fermi surface. In
recent years, it has become increasingly recog-
nized' "that such an approach is particularly ap-
propriate for the polyvalent and noble metals be-
cause these metals are characterized by an un-
usually large anisotropy of the electron-phonon
scattering probability.

The key to the physical picture lies in the recog-
nition that for the polyvalent and noble metals at
low temperatures, the electrons occupying a rela-
tively small portion of the Fermi surface are
scattered very much more strongly than the elec-
trons on the rest of the Fermi surface. The small
regions in question are the immediate vicinity of
the various intersections of the Fermi surface and
the Brillouin-zone boundaries. The existence of
such small regions of extremely strong electron-
phonon scattering is by itself sufficient to imply
large DMH.

The explanation for the DMR is conveniently
formulated in terms of the deviation of the elec-
tron distribution function from its thermal equi-
librium value, which may be called the deviation
distribution function. Consider first a pure metal,

for which the dominant scattering process is elec-
tron-phonon scattering. Since electron-phonon
scattering is highly anisotropic over the Fermi
surface, the resulting deviation distribution func-
tion will also be very anisotropic. In fact, for the
strong-scattering regions of the Fermi surface,
the deviation distribution function will vanish be-
cause these electrons are very rapidly scattered
back to their thermal-equilibrium distribution, and
hence do not contribute to the resistivity. This im-
plies that the main contribution to the conductivity
arises from the electrons which are scattered
much more weakly. The result is a relatively high
conductivity, and thus a low resistivity.

Consider now a very impure metal, for which the
dominant scattering process is electron-impurity
scattering. Since electron-impurity scattering is
nearly isotropic over the Fermi surface, the re-
sulting deviation distribution function will also be
relatively isotropic. This immediately implies
that all the electrons must contribute to the re-
sistivity, with the electrons in the strong-scatter-
ing regions of the Fermi surface making an enor-
mous contribution at low temperatures. Thus, at
low temperatures, the strong-scattering regions
of the Fermi surface constitute the dominant con-
tribution to the resistivity for impure metals, but
contribute almost nothing to the resistivity for
pure metals. This is the basic cause for the large
DMR at low temperatures. We shall show that the
development of these ideas provides an explanation
for the magnitude of the DMR, for their variation
from metal to metal, for their temperature depen-
dence, and for their dependence on residual re-
sistivity.

The most useful theoretical tool for analyzing
the phenomena associated with the large DMR is
the variational formulation'o of the Boltzmann

21 2278 1980 The American Physical Society



DEVIATIONS FROM MATTHIESSEN'S RULE FOR DII UTE. . . 2279

equation. Ne use this powerful method to carry
out a detailed analysis of the low-temperature
DMR for the polyvalent and noble metals. The re-
sults are in complete agreement with experi-
ment. '

Although the present analysis is performed with-
out a computer calculation, it is clear that a de-
tailed quantitative comparison between theory and

experiment requires a separate computer calcula-
tion for each metal. In the following paper, ' we
present such a comparison for aluminum and show
that agreement is obtained for the measured low-
temperature DMR. Such quantitative agreement
with experiment complements the qualitative pic-
ture presented here.

In Sec. II, the variational formulation of the
Boltzmann equation is used to derive an expression
for the DMR. Based on this expression for the
DMR, a new deviation distribution function is in-
troduced in Sec. III, which incorporates explicitly
the extremely large anisotropy over the Fermi
surface of the electron-phonon scattering probabil-
ity. This deviation distribution function is shown
to form the basis for the explanation of the very
large DMR that are observed at low temperatures
for the polyvalent and noble metals. In Sec. IV,
the interference term is introduced and an analysis
is presented of the behavior of the DMR for large
values of the residual resistivity for different
temperature ranges. In Sec. V, the principal ex-
perimental features of the DMR are explained qual-
itatively in terms of the electron distribution func-
tion and the interference term. Normal electron-
phonon scattering is discussed in Sec. VI and its
importance is established for quantitative calcula-
tions of the DMR. The summary follows in Sec.
VII.

+P =Ptpt -Pay (2.l)
where p„, is the total resistivity. Matthiessen's
rule states that p„, is the sum of po and p„or
equivalently, that &p is independent of p,. How-

II. MATTHIESSEN'S RULE AND THE UARIATIONAL

FORMULATION

A study of the DMR deals with the electrical re-
sistivity p arising from the simultaneous presence
of electron-impurity scattering and of electron-
phonon scattering. Ne denote by po the residual
resistivity arising from electron-impurity scatter-
ing in the absence of electron-phonon scattering,
and we denote by p, the ideal resistivity arising
from electron-phonon scattering in the absence of
electron-impurity scattering. The experimental
data are traditionally presented in terms of &p,
defined by

(C IP„,I 4) (4 I P,, l 4)+ (C I P, ,l 4)
( )I(c IX}I' l(c Ix}12

where X is the electric field term" and the func-
tion C (K} describes the deviation, caused by the
electric field, of the electron distribution function

f (K) from its equilibrium value f,(K},

f (K) =f,(K) 4 (K)[sf,(K)/sZ(K) l. (2.4)

For much of the discussion, it is not necessary
to know the exa,ct form of the scattering matrix
elements in (2.3}. Nevertheless, to avoid the ap-
pearance of undue abstraction, we write down
their explicit form. The procedure for reducing
the scattering matrix elements of (2.3) to double
surface integrals has been lucidly described by

ever, experiment" shows that for polyvalent
metals at low temperatures, &p exhibits a very
marked dependence on po, implying very large
DMR. For example, for Al at 14 K, ~p in-
creases" by a factor of about 6 as p, increases
from 0.1 to 1000 nAcm. Another phenomenon re-
quiring explanation is that for bulk samples at
fixed temperatures, &p appears" to depend al-
most solely on the value of po, without regard to
the source of p„be it electron scattering by vari-
ous types of impurities or electron scattering by
various types of lattice imperfections.

To describe the scattering of the electrons by
both phonons and impurities, we introduce the total
scattering operator P„„which may be written

(2.2)

where the operator P,„describes the scattering of
the electrons by phonons, and hence depends on
temperature through the phonon occupation num-
bers, the operator I', , describes the scattering of
the electrons by impurities, and hence depends
linearly on the (dilute) concentration of impurities,
and the operator P„, is an "interference" term
which depends both on temperature and on the con-
centration of impurities. For most ranges of tem-
perature and residual resistivity, say, up to about
1 p. A cm, P j t contributes but little to &p and may
be safely ignored. %hen one considers very large
values of residual resistivity, one must include
explicitly the contribution of P„, to &p. However,
for our present discussion, it is sufficient to as-
sume that for a given electron scattering event,
the total probability for scattering is given by the
sum of the individual probabilities for scattering
by phonons and by impurities.

To describe the phenomena associated with the
DMR, we employ the variational formulation, '
according to which p„, is given in terms of ma-
trix elements of the scattering operators
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Ziman, "leading to the following expressions:

(4 ~P „~P)=A [dS (K,)/v(K, )][dS(K )/v(K2)]

+P =Ptot Po= Pl(@)+ Po(+ Po(4 i

Matthiessen's rule states that

&p= p, = p&(e,b}

(2.10)

(2.11)
x [4 (K,) 4 (K,)]'

d q P~~(K„K;T), (2.5)

(e ~X) =B dS(K}v(K}4(K), (2 7)

where A and B are known constants, v(K) is the
velocity of the electron in state K, and the wave
vectors K, and K characterize the initial and final
states, respectively, of the electron being scat-
tered by an impurity or by a phonon of wave vector
q, polarization A., and frequency u&„(q). The double
surface integrals are to be evaluated over the true
anisotropic Fermi surface of the polyvalent or
noble metal. It should be noted that the transition
probability for electron-phonon scattering
P~(K„K„T)contains the contributions both of
normal scattering (K, —K, = q) and of umklapp
scattering (K, —K, =q+G, where G is a reciprocal-
lattice vector). The transition probability for
electron-impurity scattering P, (K„K,) is pro-
portional to the (dilute) concentration of impurities
and is temperature independent, whereas the tran-
sition probability for electron-phonon scattering
P&(K~, K„'T) depends strongly on the temperature
through the phonon occupation numbers.

To facilitate the discussion, it is convenient to
introduce the following notation:

p, (4) = (4 fP „f4}/[(4 )Xj[',

p, (C)=-( CCP (4)/[&4 JX)['.
In this notation, (2.3}becomes

Rot = pi (4') + Po(4'} .

(2 &)

(2.9)

Moreover, we introduce the notation P „(K) and

p, ,(K) for the solutions to the Boltzmann equa-
tion corresponding to the case of only electron-
phonon scattering (P, = 0) and of only elec-
tron-impurity scattering (P „=0), respectively.
In this notation, the ideal resistivity p, equals

p, (C „) and the residual resistivity p, equals

p, (p, ). Note that the variational principle as-
serts that p, (4) &p, and that p, (4) &p» using the in-
correct distribution function always increases the
calculated resistivity. Combining (2.1), (2.8), and

(2.9) leads to

(4 ~P, ~
4) =A

J) [dS (K )/v(K~)][dS(K )/v(K2)]

x [4 (K,) —4 (K,)]'P, ,(K„K,),
(2.6)

The condition for the validity of Matthiessen's rule
is readily seen to be that p ~(K}o- p, ,(K). If these
two functions are proportional to each other, then
the solution 4 (K) of the Boltzmann equation must
satisfy 4 (K) ~ 4,„(K)o- C, ,(K), and it immediately
follows that the general result (2.10) reduces to
(2.11). In general, however, P,„(K) is not propor-
tional to P, ,(K) and then DMR are present.

We now evaluate (2.10) for the two limiting
cases. For very large po, we shall soon see that
4 (K)- P, ,(K}, implying that the last two terms of
(2.10) cancel. For very small p„both terms are
negligible compared with p, (4). Since the last two
terms of (2.10) cancel for large p, and are negligi-
ble for small p„ it is adequate for the purpose of
our discussion to ignore these two terms for all
po. This leads to the key result

&p = p;(4) (2.12)

In the presence of both electron-phonon scatter-
ing and electron-impurity scattering, the function-
al form of the exact 4 (K) depends on the relative
probabilities for electron-phonon scattering and

for electron-impurity scattering. For a given
probability of electron-phonon scattering& i.e.,
for a given temperature, the function 4 (K) depends
on the probability of electron-impurity scattering,
i.e. , on c, the concentration of impurities and/or
lattice imperfections. Therefore, it follows that
at a fixed temperature, the function 4 (K) changes
as c changes. However, since p, is proportional
to c, a dependence on c is equivalent to a depen-
dence on po. Thus, the form of the function 4 (K)
depends on the value of po. According to (2.12),
this dependence of 4 (K) on p, leads to a dependence
of 4p on po. Indeed, the large observed DMR,
i.e., the marked dependence of &p on po at low

temperatures, can be accounted for almost com-
pletely in terms of the dependence of 4 (K) on po.
This idea will be developed in detail in the next
section.

III. DEVIATIONS FROM MATTHIESSEN'S RULE

Although the exact functional form of 4 (K) is un-
known for arbitrary values of p„one can never-
theless arrive at important conclusions from gen-
eral considerations. Consider a series of sam-
ples, all at a fixed temperature but with each sam-
ple having a different concentration of impurities,
i.e., a different value of po. As one takes samples
with progressively larger values of p„electron-
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impurity scattering increases until it completely
dominates electron-phonon scattering. When this
limit is reached, 4(K) is determined solely by
electron-impurity scattering. In other words, in
the limit of large po, 4(K) approaches the exact
solution to the Boltzmann equation in the presence
of electron-impurity scattering only. Thus, we
have that 4(K)- P, ,(K) for very large p,. One
may call this the "dirty limit. " We now make the
analogous argument for samples in the "pure limit, "
defined as the limit of vanishingly small values of

p,. Thus, we have that for sufficiently small p„
4(K) approaches 4,„(K}, the exact solution to the
Boltzmann equation in the presence of electron-
phonon scattering only. Combining these results,
one obtains that for fixed temperature, as p, in-
creases from the pure limit (vanishingly small pg
to the dirty limit (very large pg, 4 (K) varies
from p~„(K}to @; (K). This shows how the functional
«»m of 4(K) depends onthe value of p,. Note that
once a sample is within the pure limit or within the
dirty limit, the functional form of 4(K) no longer
varies with po, but rather remains P,h(K) or
@, ,(K), respectively.

To relate these results to the DMR, i.e., to the
calculation of &p as a function of p„one refers to
Eq. (2.12), which gives the expression for Ap. In
the dirty limit, one has 4(K)=g, ,(K), implying
that (&p)~,„,„=p, (p&m~}. Similarly, in the pure
limit, one has 4 (K) = p &(K), implying that (Lp)
= p, (Q,h}. Thus, as po increases from very small
values to very large values, 4p increases mono-
tonically from p, (p&) to p, (Q, ). The fact that &p
increases as a function of p, follows directly from
applying the variational principle to (2.12). The
variational principle states" that p, (4) &p, (P,h) for
any 4(K}, including g, ,(K). Thus (4p)«„, must
be larger than (ap)

It is useful to illustrate these ideas by means of
a graph. In Fig. 1, we plot schematically &p as a
function of po on a logarithmic scale for fixed tem-
perature, based on (2.12). If Matthiessen's rule
were valid, then 4p would be independent of p„
as indicated in the figure by the horizontal dashed
line labeled "Matthiessen's rule. " However, since
Matthiessen's rule is not valid, &p increases as
the value of po increases. The values for &p in
the pure limit and in the dirty limit are indicated
in the figure. Note that in the dirty limit, 4p ex-
hibits Matthiessen-rule-like behavior in that &p
is independent of p,. We shall defer discussion of
the importance of this last result until Sec. IV.

The above analysis establishes that the general
behavior of 4p is as given in Fig. 1. However, an
important aspect of any discussion of the DMR
concerns their magnitude. The magnitude of the
DMR may be characterized quantitatively by the

T =constant

pi (&imp}

irty limit

P,. ($ h}
pure limit

lag (p }

FIG. 1. Schematic plot of b, p as a function of log{pp)
for constant temperature. The dashed horizontal line
depicts the constant value of 6 p that would be obtained
if Matthiessen's rule were valid. The solid curve de-
picts the increase in b p from the small-po (pure) limit
to the large- po (dirty) limit. The theoretical expression
for b, p is given for each limit.

expression

(2.2)

R(DMR) ~i't~ 1 ' ~ imI' 1 (3 1)
(&p), . p, (y~)

where the last equality is based on (2.12). The
unity has been subtracted to insure that R(DMR}
vanishes when there are no DMR. The calculation
of R(DMR) thus reduces to comparing the relative
magnitudes of p, (P, ,) and p, (Pg. A large value
of R(DMR) results if p, (P, ) is much larger than

p, (P&). To investigate R(DMR) for the polyvalent
and noble metals at low temperatures, one exaza-
ines p, (P, ). For concreteness, one may write
the approximate expression

y, ,(K) ~ v(K) E,
where v(K) is the velocity of the electron in state
K and E is the applied electric field. The impor-
tant point is that p, ,(K) is almost isotropic over
the Fermi surface, except of course for the depen-
dence on the electric field direction. Therefore,
in the dirty limit, one obtains at once from the
near isotropy of p, ,(K} that all electrons contri-
bute to p, (P, J.

The importance of this result lies in the fact
that, at low temperatures, almost the entire con-
tribution to p, (P, ) arises from the vicinity of the
intersections of the Fermi surface and the Brillou-
in-zone boundaries. In Fig. 2, we depict a totally
schematic plot of the Fermi surface of a polyvalent
metal containing its principal feature, namely,
that the Fermi surface (solid curves) intersects
the Brillouin-zone boundaries (dashed lines)
which are a distance 6 apart, where G is the mag-
nitude of the relevant reciprocal-lattice vector.
The shaded portions correspond to the vicinity of
the intersections of the Fermi surface and the
Brillouin-zone boundaries; these portions of the
Fermi surface shall be denoted collectively as the
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ion

G

on K

FIG. 2. Schematic plot of a cross section of the Fermi
surface of a polyvalent metal, showing the intersections
between the Fermi surface (solid curves) and the Bril-
louin-zone boundaries (dashed lines), which are sepa-
rated by a reciprocal-lattice vector G. The hatched re-
gions K* denote those portions of the Fermi surface
near the Brillouin-zone boundaries.

region K~. The region K* has the crucial property
that when both initial electron state K, and final
electron state K, lie in region K*, then the elec-
tron-phonon scattering probability is enormously
enhanced, by orders of magnitude at low tempera-
tures, over its value when K, and K, lie elsewhere
on the Fermi surface. This enhancement occurs
both for umklapp scattering (K, —K, =q+G) and for
normal scattering (K, —K, = q).

For umklapp scattering, geometrical considera-
tions show that only for both K, and K, in region
K* can the value of ~q~ be very small. The phonon
occupation numbers in the integrand of p,.(P,.
lead to exponentials of the form exp[-@to„(q)/ksT].
At low temperatures, unless

~ q~ is very small,
such exponentials are totally negligible. There-
fore, only for both K, and K, in the region K~ will
there be a non-negligible contribution to the um-
klapp-scattering term p,. (P, ,).

For the normal-scattering term p",. (p, ,), the
above discussion does not apply, because every-
where on the Fermi surface, normal-scattering
processes are possible with arbitrarily small ~q~.
Nevertheless, p",. (g, ,) is also enormously en-
hanced when both K, and K lie in region K~. The
two sources of enhancement will be summarized
here and discussed in detail in Sec. VI. Both
sources of enhancement of p", (P,. P stem from
the fact that for K in region K*, the electron
pseudo-wave-function must be represented by a
linear combination of at least two plane waves, "
whereas for K elsewhere on the Fermi surface, a
single-plane-wave pseudo-wave-function is suffi-
cient. The first large enhancement (two orders of

P,„(K)=0 for K in region K*,

P»(K) =Q, ,(K) for K not in region K*.
(3.3)

Of course, expression (3.3) for p „(K) is not the
only possible choice. Indeed, it is not difficult to
construct other forms'" for P „(K) which do not
have the aesthetic defect of being a discontinuous
function of K. The only important requirement of
a suitable P &(K) for the pure limit is that the func-
tion be negligible in the strong-scattering region
K* and be almost unchanged from &f&, ,(K) else-
where on the Fermi surface.

If one inserts the P,„(K) given by (3.3) into
p, (P,h), it is clear that the resulting value of ap
will be very much reduced from p, (P, ). The
region E~, which made the dominant contribution
to p,.(P, ,), does not contribute at all in the pure
limit. Since the magnitude of R(DMR) is basically
the ratio p,.(P, )/p, .(P,,), according to (3.1), and
since p,.(P&) is very much smaller than p, (P, ),
one obtains large DMR. This is the basic reason
for the existence of large DMR for the polyvalent
and noble metals at low temperatures.

The choice (3.3) for Q»(K) was justified above
on physical grounds. However, it is instructive
also to justify (3.3) on mathematical grounds by
appealing to the variational theorem. The varia-
tional theorem asserts" that the exact P&(K) is

magnitude for Al) of pf(Q, ,}arises from the factor
[P, ,(K,) —P, ,(K,)]2 in the integrand of Eq. (2.5}.
The second large enhancement (one order of mag-
nitude for Al) of p", (p, ) arises from scattering by
transverse phonons. Only for K, and K, in region
K*, where a two-plane-wave pseudo-wave-function
is required, do the transverse phonons scatter
electrons in normal processes. Since &ur(q) is
much smaller than &u~(q) for small ~q~, there is
a large enhancement of p",. (P, ).

In summary, for both p, (P, ) and p", (P, ), the
dominant contribution to the resistivity integrals
occurs for both K, and K lying in the region K* of
strong electron-phonon scattering.

Thus far, we have been discussing the dirty
limit, for which 4 (K) —P, ,(K}. I et us now turn
to the pure limit, for which electron-impurity
scattering is very small and it is electron-phonon
scattering that determines the electron distribution
function. Since the probability for electron-phonon
scattering (both normal and umklapp) is enormous-
ly enhanced by orders of magnitude for K, and K
in region K*, the electrons in this region are rap-
idly scattered back to their thermal-equilibrium
distribution via electron-phonon scattering. In
other words, P,h(K) must vanish for K in region
K*. These considerations show that Q,„(K) must
closely resemble the following form:
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that function 4 (K) that minimizes p, (C) =(4' ~P»~ 4)/
[(4~X)( of Eqs. (2.5) and (2.7). Thus, one may
construct a good approximation to P»(K) sole/y on
its ability to reduce p, (C). A function 4(K) that
drastically reduces p, (C) is automatically a good
candidate for P»(K). It has already been empha-
sized that at low temperatures, almost the entire
contribution to the integral of Eq. (2.5) arises
from the region E~. This implies that eliminating
the small region K* from the integral will drastic-
ally reduce p, (4). The functional form given by
(3.3) has precisely this desired property of vanish-
ing in the region K*& and thus must be a good ap-
proximation to P»(K) according to the requirement
of the variational theorem.

It is satisfying that the same functional form for
p»(K), given by (3.3), is dictated both by physical
requirements [vanishingly small P»(K) in the
region of extremely strong electron-phonon scat-
tering] and by mathematical requirements [P»(K)
minimizes p, (4)]. In Sec. V, it will be shown that
this approximate function for p»(K) can be used to
explain a number of experimental findings asso-
ciated with the DMR

IV. LARGE-pp BEHAVIOR OF Dp

The theoretical picture presented thus far leads
to saturation for 4p, i.e., for large values of p„
&p is predicted to approach its dirty-limit value

p, (p, ,} and become independent of p, . The data
are not in accord with this prediction. Although
the results vary somewhat for different metals,
the extensive data' for Al at 20 K are typical.
Whereas our calculation'" predicts the onset of
saturation for 4p at pa=1000 nA cm, the large-p,
data ' ' ' show that &p continues to increase
with increasing po up to 11 p, O cm, the highest
measured value.

This discrepancy with experiment results from
the neglect thus far of the interference term I',.„.
Denote by 4p„, the contribution to 4p arising
from P„,. As long as one considers values of po
below about 1 p.Acm; it is justified to neglect
4p„,. However, for po in the p.Acm-range, the
contribution of bp„, to &p is no longer negligible
and must be included.

There is another important reason for the need
to include 4p„, at large p,. For temperatures be-
low O~/20, the dirty limit occurs for po& 1 p& cm.
Therefore, for low temperatures, if one neglects
4p„„ the values for ~p saturate at large p, and
Llp no longer increases with increasing po. As a
result, &p„, is the only contribution to the in.-
crease in &p when po is in the p, O cm-range.
Hence, it is not possible to explain the large-p,
data for ~p without taking 4p„, into account.

The quantitative theory of &p„, for polyvalent
and noble metals, based on the pioneering work
of Eagan and Zhernov, "will be presented in the
following paper. " However, we briefly summarize
here the results for the po dependence and the mag-
nitude of 4p„,. For the alloys under considera-
tion, 4p„, is proportional to the concentration of
impurities. As pointed out earlier, this is equiva-
lent to ~„,being proportional to po, since po is
proportional to the concentration of impurities.
The magnitude of 4p„, varies with the type of im-
purity, but is of the order of 10-50 fp of Ap at po
=10 pOcm.

To see how the inclusion of &p„, alters Fig. 1,
it is necessary first to discuss the dirty limit in
some more detail. Denote by (p,)«,„the value of

po which marks the onset of the dirty limit. The
value of (pg«„„ is a strong function of tempera-
ture, because the dirty limit refers to values of

po much larger than p, (p~ ), and p, (p ~) in

turn is a strong function of temperature. For con-
creteness, consider the case of Al. One obtains
by direct calculation 2' that (pg«„„=10 nQcm
for T= 20 K=en/20.

We now include the contribution due to &pf
Since 4p„, ceases to be negligible at about p,
=1 p, Q cm, one has that 4pj t begins to contribute
precisely at the onset of the saturation region of
Fig. 1. Thus, for Al at &=Bc/20, the effect of

4p„, is to eliminate entirely the saturation region,
with 4p continuing to increase as a function of po.
These results are plotted schematically in Fig. 3.
For po~ 10 lcm, the curve for 4p is unchanged
from Fig. 1. In discussing the additional contribu-
tion of hp„, in the large-po region, recall that the
abscissa is traditionally taken as Iog(pg, rather
than p„ to indicate the slow increase of &p with

po. Since &p„,cc po, the additional term &p„, in-
creases rapidly on a Iog(p, } scale, reaching a
magnitude of about 20-40% of &p at pa=10 pA cm.
It should be emphasized that the magnitude of
4p„, depends strongly on the type of impurity,
varying by as much as a factor of 2. This is indi-
cated by the hatched area in Fig. 3.

To see how Fig. 3 compares with experiment, it
is instructive to replace the theoretical curve for
4p beyond the pure limit (p, &1 nQ cm) with simu-
lated "experimental" data points. The simulated
experimental data points are obtained by adding to
the theoretical values for ~p- p, a random scatter
corresponding to a maximum deviation of +20%.
Such a scatter is a quite reasonable description of
the expected dependence of &p on the type of im-
purity. That is, for a given value of po, the value
of 4p —p, will vary by up to +20% for different
samples having different types of impurities pres-
ent. These simulated points are plotted in Fig. 4.
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FIG. 3. Semilog plot of 4 p for Al as a function of po
for T =Os/20, including the contribution of the interfer-
ence term 4rof~t. The onset of the dirty limit is denoted
by (po)df&„, which for this temperature occurs just about
where 6p«begins to contribute to 4 p. The values for
4 pffft are uncertain to about a factor of 2 because of the
dependence of 4 pf& on the type of impurity present.
This is indicated by the hatched area. The dashed line
denotes the values of 4 p without taking A~,&

into ac-
count.

If one wishes to fit the experimental data points
of Fig. 4 to an empirical curve, it is quite natural
to try a straight line. Indeed, the points fit the
straight line quite nicely, as shown by the dashed
curve in Fig. 4. The fit is, in fact, so good that
it is not hard to understand why such straight-line
fits to the 4p-vs-log(pg data have become a com-
mon procedure. However, the above analysis
shows that the experimental data are really de-
rived from the curve in Fig. 3, and are unrelated
to a straight line. Moreover, the curve in Fig. 3
has a sound theoretical foundation, whereas the
various attempts to justify theoretically a straight-
line fit to the data have all been refuted. """

The above discussion dealt with temperatures
for which (pg«„„=1 p, Qcm (T=6s/20 for Al). In
discussing other temperatures, it is natural to
focus attention on the experimentally accessible
range 10 & po&10 nAcm. It has not proved pos-
sible to prepare samples having values of p, signif-
icantly outside this range. For higher tempera-
tures, (pJ«„, increases rapidly until it reaches
values larger than 10' nQcm. Thus, for higher
temperatures, the dirty limit is not experimental-
ly accessible. Hence, even the p~cm range of
po, where &p„, is no longer negligible, lies within
the transition region of pp between the pure limit
and the dirty limit. However, within the transition
region, the increase of &p aside from &p„, is
much larger than the contribution due to ~p„,.
Therefore, including &p„, at higher temperatures
does not qualitatively change Fig. 1, even for pp in
the pQ cm range. The dirty limit is simply never
reached experimentally and 4p always increases
even without the contribution of &pf

Of greater interest is the low-temperature re-

FIG. 4. Semilog plot of hp for Al as a function of po
for T = eo/20. The points are simulated "experimental"
points, which are related to the theoretical curve as de-
scribed in the text. The dashed line is a smooth em-
pirical fit to the points, showing apparent straight-line
behavior.

gime. For low temperatures, the dirty limit is
already reached for quite low values of p, and it
is the pure limit that is never reached experi-
mentally. For example, for Al at 4 K, one finds
by direct calculation'" that (pg«„, =1 nQ cm.
Recall that 4p„, is negligible below p, =10' nA cm.
Therefore, at 4 K for Al, Fig. 1 is unchanged by
the presence of (4p)„„ inasmuch as p, =10' nQ cm
is off the scale of the figure. As a result, for pp
in the range 1-1000 nA cm, one would expect to
find saturation for &p, that is, no increase in &p
with increasing pp. This is indeed what the 4-K
data' for Al show. For po&1 nAcm, the data for
4p are constant to within experimental error over
two decades of pp, up to the largest measured
values of pp. This result is in complete accord
with Fig. 1. Experimental evidence for saturation
for Ga, with (pg«„, =20 nQ cm, has recently been
reported2 for single-crystal samples of Ga at
T = 4.2 K. These results for Ga are also in accord
with Fig. 1.

VVe close this section by pointing out that not
every metal fits the picture presented here as
nicely as do Al and Ga. Barber and Caplin" have
emphasized that their data for 4p for Ag at 4.2 K
do not exhibit saturation even for the range of pp
where the above considerations would suggest that
saturation should occur. It therefore follows that
for Ag, there are additional contributions to the
DMR than those considered here. The theory of
the low-temperature DMR for Ag will be the sub-
ject of a separate publication. "

V. DISCUSSION OF EXPERIMENTAI. FINDINGS

A. Variation of DMR from metal to metal

The magnitude of the DMR are observed to vary
significantly for different classes of metals for a
given reduced temperature T/6s, where 6o is the
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TABLE I. Values for R(DMR) and "reduced" R(DMR)
for different metals at the temperature T =8&/2Q.

Metal

R(DMB)

"reduced"
R(DMa)

Al

-5-6
5-6

Cu

4

3 4

~Q 3

~Q

Li

Debye temperature of the metal in question. Con-
sider the following four examples: typical polyva-
lent metal (Al), typical noble metal (Cu), K, and

Li. In Table I, we list the experimental values"
for R(DMR) for these four metals at the reduced
temperature T= 8~/ 20. For those metals for
which &p has not saturated in the large-p, region,
because of the presence of &p„„we take p,
=10 nQ cm to be a rough estimate for the onset of
the dirty limit.

The large value of about 5-6 for R(DMR) for Al

may be viewed as the standard for comparison.
The comparable value of about 3-4 for Cu is ex-
pected because the same arguments that apply to
Al apply also to Cu. For both metals, the Fermi
surface intersects the Brillouin-zone boundaries,
and that is sufficient for the applicability of the
arguments that predict large DMR.

Now consider K. There is no intersection be-
tween the spherical Fermi surface and the Bril-
louin-zone boundaries, and hence no region of
strong electron-phonon scattering. Of course,
the electron-phonon scattering probability is still
anisotropic. However, the absence of a well-local-
ized, strong-scattering region of the Fermi sur-
face implies that R(DMR) must be relatively small,
in accord with experiment.

In fact, the contrast between K on the one hand

and the polyvalent and noble metals on the other
hand is even greater than that shown by the values
of 8 (DMR) given in Table I, for the following rea-
son. There exists a small contribution to R(DMR)
that arises from the energy dependence" "of

p&(K), an effect not considered in the present pap-
er because of its small magnitude. The energy de-
pendence of Q~(K) contributes" about 0.2 to
R(DMR} for K and a comparable value" for Al and

Cu. Therefore, it is instructive to compare for
various metals the values of a "reduced" B(DMR},
by which one means the value for R(DMR) that
arises solely from the angular dependent of P,„(K),
without the contribution due to the energy depen-
dence of P,„(K}. To obtain the values for the re-
duced R(DMR) of Al, Cu, and K, one simply sub-
tracts -0.2 from the values given in the first line
of Table I. It is clear that this subtraction has a
negligible effect for Al and Cu, whereas for K, the
reduced R(DMR) has the extremely small value of

-0.1. The dramatic contrast between the values of
the reduced R(DMR) at T = On/20 for K (-0.1) and

for the polyvalent and noble metals (-3-6) finds a
natural explanation in terms of the absence (for K)
or the presence (for Al and Cu) of a well-localized
region on the Fermi surface of extremely strong
electron-phonon scattering.

Now consider the intermediate case of Li. The
value"" for B(DMR) is several times larger than
for K but several times smaller than for the poly-
valent and noble metals. As with the ease of K,
the Fermi surface of Li is very nearly spherical,
with no special region E*, and hence one might
expect very small DMR. However, Li has a rela-
tively large value" for w(2k' ), where M (k) is the
electron-ion pseudopotential matrix element. This
leads to a very large contribution to p&(P, J for
the vicinity of the [110]direction. This direction
thus plays a role analogous to the strong-scatter-
ing region K*. Although the effect is of course
weaker than for the polyvalent and noble metals,
direct calculation"" for Li shows that the effect
is sufficiently strong to lead to 8 (DMR) = 1 for Li.
By contrast, K has a much smaller value" of
w(2kr). It is this difference between Li and K that
causes the DMR to be significantly larger for Li
than for K.

B. Approximate log(po) dependence of 5p

For a given temperature, the data" for 4p ap-
pear to exhibit a Iog(pg dependence over a large
range of po. More precisely, 4p increases very
slowly with increasing p„such that a log(p, }depen-
dence fits the data well. This result follows from
the fact that 4p varies with p, because of the de-
pendence of 4(K) on p, . Moreover, the variation
of 4(K) with p, is very slow. For 4(K) to vary
from the small-p, limiting expression of+,h(K) to
the large-po limiting expression of p, ,(K}, the
value of po must increase from po«p&(P „) to po
» p, (p, ,). Taking much smaller or larger to
imply an order of magnitude smaller or larger
gives two orders of magnitude, and recalling that

p, (P, ) is several times larger than p, (P„}gives
nearly an additional order of magnitude.

Thus one has that ~p is independent of po for
very small po and requires about a three-order-
of-magnitude increase in po to go from the small-
po limit to the large-po limit. Such behavior for
dp implies a very slow increase with increasing
p„closely resembling a log(pg dependence over
a wide range of po, as is observed. Moreover,
for p, in the p.Acm-range, the values for &p con-
tinue to increase, even in the dirty limit, because
of the contribution of ~p„„as explained in Sec.
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IV. As a result, ~p increases as approximately
log(pg over about five decades of p, .

further experiments on dilute alloys of Ag contain-
ing different types of impurities should prove to be
very instructive.

C. Universal curve for hp vs po, independent of type of impurity

For a given temperature and given po, the mea-
sured dependence of &p on the type of impurity
present is generally quite weak, "hardly beyond
the experimental scatter of the data. Therefore,
to good approximation, the data for &p as a func-
tion of p, can be plotted on a universal curve, in-
dependent of the type of impurity that gives rise to

p,. This can be understood by recalling that bg
= p, (C) and that p, (C) depends on po because 4 (K)
varies with p,. However, once the sample corre-
sponds to either the pure limit or the dirty limit,
4(K) equals either P,„(K) or P, ,(K), respectively,
and no longer depends on electron-impurity scat-
tering. Since bp is completely independent of the
type of impurity both in the pure limit (&p «pg
and in the dirty limit (4p» pg, it is not surprising
to find only a weak dependence for 4p on the type
of impurity in the intermediate region (4p =pJ.
Direct calculation" shows that the dependence of
bp on the type of impurity does not generally ex-
ceed +20%.

This estimate of +20k applies also to the p.Acm
range of p, where 4p„, is important. The varia-
tion of 4p„, with type of impurity is much larger
than for the other contribution to &p, being about
50-100% for polyvalent metals. " However, since
4p„, itself is only about 20-4070 of the total &p, a
50-100% variation in &p„, with type of impurity
corresponds to only about a 20% variation in the
total 4p. Therefore, for all ranges of po, the
values for &p should fit reasonably well (+20%) on
a universal curve of po, in accord with the data.

Although the existence of universal curves for
&p vs po is well established experimentally, '
there are certain exceptions that should be men-
tioned. The data' for thin-film samples, for which

po is caused primarily by boundary scattering, do
not fit on the universal curve for 4p. This is hard-
ly surprising because the considerations which lead
to the prediction of a universal curve for 4p vs po
implicitly deal with bulk properties of the metal.
Size effects are not considered here. However,
even for bulk samples, there are exceptional met-
als. Barber and Caplin" found that for dilute
alloys of Ag, significantly different values were
obtained for ~p for the same value of p, for sam-
ples containing different types of impurities. In
particular, for a given value of po, Pd impurity in
Ag yielded a much smaller value of &p than did Pt
or Au impurity in Ag. This feature of the DMR
exhibited by Ag is quite atypical and suggests that

D. Temperature dependence of the DMR

The measured' temperature dependence of 4p
for Al for fixed p, is close to T'. Apparently
spurred on by this simple temperature dependence
for Al, some of the earlier theories' of the DMR
predicted that a T' dependence for 4p was a gen-
eral result for all metals. However, the more
recent data show that each alloy system exhibits
its own characteristic temperature dependence
for 4p. The dependence may be integral powers
other than 3 [e.g. , Ag (Ref. 30), In (Ref. 39)],
fractional powers (e.g. , Mg, Cd),"or a tempera
ture dependence that is not a power law at all.
(e.g., Cu)."

Direct calculation'" for Al does lead to a near-
ly-T' temperature dependence for 4p over a wide
range of temperature and of p„ in accord with
experiment. However, this result for Al is by no
means general. For each metal, one must evalu-
ate the integrsls Eqs. (2.5)-(2.7) to obtain the
numerical values for 4p. To a good approxima-
tion, the temperature dependence of both the nor-
mal-scattering term p„(T) and the umklapp-scat-
tering term p„(T) follow power laws. '" The ab-
sence of exponential temperature dependence for
pu (T) at low temperature for polyvalent and noble
metals, in contrast to the alkali metals, results
of course from the intersections of the Fermi sur-
face and the Brillouin-zone boundaries. These
intersections imply that all phonons may partici-
pate in umklapp scattering, even those having
q- 0, which leads directly to power-law behavior. '
However, the power-law behavior deduced for
pu(T) and p„(T) does not imply that the tempera-
ture dependence of &p will also exhibit power-
law behavior, for two reasons.

First, power-law behavior is found for p„(T) and

p„(T) only if one assumes that the entire tempera-
ture dependence of the resistivity integral (2.5)
arises from the temperature dependence of the
transition probability for electron-phonon scatter-
ing P,„"(K„K„T),which contains the temperature-
dependent phonon occupation numbers. This as-
sumption is indeed appropriate to describe the
dirty limit, for which 4(K) is independent of tem-
perature. However, for that range of temperature
that spans the transition region, one has that 4 (K)
varies from the dirty-limit value P, ,(K) (low-
temperature limit, for which 4p «pJ to the pure-
limit value P „(K) (high-temperature limit, for
which Ap»pg. Thus& for temperatures in the
transition region, 4(K) also depends on tempera-
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+= ptot —p» —pa= +p —p» ~ (5.l)

Thus, & gives a measure of the DMR and vanishes
when the DMR vanish. A graph of 4 as a function
of temperature for given p, invariably exhibits a,

maximum, called a "hump, " at a specific temper-
ature T . Moreover, T varies with p, . This
phenomenon has been studied very extensively far
Al, with detailed data~ available for many differ-
ent types of impurity.

ture, and in a complex manner. As a result, the
temperature dependence of the resistivity integral,
(2.5), and of np, need not follow a simple power
law. There is also a second reason for expecting
a non-power-law temperature dependence for &p.
The power laws obeyed by p„(T) and p„(T) are not
the same. Since the relative contribution of ps(T)
and p (T) to bp varies with temperature and with

po, one can readily understand the non-power-law
temperature behavior for the resultant &p.

In summary, the theory predicts that there is no

simple temperature dependence for &p that ap-
pears as a general feature of all metals. There-
fore the theory is completely consistent with the
data in that the temperature dependence of &p
varies from metal to metal, in some cases being
quite simple whereas for other cases being quite
complex.

For all metals, the measured DMR decrease
rapidly with increasing temperature. Already at
50 K, the value of R(DMH) for Al is much smaller
than unity, reminiscent of K. This general experi-
mental result is readily explained in terms of the
electron-phonon tr ansition probability. The
dramatic effect of large R(DMR} at low tempera-
tures occurs primarily because of the phonon
occupation numbers, which contain exponentials
of the form exp[-K&@„gq/ksT]. At low tempera-
tures, unless ~qj is very small, such exponentials
are negligible. However, at higher temperatures,
even relatively large values of ~q~ yield a small
argument S~„(q)/ksT, and hence, a sizable prob-
ability for electron-phonon scattering. Since large
values of ~q~ are important, it follows that almost
all portions of the Fermi surface contribute sig-
nificantly to the resistivity integral (2.5). There-
fore, at higher temperatures, the region K~ of
strong electron-phonon scattering is no longer
well localized to a small portion of the Fermi
surface. As a result, the entire effect is weakened
and R(DMH) is much reduced. In other words, at
higher temperatures, Al behaves not much differ-
ently from K.

The measured DMR are commonly plotted"" in
terms of the quantity 4, which is defined as fol-
lows:

The existence of a hump in 4 as a function of
temperature can be related directly to the varia-
tion of 4(K) with temperature for fixed p,. Since
&p decreases rapidly with decreasing temperature,
for any given p„a low enough temperature corre-
sponds to the dirty limit &p «p, . Similarly, for
given po sufficiently high temperatures corre-
spond to the pure limit 4p» po. Thus, as the tem-
perature increases for a given value of po, the
sample passes from the dirty limit to thepure
limit. It is precisely this passage of C (K) through
the transition region from its dirty-limit value to
its pure-limit value as the temperature increases
that leads to the hump in &. Indeed, direct calcu-
lation ' of 4 as a function of temperature agrees
quantitatively with the data for Al.

Finally, it should be emphasized that the theory
presented here is not limited to low temperatures
and the associated large DMR. For higher tem-
peratures as well, for which the DMR are very
small, the integrals can be evaluated and the re-
sistivity calculated. In this high-temperature re-
gime, direct calculation of &p for Al leads to
values in agreement with experiment. It is quite
satisfying to find that the same theoretical frame-
work and numerical calculations account both for
the large DMR at low temperatures, as well as
the temperature dependence of the resistivity at
high temperatures.

Vl. ROLE OF NORMAL SCATTERING

'The analysis of the normal-scattering term
p„(T) merits special consideration for the case of
the polyvalent and noble metals. It is not general-
ly appreciated how important is the role played by
p„(T) for these metals. There are striking dif-
ferences between p„(T) for the alkali metals on
the one hand and for the polyvalent and noble me-
tals on the other hand. In particular, the follow-
ing assumptions regarding p„(T) are appropriate
only to the alkali metals: (i) that the Bloch ap-
proximation p»„„(T) is reasonable for p„(T) at
low temperatures, at least to within a factor of 2
or 3, and (ii) that p„(T) makes only a negligible
contribution to the DMR.

The facts are quite otherwise for the polyvalent
and nobl. e metals. Regarding the first assumption,
we shall presently see that the calculated values
for p„(T) at low temperatures are orders of mag
nitgde larger than p»„„(T}.Moreover, whereas

p».,„(T) is negligible compared with po(T) at all
temperatures, the calculated values for p„(T) are
comparable with pgT) at low temperatures in the
dirty limit and are much larger than p„(T}in the
pure limit. """It follows from these results that
no calculation of 4p for the polyvalent and noble
metals can be reliable unless the contribution of
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p„(T) is properly taken into account. Regarding
the second assumption, p„(T) in fact makes a very
important contribution to the calculated DMR,
given quantitatively by the ratio R(DMR) of Eq.
(3.1). Indeed, if one were to ignore pu(T) altoge-
ther and only take p„(T} into account, one would
still obtain a large value for R(DMR) at low tem-
peratures for the polyvalent and noble metals.

To understand the reason for these results, con-
sider the integrand of the resistivity integral (2.5).
In particular, consider the factor [C (K,) —4(K,)]'.
It has been shown4' that the expression v(K) ~ E is
a good approximation for p, (K), certainly suffi-
cient for our purposes. Thus, in the dirty limit,
one may use this expression for C (K) and exploit
the cubic symmetry of the metal to average over
the electric field direction E. This yields

[4 (K,) —e(K,)]'=-.'[v(K, ) —v(K, )]2. (6.1)

When considering regions of the Fermi surface
not in M, i.e., not near the intersections of the
Fermi surface and the Brillouin-zone boundaries,
then it is sufficient to take the single-plane-wave
expression for v(K), Inserting v(K) = RK/m into
(6.1) yields immediately, for normal scattering
(K, —K, =q),

[4'(K,) —4(K )], =(R /3m )q . (6.2)

On the other hand, when one considers K in the
region K*, a single plane wave is no longer an
adequate representation for the pseudo-wave-func-
tion and one must use the appropriate linear com-
bination of two plane waves. " Rather than writing
down the general two-plane-wave expression for
v(K) for arbitrary K, we at once turn to the scat-
tering events of greatest physical interest at low

temperatures, namely, those for which both Ky

and K, lie in the region E* and ~q~ is small. For
this case, one obtains"

[@(K,) —@(K,)]2, = (g'/3m')[ff'G'/4m ~ÃI(G) ~]'q',

(6.3)

where G is the magnitude of the reciprocal-lattice
vector that enters the two-plane-wave pseudo-
wave-function and ta(G) is the corresponding ma-
trix element of the screened electron-ion pseudo-
potential. Equations (6.2) and (6.3) differ by the
factor [}I'G'/4m ~zv(G) )]'. For Al, for the reci-
procal-lattice vector Gyp' this factor is of order
10'. In other words the two-plane-wave expres-
sion for [4(K,) —4(K,)]', which is relevant to the
region K*, is 3 orders of magnitude larger than
the one-plane-wave expression, which is relevant
to the remainder of the Fermi surface. The effect
on the integral of using the two-plane-wave inte-

(G'q)'[(G' 5,)'+(G' (, ,)'], (6.4)

where T1 and T2 denote the fast and slow trans-
verse phonons, respectively, and G is the recipro-
cal-lattice vector that enters the two-plane-wave
pseudo-wave-function. The expression (6.4) clear-
ly does not vanish except for special directions of
q relative to G. Therefore, the transverse pho-
nons do scatter electrons in the region K~.

The importance of this result lies in the fact

grand is of course reduced because the region K*
constitutes only a small portion of the total Fermi
surface over which the resistivity integral, (2.5),
is to be performed. Nevertheless, employing the
correct dirty-limit expression for [4(K,) —4 (K2)]'
increases the normal contribution to the resistiv-
ity integral by 2 orders of magnitude for Al. By
contrast, the Bloch result p»„&(T) is equivalent to
using a single-plane-wave expression for v(K) for
all K, even for K in the region K*. Therefore the
error introduced by using the Bloch approximation
to p„(T) is clear

It should be admitted that Al is somewhat of an
extreme case in that w(G», )=0.01V9 Ry is unusu-
ally small. '4 Nevertheless, even for Cu, for which
»t(G», ) =0.2 Ry is rather targe, 4' the factor
[Ii G /4m (m(G}~] is still of order 102. Thus, it is
never justified for the calculation of p„(T) to ig-
nore the two-plane-wave character of the pseudo-
wave function in the region K~.

The above discussion does not complete the ana-
lysis of p„(T). There is a second reason, related
to phonon polarization, why p„(T) is much larger
than p»„„(T) for polyvalent and noble metals. The
point is best illustrated by considering an isotrop-
ic phonon spectrum. For small. q, as is relevant
at low temperatures& this situation corresponds
closely to Al. For K, and K, not in the region K~,
a single plane wave accurately represents the
pseudo-wave-function. For this case, it is well
known' that transverse phonons cannot lead to nor-
mal electron-phonon scattering. This result derives
from the polarization-vector factor (q f;„)' ap-
pearing in P,'~(K„K„T},where f;„ is the polari-
zation vector of the phonon of wave vector q and

polarization A.. For an isotropic phonon spectrum,
as we are considering here, for both the trans-
verse modes (X=T), the factor (q' $+,) vanishes,
and hence there is no electron scattering from
transverse phonons. However, for K, and K, in

the region K*, this result is no longer true be-
cause one must use the two-plane-wave expression
for the polarization-vector factor. In the limit
q- 0, the two-plane-wave polarization factor for
transverse phonons has the form
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that the frequency of the slow transverse phonon

&ur, Qq is much lower than the frequency of the
longitudinal phonon &ur, (q). For a given value of q,
the value of u&»(q) is typically about half that of
&u~(q). Therefore, the argument K&o„(q)/ksT of the
exponential appearing in the phonon occupation
number is halved for transverse phonons. At low
temperatures, this leads to a very large enhance-
ment of the normal electron-phonon scattering
probability. For Al at T =10 K, the resulting"
enhancement exceeds an order of magnitude.

In summary, the overall enhancement of p„(T)
at low temperatures due to scattering events for
which both K, and K, lie in the region K» is three
orders of magnitude for Al. Of this total enhance-
ment, two orders of magnitude result from the
expression [C (K,) —4(K)]' and one order of mag-
nitude results from the scattering by transverse
phonons. The Bloch approximation to p„(T) is
equivalent to using single-plane-wave pseudowave
functions for the entire Fermi surface, including
the region K*, and is thus seen to be in error by
three orders of magnitude. Therefore it is clear
that relying on the Bloch expression for p„(T},
which is in fact equivalent to discarding p„(T) al-
together, is totally without justification.

As important as the large magnitude of p„(T) is
the fact that the dominant contribution to pz(T)
arises from the very restricted region E~ of the
Fermi surface, just as is the case for p~(T).
Therefore, the pure-limit function P ~(K), given
by Eq. (3.3), leads to a very much smaller value
of p„(T) than does the dirty-limit function P, ,(K),
given by Eq. (3.2). This is sufficient to assure
that the analysis of the DMR presented in Sec. III
applies equally well to pz(T) and to p„(T). In

particular, it follows immediately that p„(T) by
itself gives rise to large DMR, even without the
presence of p„(T}. Indeed, a plot of &p as a func-
tion of p, arising from p„(T) alone would look re-
markably similar to Fig. 1, which includes both

pz(T) and pc(T}. More specifically, at low tem-
peratures, normal electron-phonon scattering
accounts for a significant part of the total calcu-
lated DMR. Any calculation which assumes that
pu(T) is the only source of the DMR cannot be
quantitatively corr ect.

VII. SUMMARY

We have presented a detailed discussion of the
deviations from Matthiessen's rule for the poly-
valent and noble metals. These metals, in con-
trast to the alkalis, are characterized by having
a Fermi surface that intersects the Brillouin-zone
boundaries. As a result of these intersections, the
electrons on a very small portion of the Fermi sur-
face are scattered much more strongly than the
electrons on the rest of the Fermi surface. Using
this fact as the cornerstone, it is possible to ob-
tain a complete qualitative understanding of the
DMR. Our principle results are the following:

(i) The variational formulation of the Boltzmann
equation is used to obtain a simple expression for
the magnitude of the DMR, which is a good approx-
imation for all values of po.

(ii) A new expression is introduced for the elec-
tron distribution function, which permits one to
account for most of the experimental findings asso-
ciated with the DMR, without performing any com-
puter calculations. The form of the approximate
distribution function is justified both on physical
grounds and on mathematical grounds.

(iii) The behavior of &p for large values of p,
(dirty limit} is analyzed for different ranges of
temperature. In particular, the contribution of
the interference term is shown to account for the
observed lack of saturation of 4p in the dirty limit.

(iv) The theoretical framework developed here
is shown to provide a natural explanation for the
magnitude for the DMR, their temperature depen-
dence, their variation from metal to metal, and

the approximate log(pg dependence of 4p, indepen-
dent of the type of impurity.

(v) It is shown that the contribution to &p from
normal electron-phonon scattering is by no means
negligible. In fact, for the polyvalent and noble
metals, the normal-scattering contribution to the
DMR is comparable in magnitude to the umklapp-
scattering contribution.
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