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Long-wavelength electromagnetic propagation in heterogeneous media
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Existing effective-medium-type theories for the propagation of long-wavelength electromagnetic radiation
in heterogeneous media are examined, and structural effects, neglected by such theories, are introduced by a
multiple-scattering approach that yields an effective propagation wave vector. Results are presented for
propagation through an infinite periodic array of small spheres immersed in a host of different permittivity
(or permeability). The procedure is generalized to aperiodic systems to include the lowest-order corrections
for small-sphere volume fill fraction g (for arbitrary scattering strength) and for weak scattering (for
arbitrary q). In all cases significant effects due to structure-induced multipole fields are seen to occur. A
simple parametrization of deviations from the lowest-order result, the Maxwell-Garnett expression, is
proposed in order to extract information on structural multipoles or clustering effects from experimental
data. We present the results of calculations for mixtures of real dielectrics and for small metal spheres
embedded quasirandomly in a dielectric host, and describe generalizations to include the effects of particle
coating and size distributions on optical properties.

I. INTRODUCTION

As Landauer has aptly noted' the electromagnetic
properties of heterogeneous media have been of
interest almost since the beginning of electrody-
namics' ' as a field of study. Recently this prob-
lem has attracted more concentrated experimen-
tal attention because of the possible use of hetero-
geneous materials in the quest for efficient solar
energy absorbers. On the theory side, efforts
to understand electromagnetic propagation in
such systems now go somewhat beyond the histor-
ically important quasistatic effective- medium
approaches (recapitulated briefly below). In par-
ticular, Stroud and Pan have given a finite-wave-
length extension of the effective-medium theory,
while McPhedran and McKenzie, ' Doyle, and
Bergman ' have all examined certain features
of periodic systems, but in the infinite-wavelength
limit.

An ideal selective surface for solar energy pur-
poses might be fabricated from a material with the
physical requirement that it absorbs nearly all of
the incoming solar radiation (much of which falls
in the visible and ultraviolet), but, in coming to a
temperature determined largely by substrate de-
sign conditions, would not suffer serious infrared
energy loss by reradiation. A promising class
of materials for such applications is the cermets,
heterogeneous systems typically composed of small
(-100 A) metallic particles embedded in an insul-
ating host. ' '" That they might well be expected to
be good absorbers can be seen by considering an
insulating host (frequency-dependent dielectric
constant c,(to) containing just one metal sphere
[dielectric constant e2(&u)j. Elementary analysis'

of this classical problem in the quasistatic limit
shows that large absorption occurs at the sphere
dipole resonance (2eq+@2 =0), which typically
occurs in the visible, and by judicious choice of
constituents even at the maximum insolation.

The purpose of this paper is to give a theoreti-
cal description of electromagnetic propagation
in cermets, or in mixtures of dielectrics with an
equivalent geometry. As we shall see, a complete
treatment of the problem requires that we go be-
yond both the effective-medium approximations
and the quasistatic restriction (defined below). To
achieve this we develop for electromagnetic fields
the Green's-function or Korringa, Kohn, and
Rostoker (KKR) band-structure procedure,
particularly in the form given by Morse. For
simplicity we consider heterogeneous systems
that can be described by the macroscopic Maxwell
equations and whose components are characterized
by dielectric constants && and magnetic permitivi-
ties p& that are local, scalar, complex functions
of frequency. (They need not, however, be neces-
sarily the bulk values. ) The requisite formalism
is developed (mainly in Sec. III) for a two-compo-
nent system conforming to the cermet topology.
The importance of topology in a heterogeneous
system is discussed in Sec. II, where a brief
review of effective-medium theories is given.
The Green's-function or multiple-scattering ap-
proach is first applied to periodic arrays of iden-
tical spherical inclusions in an otherwise uniform
host (Sec. III). Aperiodic arrays are discussed
in Sec. IV, and in Sec. V we generalize the theory
to multicomponent systems and to systems in
which the inclusions are dispersed in size.

Before proceeding it is helpful to state at the
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outset what we mean by the condition of long wave-
length. Let k, =(a, p, ) 2w/& be the wave vector
in each constituent. I et k be the effective wave
vector for the composite (defined precisely below).
Finally, let a be the radius of the spherical inclu-
sions in the composite, and should any clustering
of the inclusions occur, let b be the largest length

characterizing such clustering. Then in a two-
component composite (1 denotes host say) we

shall encounter the five conditions: kq a«1,
I "2 I a«1, I" I

a«1,
I k) I

k «1, and I" I
&«1, each

of them relevant. When the first is satisfied
(Ikqla«1) we shall say that we are in the long-
zoavelength limit; if, on the other hand, the sys-
tem is such that all five conditions are met, we

shall refer to the situation as the infinite wave-

length or quasistatic limit. Our generalized KKR
procedure will require the long-wavelength (rather
than the quasistatic) limit for its validity. Notice
that in the periodic case the quantity corresponding
to b will be the largest primitive-lattice vector.

Except in the quasistatic limit the electromag-
netic properties of a composite cannot be defined

by either a single effective & or a single effective
We shall be concerned instead with the effec-

tive product (&g}~=-k'c'/&u', and we shall take the
effective wave vector k to be that corresponding
to a Bloch wave propagating through the composite.
It will become evident that this means diffuse
scattering and absorption within the composite
will not be physically distinguished.

II. MEAN-FIELD THEORIES

There are at least two interesting topologies for
composite materials: one is the "cermet topology"
[Fig. 1(a}], in which each inclusion is completely
surrounded by host material. The other is the
aggregate topology [Fig. 1(b)], where in terms of
connectedness all components occur on an equal
footing. A common example of the aggregate
topology is the spatial structure associated with

an assembly of microcrystals: a polycrystal.
To understand the importance of the physical

differences associated with these basic structures,
we briefly recapitulate the arguments for the
standard effective- medium approximations. ' We
work in the quasistatic limit, as defined above,
and for simplicity we set p&

—p2 —1; magnetic
effects will be discussed later. We divide the
composite into cells, defined more precisely be-
low, each of which is considered to be embedded
in an effective medium of dielectric constant E.
Since we consider composites to possess macro-
scopic uniformity and both translational and ro-
tational isotropy, we replace our irregularly
shaped cells by spherical average cells. The

(a)

FIG. 1. Topology of two-component composite ma-
terials: (a) Cermet topology (isolated inclusions}, (b)
aggre gate topology.

problem then reduces to one of treating, for a
uniform field, the quasistatic electromagnetic
properties of a spherical inclusion in the effective
medium. It is to be solved subject to the require-
ment that when f is chosen correctly the scatter-
ing from an average cell shall vanish, i.e. , the
standard effective- medium ansatz. The procedure
is the same for both topologies: The difference
that occurs in the result simply reflects the
underlying topology and its influence on the nature
of the average cell.

In the cermet topology the cell is chosen as a
spherical inclusion surrounded by a sufficient
concentric layer of host so that each such average
cell has the proper filling fraction rI [g= (volume

of inclusions}/(total volume of cermet)]. There
is only one type of average cell; it can be describ-
ed as a coated sphere (CS) which, though a com-
posite body, can be approximately characterized
(see Appendix A} by a single dielectric constant

Ecs. The no-scattering condition is then trivially
satisfied if we take (&& =host, c, -=inclusion, again),

This is the MM+vell-Garnett result (MG).
For the aggregate topology each inclusion is

taken as a cell and for a two-component composite
there are two types of average cell now, viz. ,
spheres of each constituent. The no-scattering
condition then gives
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8(l —rl) 8r}
2+ ed/e 2+ t2/e

(2)

which is usually referred to as the effective-me-
dium (EM) result.

These two results are really quite different, as
can be seen from typical cases. We note that (2),
the EM result, is symmetric in the two compo-
nents while (1), the MG result, is not. This dif-
ference is real and to be expected. In terms of
the surface charges and field discontinuities
established in a cermet, it should matter whether
islands of medium 1 are completely surrounded
by a sea of medium 2 or vice versa. In a poly-
crystal, in which a given microcrystal may never
be completely surrounded by a different constitu-
ent, the appellations "host" or "inclusion" are
hardly appropriate.

But the MG result has another meaning. For
macroscopically uniform and isotropic systems
with f~, E'2 real, it can be shown by variational
arguments that the MG result, and its complement
resulting from interchange of E~ and c2, actually
form a pair of bounds ' for &, irrespective of
the topology of the system. These bounds are in
principle achievable and so they serve to define
a region of physically realizable E, as a function
of g, &~, and &2.

Although the effective-medium approach dis-
regards information concerning the detailed struc-
ture of the cells and their arrangements, we ex-
pect qualitative accuracy in the predicted behavior
of t. This will be verified below for the cermet
topology.

III. MULTIPLE-SCATTERING THEORY:
PERIODIC SYSTEMS

A s noted above, we shall restrict our attention
in what follows to the cermet topology. We begin
with a system of identical spheres of radius a,
embedded as a periodic array in a host medium.
For simplicity we shall consider systems with a
single sphere in each primitive cell. The starting
point for the generalization of the KKR band-struc-
ture procedure is the set of Maxwell equations
written down after appropriate averaging for host
and inclusions, which are regarded as macro-
scopic systems. We shall characterize the com-
posite by specifying the constituent (scalar) dielec-
tric functions E& and permeabilities p&. Thus

eq(&o) (r in the host) (Sa)
e((dq r) =

e2(&u,
~
r —R

~ ) (r in the Rth sphere),

(sb)

In much of the following development, equations
occur in complementary pairs, (4) and (5) being
an example. When it is unambiguous we shall
present only one member of the complementary
pair and shall comment further only if changes
[other than reversing the role of (H, p) and (E, e)]
are needed.

Equation (4) [or (5)] can be transformed into an
integral for H(r) [or E(r)] in a single primitive
cell. The procedure is a straightforward general-
ization of the quantum-mechanical case for the
scalar field. If r' is restricted to the interstitial
(i. e. , host) region, then because of the periodicity
we may write

H(r') = e'"' H~(k, r') (6a)

with

d n' VG„-,„r', r H r
S

—G„-,„(r', r)n ' VH(r)) (6b)

K = ('RIP 1) (d/C,

and where the surface S consists of the cell bound-
ary and a surface infinitesimally outside the
spherical inclusion. We take n to be the outward
(inward) normal on the cell (sphere) boundary.
The Green's function appearing in (6) has the defi-
nition

$&l r -8-~(
G~,„(r', r) = — —, — e' '" . (8)

4m (g) I
r' —r —g)

The index k appearing in (6} and (8) is the Bloch
wave vector, to be identified later with the effec-
tive propagation wave vector. The quantity H~ ls
periodic. '

H (k, r + R) = H (k, r) .
It is important to note that Bloch's theorem [Eq.
(6a)] is valid even for dissipative systems. For
these, k will be complex but the combination GH
in (6}will be periodic and the integral over the
cell boundary will vanish. We proceed from (6}
by first performing an expansion of H in terms of
electric and magnetic multipoles,

tions, then the magnetic field H(r} and electric
field E(r} satisfy the wave equations

V&& [V&&H(r)] —(&u/c) e(r)g(r)H(r)

(r)[Ve(r)] && [V && H(r}]= 0 (4)

and

%&[V&&E(r)]—(&u/c} p(r)c(r)E(r)
—g '(r)[Vp(r)]x[VXE(r)]=0. (5)

and similarly for p. Here R locates the center
of the Rth sphere. If c(r) and PCr) are known func- H(r) =He(r) — VXEe(r), (IO)
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where V'B=V'D=Q. (Is)

Hs(r) =+A, f, (r)LY, (r)

and

L=-ir X V.

The Y7 's are the usual spherical harmonics.
(Note that in the equation complementary to (10}
the minus is replaced with a plus. ) The terms in

(11) are referred to as electric multipoles (those
of its complement are magnetic}. It can be shown"
that (10) and its complement automatically satisfy
two of the Maxwell equations,

We ensure that the other two are satisfied by re-
quiring that the expansions satisfy the wave equa-
tions (4) and (5). Thus from the equation for H,
we obtain, after some manipulation, a radial equa-
tion for f, (r):

~'p:g l(l+1) 1 de d 1 1 d'--——+ — + — r f', (r)=0,c' r' &dr dr r rdr' .
(i4}

whose solutions for some particularly useful cases
are given in Appendix A.

For r' & r the Green's function may itself be
expanded

G&,„(r', r) = g Y, (r')Y, ~ (r)zj, (vr')
7 pit ~ 7

m' pL

x[ih')()[r)5„5„~ +4vi' ' j, (KQC(lm; I'm'; L, m - m')ML, , (k, x}],

where

C(l; Y ';L, — . ')= fdr Y, (r)Y, „(r)Y, „(r). (16}

Structural information then resides in the structure constant M:
A

Ml, ,
~ (k, &) =i Q e'"

hL, (~R)'Yf,. g (R) + 6Lpsddp
gf40 44m

'

whose evaluation is treated in Appendix B.
Next, we take the expansion of H [Eqs. (10) and (11)], insert it into the integral equation (6), multiply

the result by [LY, (r')]*[l(l+1)] '~P, and integrate over the surface of the spherical inclusion. This
lengthy but straightforward procedure then generates a set of linear equations in the multipole coefficients
A; (here a = E, H}. To fully describe these equations we need the definitions

(isa)

where

g, (a) =-a —j, (xa)/j, (Ka)0 d
dg

(these are the phase shifts"),

I l+1) '"
(b) ffd —— f, (a')& g, (a')A,

(18b)

(19)

(these a, re the normalized multipole strengths),

(d) d(l; Y ';LM)=[l(l+1) ( + Y)])' J(d [LY, (r)1 '[U; d(r)]Y „(r),

Y(l;1' ';LM)=[1(l+l)l (1'+1)]'1 E J'd [LY, (l)]Y,.„(p

(20a)

(20b)

(d) X(f, f')=(I' ')+(&' I)+-,', -

j,.(za) (I (I + 1}+ X(l', l )[g, (a) —1$,
t =7~&
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and

I'(«a, l) = g j, («a}(l(l + 1}[1+g,(a) —g, . (a)]

+ }t(l', l)[[g', (a) —1][g',(a) —1]—l(l + 1}+ («a}'}).

We refer to 4 and T as selection constants, and their evaluation is given in Appendix C.
With these definitions the system of linear equations can be written

X', ;,.& (k, «)B„',= 0 (u = E, H) (a' = E, H)
l nfe'

where

(21)

—4'' '
«aj&(«a)j& («a)QJ(fm; f'm''; L, m —m')Mz ~ (k, K) (22)

and

20, '
", , ~ (k, «) =-4vi'j, («a)g T(lm; l'm '; L, m. —m')

L

xMz. ~ (k, «}[8(«a,f') + I'(«a, l')/&g", (a')]. (23)

Note that the equation for X ', complementary to
(23), has the overall minus sign removed.

Equation (21}and the equations leading to it are
formidably complex, but as we shall see the small-
Ka limit, in which we are principally interested,
leads to considerable simplification. Observe
that all the information on the physical properties
of the inclusions is contained in the phase shifts
&g, while information on their location is con-
densed into the structure constants. Since (21)
is a homogeneous equation it possesses solutions
only when

detK(k, «) =0, (24}

With k obtained from the secular relation (and

where « = (c,p.,)' 'u/c and k is the Bloch wave vec-
tor For a pres. cribed &u the solutions to (21)
determine the dispersion relation

k=k(ur) .
Notice, however, that k is usually restricted to a
single Brillouin zone, i. e. , it can only be deter-
mined to within a reciprocal-lattice vector. In
the band-structure case, a unique labeling of the
electron levels is achieved by requiring that k be
within the first Brillouin zone. In the electrody-
namic case we shall also demand that if the wave-
length greatly exceeds a lattice constant then k
will likewise be taken to be in the first Brillouin
zone. In general, however, we can assure uni-
queness through the requirement

lim k=v.

I

its uniqueness assured) we now define the effec
five product (ep)„, a function of k and &u, by

(~V)., =k'(~)c'/~' . (25)

It is worth repeating that for ~4 0 the electromag-
netic properties of a composite cannot in general
be specified by a single & and P. Our choice of
(cp)„ is that which gives the correct change of
phase and amplitude of a Bloch wave across a
slab of composite. It is related to a transmission
experiment in the forward direction. However,
it does not precisely describe such an experi-
ment, since we make no attempt to rigorously
solve the boundary-value problem for a slab
[matching the (composite) Bloch wave to (exter-
nal) plane waves]. Thus our definition will ignore
diffuse scattering at the composite boundaries,
which appear as absorption in a transmission ex-
periment; it does, however, treat diffuse scat-
tering of the Bloch waves within the composite as
absorption.

The practicality of the procedure for obtaining
(eP)~ just described depends on our ability to
truncate the matrix K and yet still obtain reliable
results. The question is therefore one of con-
vergence and requires us to examine carefully the
behavior of the off-diagonal elements of K. Using
the results of Appendices A-C, we find that in al-
most all cases of interest the single condition
! «!ac 1 is, in fact, sufficient to assure reasonable
convergence. As might be expected, convergence,
in the order of 'K, is more rapid as both g and

become smaller.
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In order to indicate the structure of (22} we

specifically truncate at l =1. For the sake of
simplicity we take xa«1, k in the z direction, and
restrict attention to a cubic system. We then
have

E,E 1 k +2K 1 — j (1)
~ Di-& ..i r~ kz 2—

h

where

e1+[P (1—n)+ 1)](K1—e, )
~1+~(I )}(K2 K1}

(34}

P = t+5P

and we see from this that we arrive at a product of
an effective & and an effective p. In the small-k2a
limit we have

where

1 1
d, g, (a'} 2l+ 1

(2s)

(27)

This form of E is exactly that arising from the
mean-field arguments of Sec. I as applied to orien-
ted ellipsoids with depolarizing fa,ctor P . Notice
also that in the quasistatic limit 6I' vanishes, so
that (31}becomes

and
(K&}w = Qo&mo ~ (ss)

4~ 1/2

bP = KQ $1(KQ)1-g 5

X —p dR e'"'"h2 xR Y20 R
RAO

(2S)

Here p is the number density of inclusions, and the
sum is taken over lattice vectors. In addition

g,g H, g imam km+1m ti W — 1m t1 ttt — tnt 2 k-KZ 2 ~

It follows that the 6X 6 block of equations for l = 1
decouples (in m) to give 3 blocks of 2&&2. The
m =0 (longitudinal} block is diagonal and gives
(a=E, H},

1P —(1 —r})5P ' + ~= 0, (so)

gg i $+2
6 ~

=0.
Di —pg B~

which has solutions only for certain small ranges
of 1o since for small kb and Kb (b is the lattice
constant) the k dependence of bP" is weak [in
fact 5P" -(kb) ]. This solution corresponds phys-
ically to a shifted surface-plasmon type of excita-
tion. The transverse blocks (m ~1) give us

(M„-M 11MttM1, )v1 —0 . (37)

i. e. , the product of the Maxwell-Garnett results. "
It is important to note that for small g the small

ka and small Ka limits differ greatly from the
small kb and small vb conditions. In dilute sys-
tems this means that the effects of &I' ' can re-
main relatively important even when ka and va
are assumed to be small.

Several features of the solutions obtained above
are more general than the derivation given would
indicate. The unphysical root E = 1 will occur,
as we shall see, for all structures, both periodic
and aperiodic. The uncoupling in rn is, however,
not a general feature and certainly does not occur
in structures of lower symmetry. Otherwise, we
shall frequently encounter situations in which the
solutions will be very much the form of (33}and
(34). We can see this first for the case of higher
l values.

To include higher l we can use (21) directly or
reduce the l & 1 problem to an effective l =1 prob-
lem by the device of matrix folding. To do this,
note that the equations

|'M„M„) to,) (ss)
M21 M22 ~2

where M&& are matrices, can be replaced by

Here,

$=(k/K) =(&}1) /K1l11,

and

1P, =18, + —,'(I —r})&P"'.

(31)

(32)

In a cubic system with k in the z direction we find
that for small Ka the folding correction is diagonal
in all indices and furthermore the m =+1 terms
are equal. It follows that the solutions for $ must
continue to have the form of (31) but with

3; =a; + -,'(I 1})(bP"'+bP" '), (ss}

Di +& 8 Di+
1

1 P~ 1
(33)

This equation has two solutions, one of which ($
= 1) is unphysical. The physical solution is

where

Pa Z, 2 %1111m('K 1)1mll ~ ntWI'st111 ~

tm l t l'&1

(ss)
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Here X' is K with rows and columns with l = 1 de-
leted. In the quasistatic limit &P remains finite
even though 5P vanishes. Thus in this limit
the result for e (or g) is of the form (32) but with

P =-, +OP (40)

That &P is finite emerges as a consequence of
the physical fact that a given inclusion can induce
various multipoles (l & I) in its neighbors in a
manner specifically dependent on their mutual
arrangement. Such effects may be termed "struc-
tural multipoles" and are not included in the sim-
ple mean-field approach of Sec. II. They are
nevertheless important in the condensed systems
we are treating, even in the quasistatic limit.
From their appearance, formulas of the type (33)
and (34) bear a certain similarity to the Maxwell-
Garnett result except far the alterations in the

effective depolarizing factor stemming from the
induced multipoles. Henceforth we shall refer
to formulas of the type (33) and (34) as multipole-
modified Maxwell-Garnett results (MMMG). In
periodic systems with lower than cubic symmetry
a few differences should be noted. First, &P

can be finite in the quasistatic limit. Second, for
a given propagation direction there can be differ-
ent values of (&p) corresponding to different
polarizations. Finally, there are at least three
directions (along the principal axes) for which

~auuo4cuMo ' (41)

It may be helpful at this point to give an example.
We consider a simple cubic lattice in a system for
which I(b«1 and kb«1. From Appendix B we
find, in this limit

[2(l + I') —1]!!X, ', , =(-1)4'(™;l'm'; l + l', m —m')a'"
(2l + 1)!!(2l' + 1)!!

&& g F,*„., m ~ (R)/R'" "+ 6«~6 D» ~ (I or l' & 1) .
WO

(42)

As a consequence of the cubic symmetry the sum is nonzero only for l+ l' even and for m an integral mul-
tiple of 4. (In contrast to the procedure used by McPhedran and McKenzie no sums involving shifted ori-
gins are involved here. ) Using these properties we arrive at a much simplified form of (39), namely

gP (2)

m& m'=1+4 (integer )

3~1lll m(36 )I met'm' 0 I'm" 1l ~ (43)

U, = g P, (z/R)(b/R)'" .
ROO

(46)

For a simple cubic lattice (using the numerical
values of the sums U, given by McPhedran and
McKenzie } this becomes

24. 351''
(1 —T!)[(Dq) ' —0. 13647! ' ]

(46)

This is precisely the result of McPhedran and
McKenzie in the limit k2a «1 when b, and all c's
are taken to be zero.

Figure 2 now shows results for the quasistatic

where 'K" means that only elements with I, l' odd
and m, m'= 1+4 (integer) are to be included. For
our example we retain only the lowest order non-
vanishing corrections, i. e. , l =3. After some
manipulation we have

a ) 32(3'q/4z) U4

(1 —n)[(3/28)(Dq) —20(3'0/4v) '
U6]

'

(44)

where

I

case and the choices e, =l, e, =8 (and vice versa),
and g~ ——p2 ——1. Plotted there as a function of
filling fractions are effective dielectric constants
for (a) Maxwell-Garnett (MG), (b) the formula of
McPhedran and McKenzie (SC) for the simple-
cubic case, and (c) the aperiodic MMMG (weak
scattering) case discussed below. Note that the
simple cubic result stays within the Maxwell-
Garnett results as required by the Hashin-Shtrik-
man bounds. Note also that the simple cubic re-
sults terminate at a maximum filling fraction of
v/6, the simple cubic close-packing limit. In
Fig. 3 we show MG, sc, and aperiodic MMMG
(small g) results for the absorption coefficient.
These are plotted for a model representation of
(20%%u~) fine gold particles in KBr (e, =2. 34). The
gold itself is represented by a Drude model. The
significant aspects of the results are the sharp
dips in the sc curve which occur whenever D, -0
or, quasistatically,

-0 (Io 1)
(l + 1)&g + le2((u)

(47)

These are referred to as the multipole resonances,
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FJQ. 2. Hashin-Shtrikman bounds (Maxwell-Garnett result) and multipole-modified Maxwell-Garnett (MMMG) curves
for the effective dielectric constant in periodic (simple cubic) and aperiodic arrangements of small dielectric spheres
(&2 = 8 or 1) in a dielectric host (&~ = 1 or 8). Here g is the volume fraction of the E= 8 component.

and can be considered as the higher "excited
states" of the free spherical inclusion. From the
structure of (44) it is apparent that 5P is the
ratio of two polynomials each of degree l in D,

(for even l) and this guarantees such resonant
behavior. (Actually there can be some cancella-
tion of common factors in the polynomials, but the
resonances persist. ) For periodic systems that

IO—
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~~ p)oamo
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FIG. 3. Maxwell-Garnett, NMMG (periodic) and NMMG (aperiodic) results for absorption coefficient of a dispersion
of small Drude Au spheres in KBr (a~ ~2.34) with a metal volume filling fraction of 20%; the Drude relaxation time
equals the bulk Au value.
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lack inversion symmetry (for which a basis is
necessary} even-l resonances will occur. This
gives a clear indication of the necessity to go be-
yond the MG result for cermets. Finally, it
should be noted that the results derived for peri-
odic systems by quasistatic methods can easily
be generalized to lift the restriction k2a «I (which
in fact is readily violated for metallic inclusions).
It is only necessary to replace

(I+1)c,+le,
(I+1)(21+1)(e, —e, )

by D, (and similarly for D", ) and to use the pro-
duct rule (35). In this way the quasistatic results
can be generalized to include magnetic multipoles
(eddy currents), which can certainly be important.

IV. APERIODIC SYSTEMS

In this section we return to the system of identi-
cal spherical inclusions but relax the restriction
that they be arranged periodically. To the extent
that the fine metallic particles in a cermet can be
considered as monodispersed in size, this situation
begins to approach physical reality. For a bulk
system (N' inclusions, where ¹ is very large) we

may take a macroscopic cubic fragment of the
material and extend it periodically with no signi-
ficant changes expected in its electromagnetic
properties. The aperiodic system may therefore
be replaced by a periodic system with a large
basis. Correspondingly, there is a quasicontinu-
ous distribution of reciprocal-lattice vectors.

For a lattice with a basis, we may proceed as in
Sec. III until we reach equation (8), the basic

where R~ are lattice vectors and R„basis vec-
tors. Proceeding, we divide each unit cell into
regions V; surrounding a spherical inclusion loca-
ted at R& arid bounded by the corresponding Voro-
noy polyhedron. We then perform a multipole
expansion as before, but we now find that within

V;, (11) is replaced by

Hs(r, ) = gA, 'f, (r,)L"'Y )(r, )e'"' ' (r(= V,),

gran

(49)

where

and

r&
—r —R&

The radial equation (14) also remains the same
except for a change in origin. Since the inclusions
a.re all identical (for the moment) the phase shifts
will be independent of site index.

Next, we define

= r-R;-Rp,
a.nd we note that for r, ~

& r;h (when r (=-V, in the

Pth cell and r' E V, in the p'th cell) we can expand
the Green's function

integral equation, whose form is unchanged except
that the Green's function is modified to read

1 fK I (P-Kt }-(&-Ry}-BpI

4v «g( l (r' —R, ) —(r - R&} —Rh I

(48)

("~,, (r', r) = g I', (r(~)Y,*„(r";;)~j,.(~r, ;)
L ms l'm'

5„6 6;)6~~ih', ter, p
— 1 —6(~&~~)4'' 'j, ter)~)

x P C();)' ';I, —m')' )', . (R„,„).h'( ) xh'), '"'
L' sP ~ P

(5O)

where

R„„=Rg —R„
with

Rg& Rp R

and

(f R([L(oY (ft )]4[I(I+ I)] 1/2

and for each i integrate over the surface of the ith
sphere. What emerges is a matrix equation whose
elements are now decorated by the basis index i as
well as the indices of (21). Thus

R„=R]-Rp, . 1'nf ee't"
(51)

We use this expansion, and Eq. (49) above in the
integral equation. We then multiply the result by

where again the 8's are the normalized multipole
strengths [see (19)] and
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X, ', ,!+ —5„~5~ 5&& z, , -iKaj, (va)k, (tea} -4vi' '
&aj, ga)j, ,(Ka) g J(lm; l'm'; L, m —m')

&g (a)

and

&e'"' ~ "~' i' Ff„~(R„„)hq(&R~„)(l-5„~), (52)

'K, ', , ~ = 4v-i'j, (Ka} g T(lm; t'm'; L, m —m')
I

X g P P f pg g Q Rp y QL KR ) 1

X[6(ea, l') + I'((la, l')l&g", (a'}] (55)

Since the reciprocal-lattice vectors for this
system are quasicontinuous it follows that for an
arbitrary choice of v we may encounter propaga-
tion in a gap. As a consequence we may then ex-
pect k to be complex even in the absence of intrin-
sically dissipative elements in the system. Bragg
reflections in the extended periodic system cor-
respond to diffuse scattering in the original sys-
tem. It is important to note once again that our
choice of k and hence of (ep}„is that in which
absorption and diffuse scattering (within the com-
posite) are not physically distinguished.

As far as computation is concerned Eq. (51) is
certainly not practical primarily because of the
explicit appearance of the (unrestricted} basis
position indices. We shall proceed to eliminate
these position indices by applying a matrix folding
technique to (51}. This folding will involve the
inversion of a matrix that is also in practice too
large to handle directly. However, as we shall
see, it is possible to develop a reasonable and
systematic approximation to this inversion pro-
cedure.

We begin by eliminating the (spurious) periodi-
city of our extended system (which was introduced
chiefly to ensure that k was well defined} by con-
sidering each inclusion of the system to be speci-
fied by a position vector instead of a lattice-plus-
basis vector. The resulting equations continue
to have the same form as above except for the
absence of lattice summations in (45)-(53). The
basis indices now become position indices. This,
of course, increases the number of such indices
from ¹ (large} to N (~), but as we shall soon
see this creates no additional difficulty.

Next we execute a change in basis of real-space
position vectors from li) for i =1, . . . , N, to

li) for i =1, ..., N —1.

The li) need not be further specified except to
demand that

(i lj ) = 5-„- 0 si, j ~N-1. (55)

(3C„--~)B;= 0,

where

(5V)

X;t(& '5-;q--D 'Xgq-D '+ '' ')Ky;.

We can simplify this further by defining a projec-
tion operator

and a new matrix

X=(1-~)X(1-~).
Then

N

&&g D '5y -D yaD +' ' ',
if ski

(5S)

(after changing back to the original basis). Final-
ly we make the separation

+nb& (»)

(For notational simplicity we will now temporarily
abandon the indices f, m, a. ) We now proceed to
separate 3C as follows:

3C,q
D5„—+ (1 —6)~)X,q . (55)

Then the result of (a} matrix folding, and (b) the
usual expansion of an inverse matrix, allows us
to write (51) as

and

I»= ~ Zle (54)

where & contains only those terms containing n
distinct indices. I et
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(n&(R(9 R(2) ROr -9 )

N

6 R' —R~ +Rq & R —R)2+ R]
&k

x ~ x e(R" "
R, +R,.} (so)

be an n-particle distribution operator (site coin-
cidences removed). Evidently the n ' will in-
volve n —1 volume integrals over an integrand
containing g and must therefore be proportional
to p" ', where p is the number density. It follows
that ~" -g . Also, each & contains an overall
factor of D', except ~ which contains D

Before turning to an explicit evaluation of the

, we examine the problem corresponding to
the complete neglect of &. We are then led to
consider the solution of

(ss)

+11 11 lloyd m D +
2 mol'm' l'm'211
-1

l&lorn
l & 1 o

m'

(66)

nism which produces the anomalously high far-
infrared "absorption" observed in transmission
experiments. This can be tested by looking
off axis in the experiment.

This completes the analysis in which & is neglec-
ted. We now consider the case in which & is
retained. After some manipulation we again find
results of the form (33), with

D, =D) + 2(1 —)})(5P +OP~ )

t Ma
(61)

which happens to be exact for periodic systems.
Now if xa«1, then (Appendix D)

a
~ —5)g.5 8 .D, , (62)

and if the system consists of an isotropic distri-
bution of inclusions then for k in the z direction,
K, ', ' is the same as is given in (26)-(29) except
that'

and

5P'" = ()((2)j &()ca)p R'dR h(R)[jo(kR)h2(((R)
0

+jo(kR}ho(xR)]

(63)

where we have omitted the position indices o, o
on & but have made explicit the multipole indices.
It can easily be shown that in the weak-scattering
(D, large) or small-)} limits (except perhaps very
near to multipole resonances), the second term
of (66), which results from multipole folding, is
small. This seems likely to always be the case
(at any rate we shall ignore it henceforth).

For our first attempt at determining &I' we
consider the weak-scattering case. Then we need
retain only the leading corrections in D, . These
in turn involve only the contributions to & and

Using the results of Appendix C, and some
considerable algebra, we obtain for va«1,

)2)+(

\'=2 1

where
lfftolm lmo lm' mm'

2 v Zk —K

where

h(R) =g(R) —I =g tR) —1.

(64)

and

A(2& dR (2)(R)RH2)+2
0

(68a)

From Appendix D we now see that as in the cubic
(crystalline) case, we again arrive at leading-
order corrections O((kb) ) and O(()(b) ), where b

is now some characteristic length which deter-
mines the scale of variation of the inclusion pair
correlation function h(R). If we had a "frozen
liquid" type of distribution, for example, then a
Percus-Yevick ' hard-sphere solution to the
distribution problem will give b -a. But if there
is clustering on some larger scale, then physical-
ly we expect b to be the clustering length. Evi-
dently 5Pn can then still be important even for
very small ka and (ca. It is worth recalling that
in this regime diffuse scattering becomes impor-
tant when &-b. We suggest that this is the mecha-

dR dR'g"'R, R'; R-R' )

gA

XI)+).o(R) y)~).o(R } e(i.(()4')
Rl+2 R 1+2

(68b)

(2&(R)

0, R&2a
(Sea)

An exact evaluation of (63) and (6 I) requires a
complete knowledge of g and g for the system.
Unfortunately, these are seldom available, par-
ticularly g"'. We know, however, that the inclu-
sions do not interpenetrate. The excluded volume
(EV} distributions defined by
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and

1, R & 2a, R' & 2a,

gu'(R, R'; IR-R'I)= IR —R'I »a
0, otherwise

(69b)

partially take this requirement into account. This
distribution is exact (in the absence of clustering)
only in the small-p limit. But even for larger
packing fractions, as we shall see, excluded vol-
ume effects, as represented by (69) turn out to
be major contributors to &&"'. Taking the limit
kb«1 we now have

where

I-m )
6(1 —r)) ~ flag 2'(21+ 1}

(VO)

(71)

The qua, ntities y& are a measure of the relative
importance of the pair and triplet contributions.
For the excluded volume distribution (69}, we have

y, =3a A, /4vA,

with A& evaluated at k=0. If, in addition k2a«1,
then

u) n~-'l(l + 1) &2 —e,

more typical of an upper limit that remains com-
patible with the cermet topology. Nevertheless,
we shall see the range W. 2& g+-0. 4 still presents
a difficulty in the l = 1 term. Although the use of
the exact g will typically increase the importance
of the pair term relative to the triplet term, it
appears that even for relatively small filling frac-
tions (8-0.25) corrections must be sought for
the excluded volume g ' .

One approach is to take g to be the hard-
sphere fluid result and to approximate g' by the
Kirkwood superposition approximation:

z"'(ll, ft'; IR- R'I) =g"(R)g"'(ll') z"'(IR- R'I) .
This will likely prove adequate, although calcula-
tions to confirm this are not yet available. An-
other (rather simple) approach to this problem
that has the correct qualitative features without
requiring the (currently unavailable} distribution
g'" is the following: In the close-packing (CP}
limit ('0 = rl, -0.74} each particle has 12 nearest
neighbors in a local fcc arrangement, regardless
of whether the overall packing is fcc, hcp, or
random. Since the nearest neighbors ordinarily
provide the bulk of the contributions to the sum in
(74}, we approximate the sum at p = r), by the
corresponding sum over an fcc lattice. We can
express our results using Eq. (70), where

cEV
y1 = 4y

'
~

y2 32 y

Ev
y

and we may extrapolate for large l by

(V2)

ri =r2r ——-I/n. ,
CP CP

y =-7.251137,

yg ———58. 8766,

and

(75)

y =A,l 2+A4l +A6l

where

(V3)

&P )=i y=a IR, -R, I

(74)

We note that this quantity is positive definite, or
equivalently r)r, &-l. However, p, does not
satisfy this condition for g &~.

Now, in monodispersed cermets, the physical
range of g is 0 ~ 9 ~ 0. 582, the upper limit having
been determined by Vissher from computer ex-
periments involving the random dropping of identi-
cal spheres. However, experimentally 5-0.4 is

A, =+0.2087, A, =+33.04, and A6=-29. 50.

For the true distribution (and k = 0), we use (60)
and (68) to obtain

(4l —1)(4l + 1)
y2l -1 I )c + c

~C

&&[P„(0)+2P„(I/~2)] (large l) .
Since we lack the specific information about the
true distribution that would select one of the phys-
ically possible values of &J' as a function of p,
in the interests of simplicity we will interpolate
between small p and close packing by

1/y, =(I/y~av}(1 —rl/q)+(1/y, r)(7)/q, ). (76)

If exact information becomes available we can al-
ways use (67) and (68).

Another regime where we can calculate &P is
that of small g (low filling fraction). Here we need
consider only &, but we are still required to
consider all powers of D. Again the Inanipulations
are lengthy but straightforward. We find for d

4 ' =p dR R g'' R 3C R) D ' +D -R)D R)D ' + ''' -R

—k(R)[D %(-R)D '+ g(R)e'"' + O(1/N)] . (77)
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In the small va, ka limits, we can carry out the angular averages provided we assume that we are near at
most one of the multipole resonances. This assumption is justifiable except for large l resonances which,
in any case, are of diminishing physical importance. Then

l 2l+1 I
-1

(78a)

where

l (2L)t

(2L+1)(L+1) (L+,m)! (L —m)! ' (78b)

(78)

which in the small-k2a limit gives

u) -q L(-1)"' „, ~„u (L+ 1)(2L+ 1)(&2 —&,)

3(1 —7}},, (2L + I)' „., '
(L + 1)c, + L~,

We note that for any reasonable g the principal effect of correlation for small p, as usual, is a conse-
quence of excluded volume. Using such an excluded volume distribution we then have

~( 1ht+1
5P = g ', g In(1+(-I)'"C, &&2""'(D~) '~,3(1-'g), , (2L+1)' . , C,

(e! )ar=euuMo~Mo ~

where

, Di +(I- rL)6P/2+ rL/6

ling + (I - 'g) 5P/2 - rL/3

(81)

(82)

Clearly, further corrections to these expressions
can be obtained but we will not pursue them here.

We are now ready to compare the effects of
structural multipoles in periodic and aperiodic
systems. In periodic systems, particle equiva-
lence (B,"' independent of i) means that multipole
effects emerge after the folding procedure in
multipole space. In aperiodic systems a particle
equivalence apProximationwould result in the
absence of structural multipole effects. However,
these effects, which are important, emerge from
corrections to the particle equivalence approxi-
mation. Because of the lack of symmetry in
aperiodic systems, multipole resonances can oc-
cur for all l, although typically they are less pro-
nounced than in periodic systems.

In periodic systems higher multipoles are
associated with terms carrying corresponding
powers of g. Contrast this with aperiodic sys-
tems, where all multipole corrections are initial-
ly linear in p.

The reason that structural multipole effects are
more important in aperiodic systems with small g
is that close approaches between inclusions are
permitted. However, the relative importance of
these effects is reversed near the periodic close-
packing 9, since here there are more close ap-
proaches in the periodic system.

To recapitulate the major results of this section,
we can state that providing va «1, we have a pro-
duct rule

I

and similarly for p MM„G. If, in addition k2a «1,
then (82) becomes

Eg + [(I—'g}P + 'g](e2 —eg)
MMMG I e + (1 g}P(e g )

(83)

where

P =-,'+m '"+m."'.
In the limit kb«1, vb«1, 6P' vanishes. In the
weak-scattering case (&2-e,}, 5P", is given by
(67) or (VI) while for small 7} it is given by (76),
(78), or (79). In general 5P is a, function of k
and tc and hence of &. The dependence of &P on &

is weak when va«1 and in that case (82) or (83)
can be solved by iteration. If kb«1 and ~b«1,
&P will become independent of k and K. We note
that the product rule has been presented else-
where and that the results of several experiments
have been accounted for using depolarizing factors
interpreted as shape effects or effective multipole
interactions. ' However, these were reaL (rather
than the frequency-dependent complex quantities
above) In both .cases their use was introduced in
an intuitive and less general context. Our results
indicate that at least part of the observed 5P might
be traced instead to structural multipoles.

As already mentioned, in Fig. 2, we compare
MG, sc, and the aPenodic MMMG (weak scatter-
ing) for a two-dielectric composite. As argued
above the effects of multipoles are far more pro-
nounced in aperiodic systems. Figure 3 com-
pares the same three cases for the model of
(Drude) gold particles dispersed in a dielectric.
Note that the sharp structure of the simple-cubic
case does not appear in the aperiodic MMMG
(small rL) case although considerable analytic
structure in the latter still persists.
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V. SIZE DISTRIBUTIONS AND MULTICOMPONENT
SYSTEMS

In this section we consider aperiodic systems
in which the condition that the inclusions be identi-
cal is finally relaxed. In fact we shall allow them
to vary both in size and in composition. At the
outset it is important to note that when a s100 A,
C2 and p2 can both depend on a, and in fact, depart

I

appreciably from their bulk values. ' In this re-
gime, therefore, even a system which has two
components when the spherical inclusions are of
identical size, becomes a putative multicomponent
system when the sizes are dispersed, i.e. , the
size of the inclusion at R~ is a&.

As before, we can set up a multipole scattering
formalism and obtain

1 1 ih;(/ca, )" ag,'(a', ) Ka(j', (~a, ) j, (/za()

—4wi' ' g J(lm; I'm'; I, m —m')e' » ''()Y 2„~ (R„»)h~, (tcR„., )i' B, /

—42/iz p T(lm; l'm'; I, m —m')e'" /(/''Yz» ~ (R„.„)hz(zR„.„)
e( a„I') I'(Ka„ I')

(K y)j;(,) ca/, ( a~)ag,"(a~)j (a4)

instead of (51). Here
~g)
B,)~ = (Ka/j); (za/)B, (aa)

Again, for ~a«1 we have a matrix equation of the
type

I

at a product rule similar to (81) with

iDz + (1 —2)) 5P// + 2)/a
'iles, +(1 2))aP, 2)/a '

where

(sv)

(Dq b, z 5» 6»» 5(/+R, ', ./ ~ )B,./ ~ =0, (Sa)

t'fifth'g

and

D' =&D'&[a —&f)'&&(D') '&1, (as)

where all size and composition dependence is in
the D, (note that the phase-shift problem is dif-
ferent for each inclusion). We proceed as in Sec.
III, except that the diagonal term now depends on
position. However, we make the reasonable as-
sumption that size and composition are not cor-
related with position. Further, we assume that
physical conditions can be chosen such that ~a„
ka„vb, and kb are all small, for alii. After
quite considerable manipulation we again arrive

D), » D, , ,&aj,——(Ka)&/a(j, (/za), (ss)

and ( & stands for an average over size and com-
position distribution.

For weak-scattering systems, and ~b«1 and
kb «1, 5P is as in (Vl) or (V2) except that D ' is
replaced by & I) &. For small r/ (and vb «and
kb«1) we have for the excluded volume distribu-
tion

(II/2 P )/2 1 +C )(242)+1)(g-1gj-z)z/2
(z

=
a(1 )g 2f I g C NT (D )2

- I ~ XS-r'2+'~(D-'- -')'n

/D2x -zD-'C' xa
Df 2 g+l zg

(so)

To get triplet corrections three averages over
size or composition distributions are required,
and so on, for higher than triplet distributions.
Since even the double average is quite cumber-
some for continuous distribution of sizes we ob-
serve that for many multicomponent systems a
more reasonable starting point may be the effec-
tive medium theory (in the spirit of Sec. II) at
least for those systems possessing the cermet to-
pology. An expression for ~ for this case has al-

I

ready been given. It appears that if there is a
distribution of sizes only (the e, iz( being unaltered
by site) then there should be some broadening of
resonances, but generally little change from a
monodispersed system with the same filling frac-
tion.

As noted above, there is implicit composition
dependence which emerges from a distribution of
sizes. Such effects can be crudely taken into
account in cermets by replacing I/r in the Drude
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model by I/r+ v~/2a, where vr is the Fermi
velocity. In principle this should be taken care of
by applying (88). If instead we consider only the
average size, we obtain Fig. 4. It shows the
absorption coefficient for (Drude) gold in KBr for
(i} MMMG Bulk, (ii) MMMG (average size), and
(iii) MG (average size). The introduction of a
size-dependent &q (via I/ r-I/ T+v~/2a) greatly
smoothes the structure of the bulk result. Since
we expect only some small further smoothing due
to size averaging, the full multicomponent formal-
ism is probably not required in order to take
such size averaging into account.
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APPENDIX A

The purpose of this Appendix is to give the
solutions of the radial equation (14}and to com-
pute the phase shifts &g, [defined by Eq. (18)]

(
1 d I(I+1) 2+k', f,'(~)=0, (A 1)

where k; =(u&/c} e, p, Th. e solutions to (Al) are
well known and can be written as

fs(r) =c,j, (k;r)

+ d, n, (k,x) (r, &
& r & r,), (A2)

where e& and d& are arbitrary constants. Now

f, (r} must be finite everywhere, so it follows
that in the innermost sphere (where r may vanish)
the constant d„must vanish. In addition, Eq.
(Al) is linear, and since we therefore have an
arbitrary overall constant, we may set c„=1.

To complete the solution we need the remaining

for the case of a layered sphere. The layered
sphere is formed by taking a homogeneous inner
sphere of radius r„(described by e„and p„) sur-
rounded by a series of concentric spherical shells
whose outer radii are r, (2 &i &n, rq &r, & r„)
composed of homogeneous material described by
&; and p&. As usual the host is described by &&

and pq.
Of particular interest are the cases n =2, the

uniform sphere, and n = 3, a singly coated sphere.
Though we shall consider &g, , the complementary
results are obtained from the standard changes
(c, E) (p, H).

Since the &; and p; are constants the radial equa-
tion in each layer is
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FIG. 4. MG and MMMG (aperiodic) curves for the system of Fig. 3; comparing results for bulk and size-modified
Drude relaxation times for Au; r~~=50 A. .
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c, and d, ~ These we determine from the boundary
conditions. First, the solutions of (14) must be
continuous and hence

'41ji(ki-iri-i) + di-in&(kl-ir' 1}

=ci j, (k, r, i)+d, n, (k,r, ,). (A3)

Note that (A3) and (A4) can also be derived from
the continuity of, respectively, the tangential
components of H and E.

After a little manipulation we find for the phase
shift

Next, we integrate the radial equation (14) over an
infinitesimal range including the point r& ~', this
gives

c,-,d, (k, ,r, ,)+ d, ,N, (k;,r, , )

=c,Z, (Qr; i)+cP(N, (kiri, ), (A4)

where

where

J, (kma}+ (d2/c, )N, (k2a)
' j,(k2a} + (d2/c2)n, (k2a)

and

J,(k, r) = j,(kr)+r j,—(kr)
d ~

(A5)

(As)

It remains, therefore, to determine the quantity
s2 =d2/c2, which in fact requires us to determine
the s;=d, /c„where the d's and c's are related
by (A3) and (A4).

After much manipulation we find

d, (k,r; i}ji(k, ,r, ,} d, (k, ,-r, i Ij, (kir, '&)+si[d.&(k, ir, i)n, (k,r, ,) -Ni(k;r;, )j, (k, ,r, ,)]
N, (k, ,r, ,)j, (k, r, i) -Z, (k, ir, ,)n, (ki iri. i)+s, [N, (k ri, , ) n(kir, i)-N, (k, ,r(,)n, (k, ,r, ,)] '

but since s„=0 we immediately have an iteration scheme enabling us to generate s2 ~ For the uniform
sphere case (n =2) this procedure gives

E ~ i k2a d . keg d
(k a) d(k .)" ' (k a) d(k .)' "

which reduces, in the limits k&a«1, k2a«1 to

k a""(1+1&+'""' "' "')2l+3 p, ,
Unlike the quantum- mechanical case,

»m &gr ~0
g ~c~

The reason for this is that (A4) requires f, (r) to
possess a discontinuous derivative, in contrast to
the quantum- mechanical requirement of continuity
of the derivative of the wave function.

For the other case of interest, the coated sphere
(n = 3}, we find in the quasistatic limit

'g, =(l+1)
[(l+ 1)e2+ l&,]+ l(&2 —eg) $

' '

[(}+1}tg+}t}(&+}}(\g—1}i )
where

5=r,/r, .
It should be noted, in particular, that only for

l = 1 can &g, for a coated sphere be obtained
from &g, for an equivalent uniform sphere whose
equivalent e2 is given by &" as prescribed by (1}.
Thus, even in the quasistatic limit a coated sphere
cannot be completely characterized by a single
effective dielectric constant.

+P dRmgs(R&k, &)+ ~wSso ~ &

v4~
'

where

m~„(R, k, s) =i' ei~ hz(sR)Y~'(R). (B2)

Next we note that for R &Ro (where Ro is a few
times the largest primitive-lattice vector) the
sum and integral are equal. On the other hand,
if R & RO it is a consequence of the quasistatic
condition that for L & 0 the angular integral will
vanish. A ccordingly,

M~„(k, K}= Q m~(R& k, s}
R~O
RCRO

—p dRmrg R k If: L&0), (83

APPENDIX B: EVALUATION OF THE STRUCTURE
CONSTANTS

We consider here the structure constants
M~(k, s) for a periodic lattice, first in the quasi-
static limit, and then more generally. For the
quasistatic case we divide I as follows:

M„(k, v}= —p fdR) . „(R,k,
%40
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and if we now expand m in powers of &, retain
only the leading terms, and evaluate the integrals
we get

Mr, k((kk v) =i (2L —1)lt ~-L V. r,*„(R)
gqp t&R

for example,

u, -2&S&
Ag(y, R) =1—,2L 1)

dtt e ' (BSa)

or, equivalently,

Note that the upper cutoff on the sum can now be
omitted (it is superfluous). We observe that for
I =1 the second term dominates the first. For
L ~ 3 the first dominates; and for I- =2, both
contribute. The case I- = 0 gives

M„(k, )= (Z —e JdR)—
R&Rp

1 i
«(k' —8) (B5)

and here the second term clearly dominates.
In the general case, we note that the direct sum

in R space converges exponentially fast if & has a
positive imaginary part but otherwise the conver-
gence is slow. This problem is treated by divi-
ding the sum into two quickly convergent sums
(one on the lattice and one on its reciprocal) in
the spirit of the Ewald method. ' We can obtain
the result in closed form, in contrast to the
asymptotic expansion given by Morse. Speci-
fically, we separate

MrJd(k 2 )() =Mps(kk tc) +Mrk((k, K) 2 (B6)

where

M~~„(k, ~) = g mi, „(R,k, ~)A~(y, R}
R/p

+ 5ru5so&/~ 4v (B7)

with A& defined below. Transforming the comple-
mentary sum to the reciprocal lattice we obtain

M (k, e)= ., e — dK)Y" (,„)2' g

dRRj& k+K R hl, vR
p

[1-A,(y, R)]. (B8)

Here {K)is the set of reciprocal-lattice vectors.
The function A& and the parameter 'V of the argu-

ment are chosen for convenience: we may take,

(BSb)

We find, after considerable manipulation that

(2l —1)ll(k kk}( 2 ) ((t

(2+ )"' d d e "+(e--e))
h+~ &h'

~ - &4X)&/47'

R (2)+(rr-, — )).2k' k+ K

(B10)

For relatively modest values of I-, the functions
Pz, are easily determined. Let u = (k+ v) /km and

P =(k+ v} /2y . Then

Pp —1,
Pg —+ —1+P,
P, = a' —3u+ 1+p(u —2) + 2 p',
P, = u'- 5u'+ 6u —1+p(a' —4u+ 3)

+ p (2 u —5)/5 + p'/1 5, (B11)

p4 ——u —7a + 15u —10u+ 1+p(a —6u + 10u- 4)

+ p (3a —14a+ 14)/7+ p (10a —28)/105

+P /105,

and

Ps —n —gu +28m —35m +15m —1

+ p(a4 —8uR+21u' —20a+ 5)

+ p'(4p' —27u'+ 54a —30)/9

+ p'(7u' —30a + 42)/63+ p'(u —3)/63+ p'/945.

Notice that the integral contribution to I, which
is simply the R=O term in M", clearly vanishes.

The choice of A, used here provides excellent
Gaussian convergence. If we take y-1, both
sums converge quite rapidly. Finally, it should
be noted that if both k and v are real it is neces-
sary to add to ~ a small positive imaginary part
in order to recover the 5 functions that must arise
when

~
k+ K

~

—v = 0.

APPENDIX C

Here we present formulas for the selection constants for some of the more useful cases. In addition we
give some identities necessary for deriving (22). The manipulations, many of which we omit, are straight-
forward but quite lengthy. We have

(i} J(le; f'm'; 00) = 5, , 5 ~ /)i 4v,
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(21 + 1)(21' + 1) (21 + 21 ' + 1))'
2 ~ 2 )d ttt tt) 4 l(l 1)ll(ll 1)

(2l)!(2l')!(l+ l')!
(l —1)!(l' —1)!(2l+ 2l'+ 1)!

(l + l' —m + m ')!(l + l'+ m —m ') I

(l + m)!(l —m)!(1'+ m')!(l' —m')!

(iii) J(lm;l'm';LM)=0 unless L= ll —l' —1l, ll —l' —1l+2, . . . , ll+l'l

(C2)

(c3)

and

(iv) T(1m;1m';1, 0) = —& ~
2~S&4~ '

(v) T(lm'; l'm; LM) =0

(C4)

unless

M=m-m', and L= ll-l'-1i, ll-l'-ii+2, .", ll+l'-1I.
Next, we define

()'"() . ;1' ';1';lM)=(l(l+()l'(Y+1)) Y J
d LY, -„(i')(1; ( ))*fd" Y '2( w) ( )Y' '( )

tft ~ &

XC(lm; l'm'; LM),

where

(C5)

(C5)

Note first that the Q' are nonzero only if ) =) +1. The following identities are useful:

T(lm; l'm', L, m —m ') =—f)Jf (lm; l'm '; l ' —1;L, m —m ')

=-Q (lm, l'm'; l'+ 1; L, m —m. ')

= —,'Q"'(lm, l'm '; l' —1; L, m —m'}

= Q (lm; l 'm '; l' + 1;L, m —m') . (c7)

APPENDIX D

In this Appendix we consider the calculation of
the (average) matrix elements for an aperiodic
system. We have

3C()(2, ) 2 (k, w)=D5„.& ~ — wi' ' waj)(~a)j;( a)

XQJ(l, m;l', m';L, M)(M (k, &}},
IM

(»)

(Mg)d(k, w)} =i' p dR R'j ~(kR)hw(wR }
0

+i' p dRR h Rj~ kR h' gR
0

+ '5gP5)YPz/2t 4w .
Using standard results, we have

dR R jL, KR hl. KR
0

where kaj~, (ka)h~ (wa) —zaj 1(ka)hY 2(wa)
u"- ~' (D4)

(Mldd(kt w)} =i '
p dR g(R)e' g(KR) Yrdd(R)

+ fk05)doi/& 4w (D2)

For ka«1 and Ka«1, using the usual expansions,
we find

Since g(R) = 0 for R & o—= 2a and using the expan-
sion of e'"" in spherical Bessel functions, and

defining h(R) =g(R) —1, we have

i' p dRR jz(kR)hz(wR) = (-) 4wp
0

+ O((ka), (Ka) ) . (D5)
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Suppose now that h(R) has a natural scale length,
say b, due to clustering. Then we have, changing
variables,

dRRjr(kR)kl', (xR)k(R)- +, Cxx h(bx),
Q

+ a/~

dRR jr, kR ha cRhR

=b dx jl, kbx)hl. Kbx h bx ~ D6

If kb «1 and vb «1 we can use the expansions of
the spherical Bessel functions, 'and we find

where the final integral is of order one. Thus the
leading correction to the quasistatic result is of
order (kb) relative to the other contributions to
(M). This implies that even if ka«1 and xa«1
there can be significant corrections if there is
clustering. If there is no clustering, however,
b -a and these corrections are small in this limit.
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