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When atoms are brought together to form molecules or solids the change in the kinetic energy of the core
electrons can be an order of magnitude larger than the change in total energy. ln spite of this,
pseudopotential methods, which neglect the redistribution of the core electrons, give results very close to the
fully self-consistent results. We explain this apparent contradiction by showing that the correction to the
frozen-core approximation, an approximation used implicitly in a pseudopotential calculation, vanishes to
first order in the charge-density differences and we give a closed formula for the second-order correction.
The cancellation of large errors involved in the frozen-core approximation is demonstrated for valence-
electron configuration changes in several free atoms and for a bee to fec transformation of Mo. In all cases
the frozen-core approximation makes an error of less than 5% in the energy of transformation, and the
second-order correction formula accurately reproduces this error.

I. INTRODUCTION

Within the past year several groups have pro-
posed pseudopotentials to be used in the calcula-
tion of the electronic structure' and binding prop-
erties? of transition metals. Pseudopotential meth-
ods® have the conceptual advantage of concentrating
on the electronic states that one expects to be in-
volved in bonding, but the validity of the frozen-
core approximation used implicitly in the pseudo-
potential methods has been challenged* by recent
fully self-consistent calculations.

Such calculations*5+® have demonstrated that the
core wave functions are not insensitive to the
atomic environment. For example, the kinetic en-
ergy of the core states of Mo increases by 5 eV
when the crystal is formed, while the change in
total energy is 6.7 eV per atom.” Similarly, if one
calculates the total energy difference between bcc
and fcc Mo, one finds a transformation energy of
0.5 eV per atom and a core kinetic-energy change
of 2.7 eV. Similar results indicating large core
kinetic-energy changes (and thus significant
changes in the shape of core orbitals) accompany -
ing structure changes were obtained by Janak* for
nearly-free-electron metals.

The facts would seem to invalidate pseudopoten-
tial methods for calculating the binding properties
of metals. In these methods one constructs an ef-
fective Hamiltonian for the valence electrons that
incorporates the effect of the core electrons. The
core part of the pseudo-Hamiltonian is considered
to be a fixed quantity, independent of the surround-
ings of the atom® and unchanged when the pseudo-
potential calculation is iterated to valence self-
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consistency.® This concept of transferability re-
lies on the assumption that the core-electron wave
functions are not affected by different environ-
ments, an assumption that the fully self-consis-
tent calculations indicate is unjustified.

The present paper will explain the quantitative
success of pseudopotential calculations of binding
properties®® by showing that the magnitude of the
errors in total energies and orbital binding ener-
gies associated with the frozen-core approxima-
tion are quite small, even though errors in indi-
vidual components of the total energy can be large.
This will be done by deriving an expression, with-
in local-density theory,'° for the frozen-core-ap-
proximation error defined as the total-energy dif-
ference between a fully self-consistent calculation
and a calculation in which the core-electron den-
sity is kept fixed at its value for a fully self-con-
sistent calculation in a different environment (one
might use the frozen-atomic-core electron density
in a solid-state calculation, for example). In the
frozen-core calculation only the valence-charge
density is allowed to respond to the different en-
vironment and is treated self-consistently. The
error expression demonstrates that to first order
in the charge-density differences the frozen-core
approximation for the total energy is exact. An
explicit formula is derived for the nonvanishing
second-order contributions. These formal results
indicate that while nonvariational components of
the energy such as the kinetic energy may be quite
sensitive to the frozen-core approximation, the
total energy, which is variational in the charge
density, is not.

We have tested our error expression on two

2222 © 1980 The American Physical Society



21 VALIDITY OF THE FROZEN-CORE APPROXIMATION AND... 2223

classes of environmental changes that are known
to cause significant changes in the shape of the
more loosely bound core orbitals. The first class
is a change in atomic-valence-electron configura-
tion in elements for which some of the valence or-
bitals have the same principal quantum number as
core orbitals. One finds such changes, for exam-
ple, when comparing the valence-electron config-
uration of the transition-metal atoms with the va-
lence configuration in the solid.!! The accompany-
ing change in total energy is a significant compo-
nent in the cohesive energy.'? Since the transi-
tion-metal d orbital has the same principal quan-
tum number as the least tightly bound core orbi-
tals, changes in d configuration will change the
screening of these orbitals and thus affect their
shape and their kinetic energy. We have calcu-
lated the frozen-core-approximation error for
valence d to s interconversion for Ca, Sc, Cu,
and Mo atoms. The error is typically only a few
percent of the configuration-change energy, and
thus less than 0.1 eV per atom for the magnitude
of configuration changes appropriate to the change
from the atomic to the solid-state environment.

The second class of examples is the calculation
of the energy cost of a crystal-structure change.
We have calculated this structural -energy differ-
ence for bcc and fcc Mo using the fully self-con-
sistent augmented-spherical-wave method® and
compared the result with a calculation for the fcc
structure using the frozen core from the bcc cal-
culation. Consistent with the theoretical analysis,
we find that the error made in the frozen-core
calculation is less than two percent of the struc-
tural-energy difference.

We conclude that pseudopotential methods based
on the frozen-core approximation are sufficiently
accurate, on the scale of precision of present cal-
culations of total energies, to be used for the anal-
ysis of bonding and structure.

In Sec. II we derive the expression for the error
in the frozen-core approximation and show that it
is of second order in the charge-density differ-
ences. An approximation to the exact second-or-
der result is developed that can be calculated with-
out resorting to a fully self-consistent calculation.
In Sec. III we discuss our numerical results and
show the compensating kinetic- and potential-en-
ergy changes that lead to the vanishing of the first-
order term in the frozen-core error. In addition,
we discuss errors in orbital eigenvalues. Section
IV is a discussion of our conclusions.

II. FROZEN-CORE TOTAL-ENERGY ERROR

In the density-functional theory by Hohenberg,
Kohn, and Sham'® the total energy is a functional,

E{p,w}, of the electronic charge density p(¥) and
the external potential w(¥). The physical charge
density for a given w is the one that minimizes the
energy functional with the constraint of particle
conservation. In the local-density version of the
theory*® the functional is given by

E{p,w}=T{p}+2 ffpvp+ fw+fp<,c(p), (1)

where T {p} is the kinetic energy of noninteracting
electrons having density p(¥), €,.(p) is the ex-
change-correlation energy per particle of the
homogeneous electron gas of density p, and »(T)

is the Coulomb interaction. We have here and
throughout the paper adopted a notation in which
spatial variables and integration symbols such as
d®r are suppressed.

In the present work we are interested in frozen-
core calculations, i.e., calculations in which only
the valence charge is allowed to vary. It would
then be convenient to have a generalization of the
exact total-energy functional that would be a func-
tional of the core and valence charges (p, and p,)
separately. Since the accuracy of the frozen-core
approximation certainly depends very little on the
specific approximation chosen for the exchange-
correlation energy, it will be sufficient for our
purposes to generalize the local-density approxi-
mation (1) rather than the full density-functional
theory. The last three terms of Eq. (1) are triv-
ially generalized by replacing p by p,+p,. Inor-
der to show that the kinetic energy of noninteract-
ing electrons also can be considered as a function-
al of their core and valence charges separately,
we have to consider the response of noninteracting
electrons to a composite external potential (w,,
w,) where w, is to be used only for core orbitals
and w, only for valence orbitals. This means that
we will treat the core and the valence electrons
as two different kinds of particles and consequent-
ly orthogonality between core and valence orbi-
tals should not be expected. This non-orthogon-
ality is, however, inherent in all frozen-core cal-
culations. It should be stressed that the procedure
is a purely mathematical trick to estimate the
frozen-core error. The resulting functional
To{p., p,} Will certainly be different from the func-
tional T.{ P+ Put

It is not difficult to see that the original argu-
ments of Hohenberg and Kohn can be used to
demonstrate the functional dependence on the core-
charge density, but this technique can not be used
to show the functional dependence on the valence-
charge density. Instead we use response theory
and consider small deviations of the potentials w,
and w, from the physical potential w. If the va-
lence potential w, changes from w to w + 6w, per-
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turbation theory carried to second order gives a
change 67, in the kinetic energy,

6T0=—fw6pv—§ favavawuw((aw,f). (2)
Here
6pv=va6wv+ o((6w,)?), (3)

where P, is the polarizability of noninteracting va-
lence electrons in the potential w. The first term
in Eq. (2) is obviously a functional of p, but, given
op,, Eq. (3) only determines dw, to within a poten-
tial # satisfying P,u=0. This ambiguity does not
however affect the second term in Eq. (2). Con-
sequently, T, is a functional of p, locally, to sec-
ond order, around the physical valence density.'?

The functional dependence of T, on the core-
charge density p, is proven similarly, and we note
that the change in the kinetic energy due to a si-
multaneous change (6w,, bw,) in both the core and
the valence potentials is given by a sum of two
terms of the form (2), one containing 6p,, dw,,
and P, and the other 6p,, 0w,, and P,. This ad-
ditivity of the changes in our new functional
T 0., p,} implies that

6T2
5p.5p,
a fact that will prove important later on. We also
note that when w,=w,=w, To{p,, p,} Will reduce to
To{p,+p,} i.€., to the value of the usual noninter-
acting kinetic-energy functional defined by Hohen-
berg and Kohn,

We complete our generalization of the functional
E{p,w} to a functional E{p,, p,, w} of core and va-
lence charge by replacing T.{p} by T.{p,,p,} in
Eq. (1) and by noting that

=0, (4)

p(T) = p,(F) + p(T),

occ

p(B)= 25 v, (5)
iccore

pfB= D [y
i€valence

The definition of a core state and a valence state
is of course arbitrary to some extent but in prac-
tice it is not hard to make a choice.'*

Define three separate calculations for a system:

(i) A reference calculation used to define the
core-charge density to be used in a frozen-core
calculation for a different chemical environment.
Quantities for this calculation will be denoted by
a zero superscript.

(ii) The frozen-core calculation itself. Results
of this calculation will be denoted by an asterisk.

(iii) The fully self-consistent calculation in the

same environment as the frozen-core calculation.
These results are not superscripted.

Thus let p, and p, be the fully self-consistent
core- and valence-charge densities for a solid or
a molecule and let w be the corresponding exter-
nal potential. For a molecule or solid where all
atoms are the same w(¥) would be ~ZX)zv (¥ - R)
where Z is the atomic number, v is the Coulomb
potential, and the R’s are the atomic positions.
The core-charge density that defines our frozen-
core approximation is p2, and p¥ is the valence-
charge density which is self-consistent in the field
of the fixed core-charge density p and in the ex-
ternal field w. p? could, e.g., be a superposition
of atomic-core-charge densities or the core-charge
density from a renormalized atom calculation.
Naturally, the closer p{ is to p, the closer p¥ will
be to p, and the smaller the error in the frozen-
core approximation. The error 0 is now easily
written

6=E{p§’p:'w}_E{pc’pu’w}' (6)

An expansion of 6 around the fully self-consistent
result gives to second order in the density differ-
ences

6= f (pc
6°E
+3 ff(Pg—Pc)W(pf—pc)
(4
5%
+ff(pf—pc)57;g;;(pt—pv)
(- v

\ o
o3 [f o -p05 5 6 - 0. )

In the fully self-consistent calculation the energy
functional E{p,, p,, w} is stationary with respect to
variations in the core- and valence-charge densi-
ties separately, and therefore

0E{pe,py,w}_ SE{Popuwh
3p,(T) e’ 8p,(T) v?

where pu, and u, are the Lagrangian multipliers
associated with the conservation of core and va-
lence charge. Since the total number of core elec-
trons and the total number of valence electrons
are the same for the frozen-core and the self-con-
sistent calculations, the first-order terms in Eq.
(7) vanishes. This is the crucial result for the ac-
curacy of the frozen-core approximation.

In order to estimate the magnitude of the sec-
ond-order terms we need the three second-order
derivatives. If we replace T {p} by To{p,,p,}, and
p by p,+p,in Eq. (1), we get an explicit expression
for the functional E{p,,p,,w}. From this expres-
sion and from the above-mentioned relation

OF
-GF(P: -p,)
v

(8)
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8°T,/5p,0p,=0, we infer that

62E{p_,p,,w
Jﬁ‘-”-"’}“ =o(F =)+ u' O(F - F). (9)
6p,(F)8p (T')

Here p’,, is the density derivative, evaluated at
the total density p(¥), of the exchange-correlation
contribution to the chemical potential of the homo-
geneous electron gas. The derivatives 6°E/ op?
and 52E/bp? are more complicated since the kin-
etic-energy parts of these derivatives are not
easily obtainable. In order to circumvent this dif-
ficulty we make use of the fact that the density p}
is the valence-charge density that minimizes the
energy in the frozen-core calculation. This im-
plies that

SE{ 0,03, w}
— ok (10)
6p,(F)
Expanding this first derivative around the self-

consistent solution {p_,p,,w}, multiplying by
p¥ - p,, and integrating gives

5’E
0 —_—(p* -
J:[(Pc p"') 6p,0p, (p” p")

5%E
o [ 6t -pgog 0} -pI=0, (1)
v v

which when substituted into Eq. (7) relieves us
from having to evaluate 6°E/6pZ.

Similarly we would like to be able to evaluate
the third term in Eq. (7) from the fact that p is
the self-consistent core-charge density of some
reference problem. Usually the free atom is
chosen as the reference problem and p{ is then a
superposition of atomic core densities. It is,
however, very difficult'® to define the energy func-
tional that is minimized by this choice of pJ. The
effective potential that gives rise to pg is certainly
not a superposition of atomic potentials and the
problem becomes even harder if the cores over-
lap. To overcome this difficulty we will simply
say that p: is the self-consistent charge density of
core electrons moving in some suitably chosen but
fixed valence charge p} and in some external po-
tential »°. By choosing p? and »° properly we
could of course make p: very close to a superpo-
sition of atomic-core-charge densities. We could
also simulate the core-charge density of a renor-
malized atom calculation. The external potential
w® would always include the potentials from nuclei
with the same charges and positions as w but
would also include nonsingular and slowly varying
parts with the full symmetry of the system under
consideration. These features allow us to use
first-order perturbation theory for the difference

potential w°® - w.

Thus from the definition of our frozen core p?
we have

GE{ PS: PY wo}_
6p, (%)

with some constant u? independent of T. Again ex-
panding this first derivative around the fully self-
consistent solution, multiplying by (p{ - p,), and
integrating gives

82E
0 (]
f (pc - pC) 6pcépt: (pc - DC)

6°E
+ ff(pé’ 'PC)W (P = py)
c v

+ff(p3—pc)52c—§u(w°—w)=0. (13)

He » (12)

It follows from the expression for the energy func-
tional [Eq. (1)] that 6E/6p,6w=1. Substituting the
results of Eqs. (11) and (13) into Eq. (7), we ob-
tain the explicit second-order formula for the
frozen-core error,

5°E
=% [f -0 o (63 - )
c v

+3 [ (o= p)w - ). (14)

The effective one-particle potentials for the
frozen-core calculation and for the reference
problem are

V*('f‘)=w+fp*v+ Bheo(P*)
and (15)
VAT)=w’+ fp°v+ Bw(p®),

respectively. Here p*=p2+p¥ and p°=p)+pS. Us-
ing our explicit expression for 62E/5p,6p,, Eq. (9),
we can rearrange Eq. (14) so that our final result
for the error & of the frozen-core approximation
becomes

6=4 [ (e -p)V*- V0. (16)

This formula clearly exhibits the second-order
nature of the corrections. We have also used it to
estimate the third- and higher-order effects. In
the test cases we have considered (Sec. III) and
for which we have calculated the total error due to
the frozen-core approximation, we have found that
Eq. (16) accounts for more than 95% of the total
error, and therefore higher-order effects are
negligible.

The expression for the error [Eq. (16)] cannot
be used to estimate the error in the frozen-core
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approximation if only a frozen-core calculation
has been done, since it involves the fully self-
consistent core-charge density p,. An accurate
estimate 6* of 6 can, however, be obtained by al-
lowing the core to relax in the frozen-core poten-
tial V*, and using the resulting core-charge den-
sity p¥ instead of p, in Eq. (13). Thus

o*=4 [ (o3 -ptNV* - V). (17)

This calculation represents the first step towards
self-consistency. The next steps would be to let
the valence charge relax and then let the core re-
lax again. The difference between 6 and 6* will be
second order in the core polarizability and there-
fore extremely small. In the Sc test case we found
that the difference between 6 and 6* is of the or-
der of a few percent.

III. NUMERICAL TESTS OF THE ANALYSIS

When atoms are brought together to form mole-
cules or solids, there will be a redistribution of
valence charge which, in turn, will cause a change
in the core-charge density. In a solid the valence
charge will be compressed: The same number of
valence electrons will occupy a smaller region of
space in the solid than in the free atom. Also the
configuration of the valence electrons will change:
The decomposition of the valence change into dif-
ferent angular momentum components around each
nucleus will be different in the solid or in the mol-
ecule than in the atom. The compression and the
configurational change are the two major changes
in the valence density but of these the configura-
tional change has the largest effect on the core-
charge density.” The energy associated with the
configurational charge will also be a large part of
the cohesive energy.'? We have therefore tested
the frozen-core approximation by applying it to a
configurational change in a number of metal atoms
(Ca, Sc, Cu, and Mo) and comparing the results
to fully self-consistent results for the same
change. We have chosen to study these metals be-
cause the nd (n=3 or 4) valence orbitals occupy
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the same region in space as the ns and np core or-
bitals, and consequently one would expect the fro-
zen-core approximation to be less accurate for
these materials. To simulate the solid we change
the atomic-ground-state configuration'® from 34",
4™ to 3dm6n’ 4gm=0n

The results can be studied in the first four rows
of Table I. In order to demonstrate the large can-
cellations that occur between different contribu-
tions to the error in the energy of the frozen-core
approximation, we divide the total energy [Eq. (1)]
into a core energy, a valence energy, and a core-
valence interaction energy. Thus

E{p,.p,w}=E,+E,+E,,,

where
EC=TC+% fp,_.vpc+ fpcw+ J'pci,,,(pc),
E,=T,+3 fp,,vp,,+ fPqupvi,c(pv), (18)
E, = f VP, + f pe,(p) - f P-€x.(P,)

- f Py €eclPy),

and where T, is the sum of the kinetic energies of
the individual core orbitals'” and similarly for T,
We use a 0 in front of these quantities to denote
the errors in them due to the frozen-core approx-
imation. Although the error AE* — AE is less than
0.1 eV in all cases, the redistribution of the core
electrons gives rise to large changes in core kin-
etic energy (867,). Most of this change comes
from the shell that is spatially degenerate with
the valence electrons, but the contribution from
the more tightly bound core shells is still much
larger than the total s —d promotion energy. For
Sc, for example, 6T¥=19.08 eV from the M shell
and GTC"-"= —2.50 eV from the deepest core elec-
trons. The large change in the core kinetic en-
ergy is, however, canceled by potential energy
terms, a change in the valence energy, and a
change of the interaction energy between the core

TABLE 1. Energy differences (AE) for the indicated changes in state, the frozen-core approximation (AE*) to them,
and the difference between AE and AE*. 6 is the second-order perturbation result [Eq. (14)] for this difference. The
remaining columns give the components of the frozen-core error which are defined in the text. All energies in eV,

AE AE*  AE*_AE 5 8T, 8T, 8E, 8E, 8E,,

Ca(s? —d%5s1-5) 0.97 1.01 0.04 0.04 13.06 -1.45 -0.16 431 —4.12
Sc(ds? —d1-6sl-4) 0.74 0.79 0.05 0.05 16.58 -3.30 —-0.55 7.79 -7.20
Cu(d10s — g 9%651-4) 0.56 0.57 0.01 0.01 -10.82 3.19 1.96 ~5.27 3.31
Mo (d®s — d +8551-35) 0.12 0.12 0.00 0.00 -7.95 1.89 0.41 —4.68 4.27
Mo (bee — fec) 0.46 0.46 0.00 0.00 2.71 —-0.45 -0.13 1.17 -1.03
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TABLE II. Valence equivalues before (€°) and after
(€) an s-d conversion and the frozen-core approximation
for the latter (¢*). The configuration changes are the
same as in Table I. Energies in eV.

3 € e € €4 e
Ca -3.95 -3.61 -3.62 -1.42 -1.32

Sc -4.36 -3.92 -3.94 -3.65 =2.24 -2.14
Cu -4.78 =525 =5.24 5.9 =7.29 -7.32
Mo -4.13 -4.41 440 -4.27 -4.95 —4.98

and valence electrons.

A simple way to understand how the cancellation
works is to first let the core relax in fixed valence
charge and then let the valence electrons relax
with the core kept fixed. The total error 6
[Eq. (6)] will then be the sum of the errors due
to these two redistributions. Thus

6c= E{Pg’ pu}_E{pc’ Pv} ’
6,= E{p?, 03} - E{p;, p.}» (19)
5=5,+0,.

Since the total energy must be stationary when the
core density is varied and the valence density is
kept fixed and vice versa, as in Egs. (8) and (10),
both §, and 6, are small numbers. In fact, for Sc
6,=0.052, 5,=-0.007, and therefore 6=0.045 eV
as in Table L

Table II contains a comparison of the valence or-
bital eigenvalues for the three calculations. It
clearly shows that the frozen-core approximation
for the valence eigenvalues is quite good (~0.1
eV), although not as good as for the total energies.
In the case of a configurational change it is easy
to get a relation between the errors in the eigen-
values and the error in the total energy. The en-
ergy eigenvalues of local density theory are the
derivatives of the total energy with respect to the
occupation members of the corresponding orbi-
tals'® and therefore

AE= f " feddmsm) - e () Jav, (20)

where 0rn is the number of s electrons that has
been promoted to the d shell. If one subtracts
from Eq. (20) the similar result for the frozen-
core approximation, one obtains the same kind

of relation [Eq. (20)] with AE replaced by 6 and €
replaced by de= €* — €. Obviously 6e=0 when p
=0, and if it is assumed that 5€(v) varies linearly
with v one obtains

6=30n(b¢, - O¢,). (21)
For sc 6»=0.6 and from Table II 6¢,=0.10 eV,

de,=-0.02 eV. This gives 6=0.04 eV which is
rather close to 0.05 eV from Table I. Equation
(21) also shows that the error in the total energy
is about half the error in the eigenvalues.'®

The final row of Table I shows the result of the
calculation of the total-energy difference between
bce and fcc Mo. The core-charge density from
the fully self-consistent calculation® for the bcc
structure is used in a frozen-core calculation for
the fce structure. The table contains the analysis
of the components of the change. As was found by
Janak® for structural energy differences of simple
metals, the core kinetic energy change is signi-
ficantly larger than the energy difference between
the structures. In spite of this, the frozen-core
total-energy error is less than 0.01 eV, the limit
of our calculational accuracy.

IV. CONCLUSIONS

We have studied the accuracy of the frozen-core
approximation by comparing it to fully self-con-
sistent results. Our test cases have been promo-
tions of s electrons to d electrons in four metal
atoms and a structure change of a mid-period
transition metal. We believe these to be realistic
simulations of the charge redistributions that take
place during chemical binding. The results demon-
strate that the error in the total energies due to
the frozen-core approximation is small (~0.1 eV),
in spite of the fact that the relaxation of the core
electrons is accompanied by a change in the kine-
tic energy of the core that can be two orders of
magnitude larger than the error in the total ener-
gy. Within the local-density formalism we have
shown that this is due to the fact that the first-or-
der correction to the frozen-core approximation
vanishes. We have also derived an exact expres-
sion for the second-order correction and shown
that higher-order corrections are negligible. An
approximate version of this expression can be
used to estimate the error without resorting to
fully self-consistent calculations.

Pseudopotential calculations of cohesive prop-
erties implicitly rely on the frozen-core approxi-
mation and the present analysis shows that this is
not a severe limitation even for transition metals.
If, however, higher accuracy than 0.1 eV is de-
sired one would have to let the pseudopotential
change with the surroundings or one could perhaps
include among the valence electrons those core
electrons that have the same principal quantum
number as the valence electrons.

One note of caution should be added. The frozen-
core approximation does not satisfy the virial
theorem. Thus techniques® for calculating forces
or pressures from the virial theorem, rather than
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from derivatives of the total energy, should be
used with caution in conjuction with frozen cores.??
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