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Short-range order of dense-random-packing models of metallic glasses

H. J. F. Jansen
Solid State Physics Laboratory, Materials Science Center, University of Groningen, Groningen, The Netherlands

D. S. Boudreaux
Allied Chemical Corporation, Morristown, New Jersey 07960

H. Snijders
Solid State Physics Laboratory, Materials Science Center, University of Groningen, Groningen, The Netherlands
(Received 25 June 1979)

Numerical calculations have been performed pertaining to the structure of binary transition-metal-
metalloid glasses as a function of concentration and ratio of the atomic radii. A dense-random-packing-of-
hard-spheres model as well as a relaxed model have been employed. To obtain information about the short-
range order in the model structures, the average coordination numbers and probability distributions of
coordination numbers have been studied in particular. It is shown that the short-range order predicted by
the two models is nearly the same. The discrepancy with chemical ordering observed in some experiments is
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ascribed to the use of spherically symmetric interatomic potentials in the model calculations.

1. INTRODUCTION

A first approximation to models of atomic ar-
rangements in metallic glasses is based on struc-
tures formed by the dense random packing of hard
spheres.! These rigid spheres, depicting atoms,
are packed together in a cluster which is dense
because it contains no internal holes large enough
to accommodate another sphere, and is random
because it lacks long-range order. There are
various ways of constructing such a cluster. We
have used a so-called global algorithm in which a
new sphere is added to an initial cluster according
to the following recipe: A list is made of all pos-
sible sites for new spheres, which are required
to touch at least three spheres already present;
the new sphere is then placed on the site nearest
to the origin. For the construction of a model for
an alloy, different atoms are represented by hard
spheres of different radii, chosen to be the radii
of the atoms in the related crystalline compound.
The probability of adding a new sphere of a cer-
tain type is equal to the corresponding atomic con-
centration.

Given the atomic positions as derived from this
model, one evaluates the following physically im-
portant properties: the pair-correlation functions,
total radial-distribution function, packing frac-
tion, density, average coordination numbers, and
the probability distributions of coordination num-
bers. Comparing these quantities with the mea-
sured ones, we find reasonable agreement for the
radial-distribution functions, but too low a den-
sity. The agreement between the calculated and
measured radial-distribution functions can be im-
proved substantially by introducing a relaxation
of the structure.?3 Relaxation also narrows the
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gap between the calculated and the measured den-
sities. In a relaxation procedure interatomic po-
tentials of the Lennard-Jones- or Morse-type are
introduced, and the total potential energy is cal-
culated. Starting with atomic positions provided
by a dense-random-packing model, the atomic
positions are shifted by small amounts to obtain
an atomic configuration of minimal energy.

The average coordination numbers and proba -
bility distributions of coordination numbers supply
information on the short-range order in metallic
glasses. In this paper we show that neither the
dense-random-packing model nor the relaxed mo-
del reproduces the specific kind of chemical order
present in metallic glasses consisting of a tran-
sition-metal host to which has been added approxi-
mately 20 at. % of a metalloid.*® In order to im-
prove the agreement between theory and experi-
ment, it is necessary to use potentials of non-
spherical symmetry, of which three-body forces
are an example.

II. DESCRIPTION OF THE MODELS

This paper focusses on models of binary tran-
sition-metal-metalloid (TM-M) glasses. These
alloys are found in rather narrow composition
ranges, almost universally centered at 78-80
at.% TM. Therefore, we have constructed dense-
random-packing structures with six values of the
concentration ¢ of the metalloid atoms in the range
between 0.05 and 0.30. In addition to the concen-
tration, the ratio R of the radii of the metalloid
and transition-metal atoms is an important para-
meter. In order to simulate different kinds of
metallic glasses, we varied R from 0.4 to 1.0 in
steps of one-tenth.
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FIG. 1. Average number of transition-metal atoms
surrounding a transition-metal atom as a function of the
metalloid concentration ¢ and the ratio of the radii R
=7y/rrn The values of R are: O 0.5, A 0.7, X1,0 dense
random packing of hard spheres (DRPHS), and @ 0.52,

A 0.72 (relaxed).

Most clusters contained 1500 transition-metal
atoms, but we performed additional calculations
on smaller clusters to investigate the influence of
inhomogeneity and anisotropy,? which are quanti-
ties depending on the cluster size. It was found
that the values of the average coordination num-
bers changed, the forms of the probability dis-
tributions remained essentially the same,® and,
more importantly, the trends as a function of ¢
and R were not affected. Since we are mainly in-
terested in trends, cluster size is not a signifi-
cant parameter in our problem.

New sites for transition-metal atoms are se-
lected as described in the Introduction, but the
criterion for choosing new metalloid atom sites
must be changed. Selecting positions nearest to
the origin results in an inhomogeneous distribu-
tion of metalloid atoms, especially when they are
small compared to the transition-metal atoms.
The concentration in the center of the cluster
would become too high, while in the outermost re-
gions it would become too low. This is circum-
vented by discarding all possible sites within a
certain distance from the origin where the con-
centration is already equal to c. Besides this
modification we also incorporated the usual metal-
loid-metalloid avoidance.”
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FIG. 2. Average number of metalloid atoms surround-
ing a transition-metal atom. Symbols as in Fig. 1.
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FIG. 3. Average number of transition-metal atoms
surrounding a metalloid atom. Symbols as in Fig. 1.

The calculations using a relaxed model are de-
scribed elsewhere.® The values of R were adjus-
ted to the cases of Fe-B and Fe-P metallic glas-
ses and were chosen to be 0.52 and 0.72.

III. AVERAGE COORDINATION NUMBERS

The average coordination number 7, (B) denotes
the average number of atoms of type B in the near-
est-neighbor shell of an atom of type A. The con-
centration dependence of some of these numbers
is shown in Figs. 1-3; numbers for other values
of R do not show any deviant behavior. Within
the statistical errors of the models the coordina-
tion numbers are linear functions of concentration
in the whole range from ¢ =0.0 to ¢ =0.3. In other
words, the effect of a metalloid atom on the tran-
sition-metal matrix is independent of the pre-
sence of other metalloid atoms. The explanation
of this feature is rather simple. By construction
a metalloid atom is surrounded only by transi-
tion-metal atoms, and the atomic configuration
of these transition-metal atoms is typical for the
binary alloy. An atom situated in the second-
neighbor shell contacts three transition-metal
atoms but cannot make a distinction between a
metalloid or a transition-metal atom in the cen-
ter, because a configuration of three transition-
metal atoms is not typical for a binary alloy.
Conclusion: there are no long-range forces to
indicate which kind of atoms reside in the second-
neighbor shell; hence, the screening of metalloid
atoms is very effective.

There is a notable difference in the surround-
ings of small (R =0.4-0.6) and large (R =0.9-1.0)
metalloid atoms. In the case of small metalloid
atoms, 7.,(TM) decreases only slowly as a func-
tion of ¢, indicating that the configuration of the
transition-metal atoms is similar to that of the
amorphous transition metal. Thus, small metal-
loid atoms are placed in voids of the transition-
metal matrix, which is also confirmed by the in-
crease of the packing fraction (Fig. 4). A perfect
fit of the metalloid atoms in the voids would result
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FIG. 4. Packing fraction P as a function of the metal-
loid concentration ¢ and the ratio of the radii R=7y/7ry.
Symbols as in Fig. 1. The dashed line indicates the max-
imal values of P that can be obtained when R=0.5.

in a packing fraction of the form P(c) =P(0)(1 +cR?®).
This line is drawn in Fig. 4 for R =0.5 and shows
that the holes are not large enough, even for such
small metalloid atoms.

In the case of large metalloid atoms 7,(TM)
+704,(M) is independent of concentration, indica-
ting that the total number of atoms surrounding a
transition-metal atom does not change: metal-
loid atoms simply replace transition-metal atoms.
The decrease of the packing fractionand of 7, (TM)
reveals that the system becomes less dense. The
prohibition of neighboring metalloid atoms intro-
duces rather large (but smaller than the size of a
transition-metal atom) voids near metalloid atoms.

IV. PROBABILITY DISTRIBUTIONS

So far, we only considered average coordination
numbers allowing us to draw some conclusions on
the environment of atoms. However, it is far
more elucidating to consider probability distribu-
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FIG. 5. Probability distributions of the number of
transition-metal atoms surrounding a transition-metal
atom. Solid lines indicate DRPHS results, and dashed
lines indicate results obtained from a relaxed model.
The dots represent a binomial distribution corresponding
to the DRPHS results.

FIG. 6. Probability distribution of the number of met-
alloid atoms surrounding a transition-metal atom. Sym-
bols as in Fig. 5.

tions of coordination numbers, for these contain
more detailed information on the occupstion of the
nearest-neighbor shell. These are shown in Figs.
5-7, where both dense-random-packing results
(solid lines) and results of the relaxed model (da-
shed lines) are displayed. The dots represent
binomial distributions whose averages are derived
from the dense-random-packing model.

There is a striking difference between the occu-
pation numbers of transition-metal atoms and those
of metalloid atoms. The probability distributions
of both 7., (TM) and 7, (TM) always have a width
smaller than the corresponding binomial distri-
bution, which indicates some correlation between
the positions of the transition-metal atoms. This
feature may be illustrated by comparing the re-
sults with the numbers obtained for an fcc struc-
ture. Suppose all atoms are placed on an fcc lat-
tice, so that the total number of neighbors will
always be 12. In this case the probability distri-
bution of #,(B) will be binomial for any pair of
atoms A or B. In our models, however, the atoms
are not placed on ideal close-packed fcc positions;
as a consequence, the repulsion of the atomic
cores introduces some correlation, for it gives
rise to a lower probability of a high number of
transition-metal neighbors.

Ny (TM) —

FIG. 7. Probability distributions of the number of
transition-metal atoms surrounding a metalloid atom.
Symbols as in Fig. 5.
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The probability distribution of 7.,(M) shows a
totally different behavior since it is always bi-
nomial. This feature is achieved only when the
binomial distributions are evaluated using a maxi-
mum value of 7;,(M) of 6 instead of 12, which is
justified by the repulsion of metalloid atoms. We
should remark that these values may be replaced
by, for example, 7 and 14, respectively, without
any significant effect. We conclude that, apart
from the prescribed metalloid-metalloid avoid-
ance, there is no additional correlation between
the metalloid atoms.

V. CONCLUSIONS

InSecs. I-IV we have discussed average coordina -
tion numbers and probability distributions of co-
ordination numbers in order to clarify the nature
of the short-range order prevailing in two models
of metallic glasses. The dense-random-packing
model and the relaxed model predict the same
chemical ordering, because trends as a function
of ¢ and R of average coordination numbers and
shapes of probability distributions are the same
for both models. This resemblance is a conse-
quence of the relaxation procedure preserving the
spherical symmetry of the interatomic forces.

In our models there are only two interactions
accounting for short-range order: the repulsion
between the atomic cores and that between the
metalloid atoms. The spherical symmetry of
these interactions is revealed by the Gaussian
shape of the probability distributions. However,

there exists some experimental evidence for di-
rectional bonds playing an important role in me-
tallic glasses. The analysis of iron hyperfine
field distributions for the amorphous Fe,_,B, sys-
tem suggests the presence of compoundlike short-
range order.* For example, in the case of

Fe; 75By.25 One finds only iron atoms with 2, 3, and
4 boron neighbors, appearing with equal proba-
bilities. This is contradictory to the predictions
of both the dense-random -packing model and the
relaxed model (Fig. 6). The presence of direc-
tional bonds thus changes the shapes of the pro-
bability distributions significantly, and hence we
conclude that chemical bonds are not simulated in
the models under consideration. Consequently, if
one wishes to incorporate short-range order, it is
necessary to introduce many-body potentials to
obtain preferred bonding directions. The resulting
numerical procedures are then far more compli-
cated.
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