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The force on a free atom or ion in a uniform electrostatic field is considered in the framework of the
Feynman-Hellmann theorem. The contributions to the force from excited states are shown to be given
directly by the "oscillator strengths" between these states and the occupied states in the atom or ion. Force
calculations for atoms in molecules and solids are discussed in the light of these results. In the case of
current carrying solids, the Feynman-Hellmann theorem is not applicable, yet the force expression for an
ion in the solid retains the Feynman-Hellmann form. Because of this distinction, arguments based on local
neutrality of an ion in a solid are relevant for an isolated solid but not for a current carrying solid. A
previously derived sum rule for the force on the ions of a conducting solid is shown to be a statement of the
oscillator-strength sum rule.

I. INTRODUCTION

The motion of atoms in external electrostatic
fields is of interest from both a fundamental and

technological point of view. Some of this interest
centers around the migration of impurity atoms in
a metal in the presence of an external electric
field, which is the phenomenon known as electro-
migration. ' Other related phenomena include ionic
transport in solid or liquid electrolytes" and mol-
ecular transport in ionic liquids. '

In treating some of these phenomena, one can
attempt to describe the motion of the atom of in-
terest by first calculating a force on the atom, or
more precisely, on the nucleus of the atom. Ac-
cording to this picture, known as the Born-Op-
penheimer approximation, the nucleus is consid-
ered to be a classical particle while the electrons
are treated fully quantum mechanically. The cal-
culation of the force on the nucleus is therefore
still a quantum-mechanical. problem because the
response of the electrons to the external field is
required.

In general, a quantum-mechanical calculation of
the force on a nucleus in a solid or liquid is a very
difficult task because the quantum states of the
system are known only very imperfectly. Both
continuum and bound states must be considered.
The necessity of including all the eigenstates is
best seen in a somewhat related but much simpler
problem, namely, the computation of the electro-
static force on a free atom. In this case we even
know the answer; the net force should be zero,
which follows either from classical arguments or
from Ehrenfest's theorem. ' However, the relative
importance of the various energy states is not
commonly recognized unless the problem is looked
at from a microscopic point of view.

Our purpose in this paper is as follows: First,

to illustrate the use of the Feynman-Hellman the-
orem' in calculating the electrostatic force on a
free atom or ion. Second, to show that the rela-
tive contribution from the various states is pre-
cisely given by the so-called oscillator strengths
associated with those states. (The "oscillator
strength" is well known by its critical role in the-
pries of optical transitions. ") Third, to critically
discuss the more difficult problem of the force on
an atom in a solid that is subjected to an external
field.

II. FEYNMAN-HELLMANN THEOREM IN AN

EXTERNAL FIELD

The Feynman-Hellmann theorem' expresses the
force on a nucleus in terms of the electron density
in the system. The force is shown to be precisely
the electrostatic force that would be exerted on the
nucleus by a classical charge distribution equal to
the actual quantum mechanical charge distribution
in the system.

If the nucleus of interest has Z~ protons and the
actual electron density in the system is n(r), the
force on this nucleus in an external electrostatic
field E can be written in the Feynman-Hellmann
form

F=Z~eE+ n(r)VV(r)d r+ F,„,,

where e is the charge of a proton and V(r)= Ze'/-
~r~ is the electron-nucleus interaction. The nu-
cleus is taken to be at the origin and the integral
is over all space. The first term in Eq. (1) is the
direct force exerted by the external field (or ex-
ternal charges) on the nucleus. The second term
is the force exerted by the electrons in the system
on the nucleus. The third term, F,„„is the elec-
trostatic force on the nucleus due to all other nu-
clei in the system. Equation (1) is exact provided
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) 6n(r) VV(r)d'r, (3)

where 5n(r) is that part of the electron density
n(r} which is linear in R. (We are tacitly assum-
ing that the surrounding nuclei do not appreciably
move in the presence of the field R. Otherwise we
should also include in &F any changes in F,„,due

to the changed positions of the nuclei surrounding
the nucleus of interest. )

In Sec. III we evaluate Eq. (3) for the case of an

isolated atom in a weak applied field, and explicitly
display contributions from the various unperturbed
states involved in 6n(r}.

III. CONNECTION BETWEEN FORCE AND OSCILLATOR
STRENGTH

For simplicity we shall calculate the force for
a one-electron system. Denoting the total Hamil-
tonian by K, we have

that n(r} is the exact quantum mechanical electron
density in the presence of the field.

Since we shall be concerned with weak electric
fields we need only calculate Eq. (1}to terms lin-
ear in R. To this order we denote the net force by
~F and write

&F =Z,ef+ 5P' (2)

where &F"' is the linear part of the force exerted
by the polarized electrons on the nucleus. Clearly

Hamiitonian H. (The prime on the sum indicates
that n =0 is excluded. ) &, and e„are the energies
of the unperturbed states go and g„, respectively.
x~ is the matrix element fg(r)xg, (r)d'r.

Substituting (6) into (3) we obtain for the force

5gsl E Otl HoVV} x
Eo —E„

(7)

(8)

where p„ is the x component of the momentum. By
writing the matrix elements (p„)„,in terms of x„,
using the commutation rule P„=im 8 '[H, x], Eq.
(8) becomes

F' = -~E

where

f.o = (2m/6')(e. —eo} I»

is precisely the oscillator strength for the tran-
sition O-n."The oscillator strengths" satisfy
the Thomas-Reiche-Kuhn sum rule"

To simplify (7}we use the fact that VV=iK '[p, V],
which follows from the representation of momen-
tum as p=-its/ar. Further note that [p, V]=[p,H]
and hence (VV),„=ia 'p, „(z„-&,). The x component
of the force is thus

K =H+exE, (4)
f„o=1,

where H is the Hamiltonian in the absence of the
field. It has the form

H=p /2m+ V(r), (5)

i g„(r)g; (r)»~eE4jrj= " ' ~ +c.c. ,
lf &O- ~n

(6)

where the sum is over all excited states lp„of the

where p is the electron momentum and m is the
electron mass. The electric field has been taken
to lie along the x direction. Strictly speaking, the
forms (4) and (5) are valid only for a one-electron
problem. However, these expressions can ap-
proximate a many-electron problem in an indepen-
dent electron picture where the exchange interac-
tion may be treated as a local potential. ' In any

case, the result we shall obtain can be rigorously
established for the exact many-body problem, al-
though the derivation is algebraically more cumber-
some. The many-body derivation is outlined later.

To obtain 5n(r) we can use standard first-order
perturbation theory for the wave function of a par-
ticle initially in state go before the electrostatic
perturbation xeE is turned on. The result is'

which leads to the expected result ~F„"=-eE. The
sum rule (11) can be immediately obtained from
Eq. (8) by noting that if we sum over all states

Q (P,),„x„,—c.c.= [p„x] = iff-
The sum in (8} can be taken over all states since
x~ =0, the bound state go having definite parity.

In the above we have assumed only the state go
is initially occupied. If there are N states inde-
pendently occupied then

N

&E„"=-eZ (12)
f=l n

where the originally occupied states are labeled
by l. The sum rule (11) holds for the state 0 re-
placed by any state l so that Eq. (12) gives a total
force &E,"=-NeE, as expected for an N-electron
atom.

To derive the general many-body form of the re-
sult (12) we abandon the one-electron approxi-
mation and include the electron-electron interac-
tion U along with the electron-nucleus interaction
V in the Hamiitonian H of Eq. (5}. The new deriv-
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ation proceeds along the same lines given above,
with the wave functions and charge density written
in their many-body form. In generalizing the one-
electron equations, the operator x should be re-
placed by X, which is the sum of the x coordinates
of all the electrons in the system. In Eq. (7) we
may replace VV by ig '[5, V], where 5 is the sum
of the electron momenta. Further, [0, V] = [5,H]
since [5, U] =0. We then arrive at the many-body
generalization of (12), namely,

5E =-eE Qf, p, , (13)

where p, is the probability of occupation of the
many-body state l in the absence of the field
(Z, p, =1). The sums in (13) are over all states
n, L and the oscillator strength f„, has the many-
body form

where now &„and &, are the energies of the exact
many-body states g„and |t)„respectively. X„, is
the matrix element (g„~Q, x, ~ P,), where the sum
over i is over all N electrons in the system. For
a many-electron system Eq. (13) is exact regard-
less of the details of electron screening. If a
product wave function (independent electrons) is
assumed, Eq. (13}reduces to Eq. (12).

IV. DISCUSSION

A. Force on an isolated atom

Equation (9}gives the electrostatic force on an
isolated atom having an electron originally in state

The expression shows that the contribution
from an excited state g„ is precisely given by the
"oscillator strength" f~. That is, the oscillator
strength for a particular virtual-transition o -n
gives the fraction of a charge contributed by the
particular virtual transition in the screening of
the nucleus in an external field. In the usual con-
text where oscillator strengths occur, such as in
polarizability and optical absorption, "the f„, ap-
pear in sums with various weighting factors so
there is no direct connection between the oscil-
lator-strength sum and these properties. Here,
however, the f„, appear in the force expression
without weighting factors.

The oscillator strengths can be explicitly evalu-
ated for one-electron atoms. ' For example, in
the case of a hydrogen atom in its ground state the
contribution to the sum (11) from the bound states
is 0.565; from the continuum states it is 0.435."
This illustrates the importance of using all eigen-
states, including the continuum states, in a micro-
scopic evaluation of the force on an atom. For a

hydrogen atom initially in an excited state, the
contribution from the continuum spectrum may be
somewhat smaller, e.g. , for an electron in a 3d
level" the transitions to the continuous spectrum
contribute only -0.1 eE to the total force.

B. Force on an atom in an isolated molecule or solid

(15)

where 8 is the energy in the presence of the ex-
ternal field and 5 is the coordinate of the nucleus
in question. If 0 is the exact (many-body) wave
function in the presence of the field, then
S=(C ~X ~4'). Denoting by &b that part of b linear
in the external field, standard first-order pertur-
bation theory leads to

~g = no r r. e d'x, (16)

where no(r) is the exact electron density in the
absence of the external field R. The force 6F" is
given by —a(&h)/s5.

Equations (15) and (16) imply that for any part
of the density n, (r) which depends on 5 through
the explicit form f(r-5), the force becomes

Equations (9), (12}, or (13) are of limited use-
fulness in discussing forces on an isolated mole-
cule or solid. These expressions would now apply
only to the tota/ force summed over all nuclei in
the system. To see this, extend the derivation of
Sec. III to the entire system by allowing V(r) to be
the total potential seen by an electron from all the
ion centers in the system. This allows us to re-
place [0, V] by [5,H), which is the critical step
in progressing to Eq. (8) and beyond. One then
finds, either in a one-electron or many-electron
picture, that the net force from the electrons on
all nuclei in an isolated molecule or solid is exact-
ly -Nef. just as in the case of an isolated atom or
ion. Unfortunately, the force on one particular
nucleus is not directly given by an expression such
as (12) or (13). As we have pointed out, the devel-
opment leading to these expressions comes to an
abrupt halt if V(r) is not the totaL potential from
all the ion centers. Consequently, for the case
of atoms in molecules or solids we are left with
an expression like (7) which requires explicit
evaluation of the matrix elements of V'V and x to
all excited states. There appears to be no pos-
sibility of using the oscillator-strength sum rule
which led to 6F"=-Nef.

A more useful approach for isolated molecules
and solids might be to start from the original force
expression before the application of the Feynman-
Hellmann theorem, ' i.e.,
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&P=QR, (1V)

where Q~-e ff(r}d'r is the net electron charge as-
sociated with the nucleus at R. The implication is
that for ionic-like electron states which carry a
given electron charge Q with the nucleus, the nu-

cleus acts like an entity whose net charge is Z~e
+Q. Thus &0=0 if the nucleus-electron complex
is locally neutral and remains locally neutral as
the nuclear coordinate 5 is varied around its or-
iginal position (Q =-Z~e in this case).

C. Force on an atom in a conducting solid

The conducting solid differs from the isolated
solid in the implied boundary conditions for the
system. The wave functions for the isolated sys-
tem vanish at infinity. The conducting solid, how-

ever, supports a continual current into one bound-

ary and out of the opposite boundary. These bound-
aries are reall. y interfaces with the metal, elec-
trodes attached to the sample. Despite these dif-
ferent boundary conditions, there is no formal
difference between theoretical descriptions of the
isolated solid and the conducting solid in the quan-
tum-mechanical linear-response theory, e.g. ,
Kubo theory. " In either case one assumes a per-
turbation eR h and calculates the system response
using the unperturbed wave functions, just as in
Sec. III. The boundary conditions enter only im-
plicitly in the form of $, and g„ for each case.

Based on the work of Kohn and Luttinger" and
on arguments presented elsewhere, "it appears
correct to assume periodic boundary conditions
and to identify the electric field h with the actual
macroscopic field present in the solid. Here one
is ignoring any polarization charges at the sample
boundary and is treating the macroscopic field as
an external field in the theory. This picture is in-
voked to avoid dealing with screening effects which
are difficult to treat microscopically. A semiclas-
sical discussion of boundary conditions in trans-
port theory has been given by Landauer. "

An important consequence of the different bound-
ary conditions implicit in conducting and isolated
solids is that the Feynman-Hellmann theorem is
no longer valid. The statement of the Feynman-
Hellmann theorem is that Eqs. (1) and (15) are
equivalent. For conducting solids this theorem
no longer is true, since vanishing wave functions
at infinity are implicity assumed in the derivation
of the theorem. Furthermore, the concept of
force as an energy derivative [Eq. (15)] is not
meaningful in a system where electrons are flow-
ing in and out of the sample. A wave-packet pic-
ture is now more appropriate than the picture of
an isolated system in a stationary eigenstate.
Consequently Eqs. (15)-(1V}are not relevant. On

the other hand, Eq. (1) is relevant since it gives
the force as the expectation value of the force op-
erator VV and this is a meaningful concept in the
wave-packet picture. As an example, consider a
proton in an electron gas. Since the electrons
give rise to local neutrality, Eq. (1V) would pre-
dict no net force on the nucleus. This prediction
is incorrect because Eq. (1V) is not applicable,
despite the fact that it has been implicitly assumed
in the past for the electromigration problem. "

It is interesting that the electrostatic force ex-
pression (1) is still physically relevant although
its connection with the energy derivative (15), and
hence with the Feynman-Hellmann theorem, is
broken. One should therefore avoid saying that
Eq. (1) holds for the conducting solid because of
the Feynman. -Hellmann theorem. In the deriva-
tion of Eq. (1) for conducting solids" "one writes
F=(4'~-SHr/SN, ~4') where Hr is the total system
Hamiltonian (including all electrons and ions) and

4 is the total system wave function. [This expres-
sion follows from identifying F with the time rate
of change of the expectation value of the ion's mo-
mentum d(4'

~

@
~

4)/dt and expressing the latter as
(ig) '(4

~
[&P, Hr] ~4)]. Assuming the ions to be

heavy classical particles allows us to use very
localized wave functions for the ions. This per-
mits the replacement of 4 with only the electronic
wave function, the latter being calcul, ated for elec-
trons in the external field and in the presence of
the specified arrangement of iona. Equation (1)
immediately follows. Thus Eq. (1) is established
regardless of the fact that Eq. (15) is inapplicable.

Since Eq. (13) is derived from the still applic-
able Eq. (1), that equation holds for the conduct-
ing solid as well as for the isolated systems dis-
cussed earlier. The net force &F summed over all
nuclei is again -Nef. This sum rule is a general
result which has been already derived by workers
in electromigration using the Kubo formalism. ""
%e now see that this result is just a statement of
the oscillator-strength sum rule.

As an example of the use of the sum rule con-
sider the case of N, impurities randomly distribu-
ted in an electron gas. Since the impurities share
the force equally (on an ensemble average), the
force on one impurity is -Nef/N, . Although this
argument has been used before, "we wish to em-
phasize that it has been implicitly assumed that
the system is an infinite system with no boundary
polarization effects. Furthermore, the infinite
geometry is taken to imply that the uniform posit-
ive background ([cilium) which neutralises the sys-
tem does not absorb any net force from the elec-
trons. If these conditions are not met, as for ex-
ample in a finite geometry, the sum rule leads
only to the uninteresting result that the total force
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on all the nuclei and the positive background equals
-Ne R.

Apart from this special case of ¹ identical nu-
clei (and no other scatterers) in an electron gas,
the general problem for the force on a nucleus in
a conducting solid is exceedingly difficult. The ex-
ternal field gives rise to local polarization of the
electrons (including bound states, if any) and elec-
tron current as well. As implied in our calculation
of Sec. III, a proper evaluation, of the force re-
quires a full calculation with both bound and contin-
uum states taken into account. Various approaches

have been used. " Among the more promising is a
fully quantum-mechanical linear- response theory
approach. " Thus far, however, only some ap-
proximate results have been obtained within this
formalsim. ' '" In the calculations thus far pub-
lished, both bound and continuum states have not
yet been explicitly taken into account. "
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