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Ordering in fcc lattices with first- and second-neighbor interactions
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A prototype phase diagram for the (1 2 0) family of the ordered superstructures in fcc lattices

is calculated in the tetrahedron-octahedron approximation of the cluster variation method. The
tetrahedron-octahedron cluster combination allows for first- and second-neighbor interactions,

1
both essential for the (1 2 0) superstructures to be ground states. Calculations are carried out

for positive (antiferromagnetic) nearest-neighbor pair interactions and for a ratio of second- to
first-neighbor interaction energies of 0.25. Salient features of the resulting phase diagram are

tricritical points in the fcc to A282 and the fcc to A3B transitions, and the presence of a bicritical

point at the junction of the A282 and A3B critical lines with the A2B2 to A3B first-order transi-

tion line. The A28 phase of the (1—0) family is found to be stable at relatively low tempera-

tures and in a very narro~ composition range. Stability of the disordered state is investigated in
1

k space and the (1
2

0) ordering spinodal is determined.

I. INTRODUCTION

The cluster variation method (CVM), ' which has
been used successfully to treat a wide range of
phase-transformation phenomena, has recently been
applied to the calculation of equilibrium phase di-

agrams. In particular, Van Baal calculated the phase
diagram for an fcc antiferromagnetic spin- —, Ising

model in the so-called tetrahedron approximation of
the CVM. Such Ising model is isomorphic to a
binary alloy with only nearest-neighbors (nn) interac-
tions. Notwithstanding intrinsic deficiencies of the
Ising model for treating real binary alloys, Van Baal's
calculation showed general qualitative agreement with
the CuAu system. Subsequently, de Fontaine and Ki-
kuchi, "

by including many-body interactions in the
tetrahedron approximation have been able to repro-
duce the CuAu solid-state phase diagram with re-
markable closeness.

Despite such unquestionable success, the
tetrahedron approximation is seriously limited by the
form of the internal energy: it can only contain nn
pair interactions and many-body interactions associat-
ed to the nn equilateral triangle and to the nn regular
tetrahedron. It is well known that, in the event of
only nn pairs interactions, the ground states, i.e., the
stochiometric ordered structures with the lowest en-
ergy, are degenerate. ' ' Furthermore, the degenera-
cy is not lifted by including many-body interactions
which are allowed by the approximation
(tetrahedron). '

Degeneracy of ground states generally poses diffi-
culties since, when using the CVM, sublattices must
be introduced a priori in order to treat a given or-
dered structure. Thus, all ground-state structures,

degenerate or otherwise, should in principle be inves-
tigated. For example, when calculating the CuAu
phase diagram in the tetrahedron approximation, it is
proper to ask whether the model predicts the
L 12 (CU3Au) or the D02q (Nl3V) structures, with
the same ground-state energy, to be the stable or-
dered phases. From a more practical point of view,
however, the main drawback of the tetrahedron ap-
proximation is that it can treat a very limited number
of fcc ordered structures, namely, those of the (100)
family (see below).

The object of this investigation is to establish a
free-energy model which will describe a wider range
of fcc ordered structures than heretofore possible
with the tetrahedron approximation. In doing so, it is
essential to determine the 'ground states for a given
energy model since these dictate the type of ordered
superstructures that can eventually be found to be
stable phases in a CVM calculation.

The ground-state problem in the case of an fcc lat-
tice with nn and next-nearest-neighbors (nnn) pair
interactions has been completely solved' ' and a par-
tial list of ground-state structures for the case of up
to fourth-neighbor interactions has recently been
derived by Kanamori. ' It is interesting to note that a
simple energy model including nn and nnn interac-
tions accounts for a large number of observed fcc or-
dered superstructures, whereas most of the ground
states which appear as a consequence of fourth-
neighbor interactions have not been observed experi-
mentally. Thus, without increasing the level of com-
plexity much beyond the tetrahedron approximation,
we can expect to have a realistic free-energy model
by only including nn and nnn interactions.

For an antiferromagnetic (ordering, i.e., positive)
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nn interaction energy v~, three cases can be dis-
tinguished, depending on the ratio n = u2/vq, where
v2 is the nnn interaction energy. These three cases
are conveniently classified in terms of families of or-
dered structures labeled by the point in k space where
the Fourier transform of the pairwise energy has its
absolute minimum. 9 Such families are: (i) the
(100) family for n & 0, (ii) ( 2 2 2 ) family for

n )—,, and (iii) the (1—,0) family for 0 & a & —,.
The ground-state ordered superstructures belonging
to each family are summarized in Table I where the
space group and, when applicable, the structure infor-
mation and examples are given. ' In this work,
we will solely concentrate in some ordered structures
of the (1 2 0) family.

As seen in Table I, the (1 2 0) family comprises six

different ordered structures. At stochiometry 3,
there are three different degenerate structures: A28,
A28, and A28 (see Table I). The A28' and A28"
structures together with that of the A58 phase at
stoichiometry 6, have monoclinic Bravais lattices. '

Calculations will be carried out for the following
ground-state superstructures of the (120) family: (i)
the Aq82 phase with space group E4t/amd, (ii) the
A28 phase with space group Immm, and (iii) the A38
phase with space group 14/mmm. The three struc-
tures above have a particularly simplifying feature in
common: they can be formally obtained by stacking
of (420) lattice planes which are either occupied by A

or by 8 atoms. " On the other hand, the remaining
(1-, 0) superstructures, namely, the monoclinics

A28, A28, and A58 cannot be obtained by stacking
of pure A or 8 (420) planes. Due to the fact that low

symmetry makes actual computations a cumbersome
undertaking and that the structures in question do

not seem to be realized in nature, we will not consid-.
er them further in this work. The particular
sequences of planes for the A 282, A 28, and A 38 su-
perstructures are schematically sho~n in Fig. 1 to-
gether with a (001) projection of their respective unit
cells. The representation introduced by Kanamori7
has been used here: large circles are on a given
(001) plane and small circles in the planes immedi-
ately above or below; the components A and 8 are
represented by open and shaded circles, respectively.

Included in Fig. l is the Dl a structure with sto-
chiometry 1/5 (A48) and space group 14/m. The
Dl a structure, an example of which is NqMo, is not
a ground state in the nn and nnn energy model used
here, but it is degenerate with a mixture of the A 38
(D022) and the monoclinic A58 phases of the (1 2 0)
family. Nonetheless, the A48 phase was included
in our study since it can also be obtained by stacking
pure A or 8 (420) planes. Anticipating the results of
Sec. IV, we may mention here that the A48 phase
was found to be unstable for the particular value of
nnn to nn interaction-energy ratio of 0.25 and tem-
perature range used in our calculations. Such finding
clearly emphasizes the importance of a detailed
analysis of the ground-state problem previous to
CVM calculations.

II. CONFIGURATIONAL FREE ENERGY

The free energy of a crystalline system composed
of different atomic species, say A and 8 for binaries,
is obtained, in the CVM, by minimizing the function-
al F

F = (E) —ka T ln 0

TABLE I. Ground states for the fcc lattice with nn (v~) and nnn (v2) pair interactions. For
e& & 0, three families are observed depending on the ratio n = v2/v~.

Family Formula

"Structurbericht"
symbol

Symmetry
class Int. table Examples

a&0 (100)

a &O.S
111
222

0 & a & 0.5 (l 2 0)

AB
A38
AB

A28

A282

A28

A28
A28
A38
A58

L10
L12
L li

D022

s. tetragonal
s. cubic

rhombohedral

sc monoclinic

bc tetragonal
b'c

orthorhombic
sc monoclinic
sc monoclinic
bc tetragonal
sc monoclinic

P4/mmm

Pm 3m

R3m

82/m

(4~/amd

Immm

82/m
82/m

14/mmm

82/m

CuAu I
Cu3Au

CuPt
~ ~ ~

Pt2Mo, Ni2V

Ni3V A13T1
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tetrahedron. tt " This octahedron-tetrahedron (0-T)
approximation is particularly reliable, yielding a fer-
romagnetic critical temperature for the fcc Ising
model only 2'/o higher than the best present esti-
mate. ' ' In the O-T approximation, we can lift the
degeneracy between the (100), (———), and (1—0)
families by including the essential nn and nnn pair
interactions (ut and u2) referred to in the Introduc-
tion.

In terms of the spin operator o (r), which takes
values +1 or —1 if lattice point r is, respectively, occu-
pied by an A or 8 atom, we can write the configura-
tion energy E of the system

E = —,
'

ut X $ a ( r) o(r + r, ).

AAA 8
[420]

[42O]

p 1 2 3 4 5

3$Q

FIG. 1. Projection on a (001) plane of the unit cells and
stacking sequence of (420) planes for the (a) 3282, (b)
328 (c) 338; attd (d) A48 superstructures of the fcc lattice.

Open and filled circles correspond to A and B atoms, respec-
tively. Large circles are on a (001) plane and small ones on
the planes immediately above or below.

where 0 stands for the number of configurations of
the crystal lattice, i.e., arrangements of A and 8
atoms, having the same average value (E) of the
configurational energy. '

Different levels of approximations of the CVM are
obtained by including successively larger clusters in
the calculation of the number of configurations Q.
Due to practical computational difficulties, however,
most of the CVM calculations have been confined to
relatively small cluster sizes. It was only recently that
approximations allowing for higher-neighbor interac-
tions, although applied to the simple case of the Ising
ferromagnet, have been studied. ' '

A suitable choice of clusters for calculating the
phase diagram for the (I 20) family of fcc ordered

structures is a combination of the regular octahedron,
including nn and nnn, and the regular nn

+
2 u2 x X o ( r) o(r +r2).

where the sums over r are over all lattice points, and
where those over r~ and I2 are, respectively, over all

nn and nnn to r.
The quantity of interest is the average value of the

energy as indicated by the angular brackets in Eq.
(1). Such brackets refer to an ensemble average
which, in general, depends on the space-group sym-
metry of the phase under consideration. That is, in
order to treat a given ordered phase in the CVM, it is
necessary to introduce a set of sublattices which, for
the purpose of computing averages, must be properly
distinguished.

In principle, it is possible to associate a distinct
sublattice with each lattice point in the crystal, " thus
allowing us to treat any arbitrary ordered structure
based on the parent disordered lattice. This approach
will be shown (Sec. III) to be particularly useful for
the treatment of instabilities in k space. For the actu-
al computation of the phase diagram a finite number
of sublattices will be obtained for each phase by ap-
plying the symmetry operations of the associated
space group. Note that for those members of the
(1 2 0) family described by stacking of pure A or 8
(420) planes, there are two common symmetry ele-
ments: a (100) mirror plane (plane of the figure in

Fig. I) and an fcc translation on a (420) plane. Thus
the ensemble average of any position-dependent
function will be invariant to such symmetry opera-
tions, a fact that we will next introduce into our
description of the (1 —,0) family.

In particular, we are interested in the computation
of the multisite correlation functions which, as we
shall see, completely determine the free energy. 7 An
n-site correlation function is defined as the ensemble
average of an n-order product of spin operators a(r)
evaluated at different lattice sites r~, r2, ...,r„. Such
lattice sites will define a geometrical figure which will

be referred to as an n-point cluster.
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Noting that the correlation functions must be in-
variant to translations along a vector on a (420)
plane, we can designate any such correlation by the
number of points n in the cluster and the (420)
plane, let up say labeled p, to which the cluster is as-
sociated. In addition, an index s will be used in order
to distinguish among distinct n-point clusters, e.g. , nn
pairs along different crystallographic directions, nn
and nnn pairs, different type of triangles, etc. Thus

the multisite correlation function associated to the n-

point, s-type cluster at the (420) lattice plane p, will

be given by

g„,,(p) = (a(r~)a(r~+.r~~'~) a(r~+r„V~)

where r~ is any representative lattice point on the
(420) plane p, and where r~", ... , r„V~ are n —l fcc lat-

TABLE II. Definition of the multisite correlation functions. The second column gives the points
of the clusters referred to Fig. 2. The columns n, s, and M„» are, respectively, the number of
points in the cluster, an arbitrary classification index, and the number of clusters per lattice point.

I

Cluster Description

point

2

3
4
5
6
7

&

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
3&

39
40

AB
AC
AD
AF
AA

AG
AE
ABC
ABD
A CD
ACF
AAB
AAC
ABG
ADG
AEF
ACE
ADE
ABB
ACC
ADE
ABCD
ABCA
ABDG
A CEF
ACDE
ACDF
ACCF
ABBD
ACCD
ABBG
ACCE
ADEF
ABBDG
A CCEF
A CCDE
A CDEF
ACCDF
ACCDEF

2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4

4
4
4
4
5
5
5
5
5
6

1

2
3
4
5
6
7
1

2
3
4
5
6
7
8
9

10
11
12
13
14

1

2
3
4
5
6
7
8
9

10
11
12

1

2
3
4
5
1

2
2
1

1

1

1

1

2
2
2

2

1

1

2
1

1

2
1

1

1

1

2

1

2

2
2
2
1

1

1

1

1

1

1

1

1

2
1

1

nn pairs

nnn pairs

nn triangles

nn and nnn
triangles

nn tetrahedron

nn and nnn
tetrahedron

nn square

nn pyramid

octahedron
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tice vectors connecting the origin rp to the n —1

remaining points of the s-type, n-point cluster.
After applying the (001) mirror-plane symmetry

common to the A282, 328, and 338 phases of the

(120) family, we arrive, in the O-Tapproximation,

at the set of forty distinct correlation functions listed
in Table II. These forty correlation functions are
generated from the ten basic figures (last column of
Table II) in which the octahedron and the
tetrahedron can be decomposed. '3 The set of letters
in the second column of Table II gives the vertices of
the cluster in question according to the (001) projec-
tion of the fcc lattice shown in Fig. 2. Repetition of
letters, such as AA in the sixth row, refer to lattice
position connected by a translation a(001), with a
the lattice parameter. The third and fourth columns
give, respectively, the number of points n in the clus-
ter and the index s used in the present classification
scheme. Finally, the parameter M„, is the number of
n, s clusters per lattice point.

The average value of the energy in the nn and nnn
pair approximation, Eq. (2), can be written following
the notation laid out in Table II,

(E) =m X., Xg, ,(j),
s 1 p

where M is the number of lattice points on a (420)
plane and where the e, are given by

&s =M2, sv] s =1,2, 3, 4

and

6g = M2 g 'U2, s = S p 6, 7

with v~ and v2 as the nn and nnn pair interaction en-
ergies, respectively. Note that since the average
value of the energy depends linearly on the correla-
tion functions g„,(p), there is no formal distinction
in the CVM between pairwise and many-body in-

teractions. Such characteristic of the CVM can be
used to closely reproduce experimental phase di-
agrams without any additional difficulty. Con-
versely, in the process of reproducing a given phase
diagram, one ~ould hope to shed some light on the
nature of the effective interactions in solid solutions.

In a given approximation of the CVM, the number
of configurations II in Eq. (1) is written in terms of
the probabilities for the different clusters to have par-
ticular arrangements or distributions of A and 8
atoms. Any such configuration of, let us say, the n-

point, s-type cluster associated with the (420) plane

p, can be designated by one of a 2" set of n numbers
{I'j,.. ., k j where ij, ktake ..v. alues +1 and —I for 3
and 8 type, respectively. The probability in question
will be named x„,(i,j, ...k {@)or x„,(J,p) where J
stands for the set {i,j, , kj...

In order to write the probabilities x„,(Jp) in terms
of the correlations functions defined by Eq. (3), we
introduce the occupation operator I';(r), '

I';(r) = —,
' [I +i (r(r)]

The occupation operator I';(r) takes values one if lat-

tice point r is occupied by an i-type atom (i = +I)
and zero otherwise. Thus, the probability x„,(J,p) is
given by

x„,(J,p) =X„,(l,J, . .,k {p)— ''.
= (I;( r~ ) I'& ( r~ + r ~

' I'k ( r~ + r„'
~ ))

(6)

p+3 100'

P 9+1 9+2

FIG. 2. Projection of the fcc lattice on a (001) plane.
Traces of (420) planes. are indicated by broken lines. Atoms
belonging to clUsters relevant to the tetrahedron-octahedron
approximation are labeled A —F,

where as before rj', ...,r„'~ define the n-point, s-type
cluster and Ip is a representative lattice point on the
(420) plane p.

Using Eq. (5) and expanding the product of I';(r)'s
in Eq. (6) one can write

x„,(Jp) =—„1+X X X V (Jp' —p)g (p')
I

Il $ p

where, in general, V (J,p' —p) is different from

zero for values of p —p such that the cluster n, s
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associated with the (420) plane p is completely contained in the cluster n, s associated with p and, in such a case,
is given by a sum of n -order products involving the indices i,j, ...,k of configuration J.

The cluster concentrations relevant to the T-0 approximation are those for the point cluster (n =1,s =1), the
nn pairs (n =2,s =1,2, 3, 4), the nn triangle (n =3,s =1,2, 3, 4), the regular tetrahedron (n =4,s =1) and the
octahedron (n =6,s =1).'3

In terms of the correlation functions, the point and the nn pairs concentrations are explicitly given by:

and

xt )(i
~
p) = —,

' [1+i)) t(k) ] (Sa)

xq, (ij [p) = —[1+igt ~(p) +Jg~ ~(p+m, ) +ij gq, (p)] (Sb)

where m, take, respectively, values 1,2,3,1 for s equal 1,2,3,4 and where atom i is on plane p and j on plane
p+m, (ij =+1).

Similarly, the concentration x4 t (ij,k, i ~p) for the regular tetrahedron with atoms ij,k, i on planes p, p +1,
p +2, and p +3, respectively, is given by

x4 &(ij k, l~p) =
t6 [1+i g~ ~(p) +j g& ~(p +1) + kg»(p +2) + lg& &(p +3)

+ Ij(, , (p) + kig, , , (p +2) + Ikg, ,(p) +jig, ,(p +1)

+ Ii $g 3 (p) +jk $q 4 (p + 1 ) +ijk g3 I (p) + ij I g3 p (p)

+ikig3 3(p) +jkig3 4(p +1) +ijkl)4 I(p)] (Sc)

n'

p s

,(J,p' p) (, ,(p')—

TABLE III. Partial sums of Eq. (7) for the four types of
nn triangles, The configuration jcorresponds to a triplet of
numbers ij,k (i,j,k =+1) occupying, respectively, planes

p,p+1,p+2 for s =1; p,p+1,p+3 for s =2; p,p+2,p+3
for s =3; and p,p+1,p+2, for s =4.

The concentration for the four types of nn triangles
and for the octahedron, in terms of the forty correla-
tion functions defined in Table II, are given in Tables
III and IV.

Having characterized the concentration variables
relevant to the T-0 approximation, we proceed with
the computation of the number of configurations 0
[Eq. (1)] which, in the disordered state, is given by"

i() )(p) +j() )(p+1) +k() )(p+2)

ig) )(p) +j g( )(p +1)+kg) )(p +3)

i&~ ](p) +j(~ ~(p +2) +k(& ~(p+3)

ig) )(p) +j(( )(p +1) +k() g(p +2)

lgg2 $(p) + Ik/2 2(p) +Jk/2 4(p+1)

V 4, i(p) + I'k&2 3(p) +Jk~2, 2(p+1)

IJ&2 2(p) +Ikg2 3(p) +Jk/2 ~(p+2)

ij g2 4(p) +ikg2 2(p) +jkg2 j(p +1)

ijkg3 ](p)

lJk/3 2(p)

43, 3(P)

Ijk/3 4(p)

e

2
4

t i

where each bracket stands for a product of factorials
of the form

(n] =g Wx„(J)!,

with n referring to the cluster enclosed by the bracket
and with N the total number of lattice points. The
plane index p and the cluster-type index s has been
omitted in the concentration variables for the disor-
dered state.
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TABLE IV. Partial sums of Eq. (7) for the octahedron. The configuration J corresponds to the
set of numbers ij,k, l, m, n (=+1) occupying, respectively, planes p,p +1,p +2,p +2,p +3, and p +4.

XX I;,„,(Jp'-p)g, (p')
p s

I g, ,'(p)+jg, 1(p+1)+(k+l)g ](p+2)+my (p+3) +ng, (p +4)

7J$34(p) +7(k+I)6 3(p)+7'm6, 3(p)+J(k+I)61(p+I)+Jn6, 3(p+I)
+ n (k + I) g3 3(p +2) + m (k + I) g3 1(p +2) + mn (3 4(p +3)
+in&3 7(p) +jmg3 4(p +1) +kl)3 3(p +2)

ij(k+l)$3 4(p) +im(k +l)$3 3(p) +jn(k +I) g3 3(p +1) +mn(k +1)$3 1(p +2)
+7'n(k+I)43. 10(p) +Inm43, 11(p) +7Jnf3, 9(p) +Vm6, 14(p) +lkl43, 13(p)

+jm(k + I) $37(p +, I) +j mn $30(p +1)+jkl6. 13(p + I) + klm $3, 3(p +2)
+ kin (3 4(p +2)

ij n( k + I) g4 4 (p) + imn( k + I) g4 3 (p) + ij kl g4 7 (p) + iklm $4 9(p)

+ijm(k + I) g4 4(p) +j kin g4 g(p + 1) +j mm(k + I) $4 3(p + 1) + klmn g4 3(p +2)
+ ij mn g4 1&(p) + ikln (4 1 1 (p) +jkim $4 10(p + 1)

S ij mn(k + I) g3 4(p) +ij kin g3 3(p) +iklnm g3 3(p)+ij klm g3 3(p) +jklmn $3 1(p +1)

6 ijklmn g4 1(p)

—ksT $'y„,f„,(p)
(n,s)

(10)

In the ordered state, Eq. (9) for the number of
configurations 0 is modified slightly by the fact that
concentrations on different sublattices are dis-
tinguished. For the case of an ordered structure
described by L distinct sublattices [(420) planes],
each bracket in Eq. (9) becomes

L 7 ~
C «=IIII II(~jL),,(J')' "',

p 1 s J
1 3

with the exponent n„, given by

„,=~„,/X'~
I t

where M„, is the number of clusters per lattice point,
(see Table II), and where the sum in the denomina-
tor is over all s-type cluster corresponding to the n-

point cluster in Eq. (9) (e.g. , s =1,2, 3, 4 for the nn
pairs).

Using Stirling's approximation for the logarithm of
the number of configurations 0 and Eq. (4) for the
average energy (E), one obtains the free energy per
lattice site

F 1
X a.h, ,(p)

W L
t

where the p summation is over the L sublattices and
where the sum over n, s is restricted to the point

(yl, 1
= I ), the nn pairs (y3, 1=y3 3 = —2 and

y3, 3 y3, 4 I ), the nn triangles (y3, = 2 for
s =1,2, 3, 4), the nn tetrahedron (y41= —2), and the
octahedron (y4 1

———1) clusters. Finally, the func-
tions f„,(p) are given by

f„,,(p) = Xx„,(J,p) lnx„, (J,p)
J

The determination of the phase diagrams for the
A383, A3B, and A3B phases of the (I —,0) family, re-

quiring the minimization of the free energy with
respect to the multisite correlation functions, will be
discussed in Sec. IV. In Sec. III, we undertake the
calculation of instability temperatures in k space. .

III. STABILITY ANALYSIS

The study of the stability of the disordered phase
to small changes in the configurational variables such
as the long-range-order parameters or more generally
the multisite correlation functions g„,(p) is of funda-
mental importance for the characterization of fluctua-
tions in the disordered phase as well as for determin-
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ing the critical lines associated to higher-order transi-
tions. The concept of stability limit, coincident with
the critical point in higher-order transitions, is gen-
erally extended into metastable regions (below first-
order transition lines), defining the so-called ordering
spinoda1. 9

Formally, the stability limit is determined by the
vanishing of the second differential of the free ener-

gy

d'f = X X F„(pp') d g((p) d(, (p')
I p ll, pt

where F„(p,p ) stands for the second derivatives of f
with respect to f((p) and ((:, (p'), evaluated in the

disordered state, and where the indices l and /' refer
to n, s and n, s, respectively.

Using Eqs. (7), (10), and (11), one obtains for the
second derivatives

F„(p,p') =— y w Vi& (Jp —p) Vir r(Jp" —p')
(13)

where p is omitted from the concentrations x, ~(J) in

the disordered state, and where the number of sub-
lattices L is taken equal to the total number of (420)
lattice planes in the crystal. This particular choice of
sublattices reduces the problem to one dimension,
although no particular difficulty would arise if each
lattice point were considered as a distinct sublattice.

Noting that F„(p,p') is a function of p —p' due to

the translational symmetry of the disordered state
[see Eq. (13)l, one obtains after Fourier transform-
ing Eq. (12)

d f =—$ X C(„i(h) dX( (—h) dX, i (h)

with d(„i(h) and X((h) the Fourier transforms,

respectively, of F,i(p —p ) and (('((p) given by

C„,(h) =XF„,(p)e

X,(h) = X((:((p)e
P

where r~ is an arbitrary vector on the (420) plane p
and where the reciprocal-lattice vector kq is given by

k(( = (2n/a ) h (2, 1,0)

with a the lattice parameter and h = m/L for
Pl ~ 1 t ~ 4 ~ p ~L4

Within the level of approximation chosen, the
complete thermodynamic description-of the state of
order is given by the minimization of the free energy
[Eq. (10)] and by the analysis of the eigenvalues and

eigenvectors of the Hermitian matrix (p(h) with ele-
ments (p (h). Minimization of the free-energy

results in the expectation values for all the multisite
correlation functions whereas from the eigenvalues
and eigenvectors of C((h) one obtains the fluctua-
tions in the mean-square amplitudes of the cluster
correlation waves for arbitrary wave vector kA. '

In particular, the stability limit (second-order tran-
sition line or ordering spinodal) is given by the van-
ishing of the smallest eigenvalue I(. (h) of the matrix
(p(h). The results of the computations for the
(1 2 0) family (Sec. IV) show that the vanishing of
)(. (h) takes place, as suggested by general symmetry
arguments, at the so-called special points of the fcc
lattice.

IV. CALCULATION OF THE PHASE DIAGRAM

The calculation of the equilibrium phase diagram
requires the minimization of the free-energy subject
to the constraint of constant concentrations of A and
8 atoms. This is realized by minimizing the grand
potential

(14)

where ((:( ((p) is, according to Table II, the point
correlation function on sublattice p and where p, is
the appropriate chemical potential.

By using Eqs. (10) and (14) one obtains the fol-
lowing set of nonlinear algebraic equations describing
the equilibrium condition for each phase:

8,2+(((&., (-ks& X X X ";* X V, (Jp —p ) lnx (Jp')
8$ (p) ,S;It, It,S

n, s It S P

where 5 takes value one for n = n and zero otherwise.
n, n



J. M. SANCHEZ AND D. de FONTAINE

' 1.5

0.3

1.0
k~T/ VI

O.t

12.0
4 I

10.0 -8.0 -6.0 -4.0 -2.0
0.5

0.0

0 0.2 04 0.6
h

0.8

, FIG. 3. Temperature vs chemical potential phase diagram
1

for the (1 20) family of ordered superstructures. The phase

diagram ~as calculated for a ratio of second to first-neighbor
interactions energies of 0.25. Dots represent calculated
points.

The system of equations (15) was solved in each
phase for different set of values of the chemical po-
tential p, and the reduced temperature
r = ks T/ut(ut )0), and, for a ratio of nnn to nn in-

teraction energies u2/ut of 0.25. This particular ratio
of pair interaction energies was chosen in order to fall
within the range 0 to

2
where the ordered super-

structures of the (1 2 0) family are known to be

ground states.
Finally thc coexistence lines for the different

phases in the (p„,T) phase diagram are determined
from the point of intersection of the associated grand
potentials. The complete (p, T) phase diagram, in-

cluding the ordering spinodal (dotted line) is shown
in Fig. 3. In what follows, a brief description of the
calculations for each phase is given.

A. Disordered state

The set of distinct correlation functions in the
disordered state is obtained by noting that all (420)
planes are equivalent' (fcc translational symmetry)
and that different variants of a given cluster, e.g. ,
s = 1, 2, 3, 4 for nn pairs, are indistinguishable (point
group symmetry of the fcc lattice). We arrive in this
way at ten correlation functions associated with each
of the clusters listed in the last column of Table II.
Consequently, the minimization conditions, Eq. (15),
reduce to a set of ten algebraic equations. These
equations were solved (using the Newton-Raphson
iteration scheme) in order to obtain the grand poten-
tial and the equilibrium values of the cluster proba-
bilities. With the latter, the smallest eigenvalue

FIG, 4. Smallest eigenvalue of the matrix of second
derivatives of the free energy along the (210) direction in
reciprocal space. For the values of chemical potential
(p. =—3v&) and temperature (T =1.2u&) chosen, the small-

est eigenvalue is seen to vanish at h =0.5 indicating a (1 2 0)
instability.

)t (it) of the matrix of the Fourier transform of the
second derivatives of the free energy was calculated
(see Sec. III). Figure 4 shows a plot of X (h) vs

ir((120) direction in reciprocal space) for p, = —3.0ut

and k&T =1.2m~. Since A. vanishes at h =0.5, the
particular values of chemical potential and tempera-
ture chosen correspond to thc stability limit or order-
ing spinodal. The point in k space at which A. first
vanishes was found to be, for all values of chemical
potential, the fcc special point (1 —,

'
0) (It =0.5) in

agreement with general symmetry arguments. The
complete (I —,0) ordering spinodal is shown in dashed

lines in the (p„, T) phase diagram of Fig. 3.

8. A,a, phase

Figure 1(a) shows the four sublattices
(p =1,2, 3, 4) needed for the description of the 2282
ordered phase (14t/amd). With the forty correlation
functions per lattice plane listed in Table II, one ob-
tains a set of 160 such correlations which, however,
are not all distinct due to the symmetry elements of
the associated point group. In addition to the (001)
mirror symmetry (used in the definitions of Table
II), the 3282 structure is invariant to a fourfold
roto-inversion [(010) axis], an inversion through
( 4, 4, 0) (and equivalent points) and a reflection

1 3

through the (100) plane. Application of such sym-
metry operations to the minimization of the frec-
energy results in 33 nonlinear equations in as many
independent variables (correlation functions).

A plot of the grand potential for the disordered and
the 2282 phases vs reduced temperatures r = ks T/u~
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FIG. 5. Grand potential vs temperature for the A2B2 and
disordered (a) phases for zero chemical potential. The in-

tersection of grand potentials gives the values of tempera-
ture and chemical potential at which both phases coexist.
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FIG. 7. Long-range-order parameter for the A2B2 phase
as a function of temperature for chemical potential equal to
—5.0el.

C. A 3B phase
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FIG. 6. Long-range-order parameter for the A282 phase
as a function of temperature for zero chemical potential.

and for zero chemical potential is shown in Fig. 5.
The transition, taking place at v =1.501, is strongly
first order as indicated by the plot of long-range-
order parameter q (Fig. 6), with q given by

'rt = —,
'

[gi i(1) + gi, (2) —gi, (3) —g, , (4) ]

The line of first-order transitions (for p, =0 to
p, = —3.9ui) joins the ordering spinodal, which be-
comes a critical line, at the tricritical point' TI ap-
proximately given by p, = —3.9v~ and k~T =1.13vl
(see Fig. 3). The higher-order character of the tran-
sition for larger absolute values of the chemical po-
tential is illustrated in Fig. 7 by the plot of long-
range-order parameter versus temperature for
p, = —5.0vl.

The symmetry elements of the D022 structure
(I4/mmm) are the three mirror planes (001), (010),
and (100); a center of inversion [0 in Fig. 1(c)],a
fourfold axis [(010)],and a fourfold roto-inversion
axis [dotted (010) axis in Fig. 1(c)]. Combining
these symmetry operations with the definitions of
Table 11 and the four sublattices in Fig. 1(c) we ar-
rive at a%set of 45 distinct correlation functions for
the A38 phase.

The disorder to A 38 transformation is first order
near stochiometry (for values of p, between —6.5 and
—10.5ui, approximately) becoming a higher-order
transition at the tricritical points T2 and T3 (see Fig.
3). Typical plots of the long-range-order parameters
versus temperature for first- and second-order transi-
tions are shown in Figs. 8 and 9 for p, = —8.5m~ and
p, = —6.5 vl, respectively. The two long-range-order
parameters in both, Fig. 8 and Fig. 9, correspond to
the amplitude of the (100) and (120) concentration

waves describing the D022 structure, and in terms of
the point correlation functions are given by

'nioo=
2 [. 6, i(1) gi, i(2)+pi, i(3) gi, i(4) ]

and

The line of first-order transitions for the reaction
A 38 A 282 runs almost vertically in the phase di-
agram of Fig. 3 meeting, at high temperatures, the
two critical lines at the bicritical point"' B. At lower
temperatures, the line of first-order transition ends at
the triple point E, where the A282, A28, and A38
phases coexist.
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FIG. 8. Long-range-order parameters for the A 38 phase

as a function of temperature for p. = —8.5 ~~ . The order
parameters correspond to the amplitude of the point correla-

1
tion waves of wave vector (100) and (1, 2, 0) which

describe the D 022 structure,

D. A 28 phase

The relevant symmetry operations for the A 28
phase (Immm) are the three mirror planes (001),
(110), and (110) and a center of inversion [0 in Fig.
1(b)]. From the 40 correlation functions per (420)
plane listed in Table II and the three sublattices
shown in Fig. 1(b), one obtains, after applying the
symmetry operations, a sct of 46 distinct correlation
functions.

The narrow A 28 phase field is seen to appear at re-
latively low temperatures (Fig. 3), the most salient
feature being the triple point E at approximately
p, = —6.1 vi and kg T =0.8v) ~

%c investigated the A 48 structure which, although
not a ground state in the nn and nnn pair approxima-
tion, appears to be closely related to the other struc-
tures of the (1 —,0) family. The Dl, structure

(14/m) has, in addition to the (001) mirror sym-
metry, a fourfold (001) symmetry axis. Combining
these symmetry operations, Table II and the five sub-
lattices of Fig. 1(d), one arrives at S7 distinct correla-
tion functions.

The grand potential for the A 48 phase was calculat-
ed for values of the reduced temperatures higher
than 0.55 and chemical potentials in the neighbor-
hood of —10m~. In this temperature range, the A 48
phase was found to be unstable, as illustrated in Fig.
10 by the comparison of grand potentials of A 38 and
A 48 phases at 7 =0.8. Note that although the A 48
phase may become stable with respect to A 38 at suf-
ficiently low temperatures (r (0.55), one would ex-
pect that it will remain unstable with respect to the
monoclinic A q8 structure mentioned in the Introduc-
tion. This latter phase, however, will not be con-
sidered in this investigation.

Finally, Fig. 1 1 shows the composition versus re-
duced temperature phase diagram corresponding to
the (p„T) diagram of Fig. 3, for the concentration
range 0.1 to 0.5 and reduced temperature range 0.5 to
1 .6.

V. DISCUSSION

A prototype order-disorder phase diagram for thc
(1—,0) family has been calculated in the T-0 approxi-

mation of the CVM. Two features of this approxima-
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FIG. 9. Long-range-order parameters shown in Fig. 8 for

the A 38 phase are plotted for p, = —6.5m~. For this value of
chemical potential the transition is second order.

FIG. 10. Grand potential vs chemical potential for the
Al 3B and A 48 phases for k& T equal to 0.8v~.
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FIG. 11. Temperature-composition phase diagram
corresponding to the (p, , T) diagram of Fig. 3.

tion make the calculation particularly attractive: first, '

the numerical results appear to be very reliable, as
previous calculations of the critical temperature for
the spin-

2 Ising model have shown, "' and second,

nn and nnn pair interactions can be included in the
configurational energy. Both types of interactions
(nn and nnn pairs) are essential for the ordered su-

perstructures of the (1 20) family to be ground
1

states.
Since most ordered superstructures in the fcc lat-

tice can be shown to be ground states on the basis of
nn and nnn interactions only, the T-O approximation
should prove applicable to a large number of ordering
systems. Some characteristics of the phase diagrams
of real systems, such as asymmetry in the exchange
of A and 8 atoms, cannot be accounted for by a sim-

ple pair interaction energy. Such features, however,
can be reproduced very closely through the use of
many-body interactions, a point clearly illustrated by
recent calculations in the CuAu system. ' In this
respect, the CVM is very attractive since many-body
interactions do not present any additional formal or
computational difficulties. In the T-0 approximation,
seven many-body interactions (triangle, square,
tetrahedron, ... , octahedron) may be varied continu-
ously. It is then clearly impractical to derive com-
plete "global" phase diagrams with all of these param-

eters plus the two pair interactions plus the chemical
potential as independents variables. Rather we plan
to vary some of these parameters within restricted
ranges of values in order to see how calculated phase
diagrams may approach those real systems such as
Ni-Mo, Ni-V, Au-Cr, etc. First, the influences of
many-body interactions on the ground states of order
must be investigated, a study which is now under way.

In order to determine the equilibrium free energy
in the T-0 approximation, one must solve systems of
simultaneous nonlinear algebraic equation in 50 or
more independent variable. The problem can be
handled very efficiently with the Newton-Raphson
method. It should be pointed out, however, that the
initial values at the onset of the interations are very
critical: if the chosen initial values are not close to
the correct equilibrium ones, the algorithm rapidly
produces values of the correlation functions g which
fall outside of a convex polyhedral region in multidi-
mensional configuration space defined by the set of
inequalities

x„,,(Jp) ~0,
with cluster concentration x expressed linearly as a
function of the g variables by Eq. (7). Any accept-
able state of order may be described by a vector g
the end point of which must lie entirely within the
convex configuration polyhedron. " The vertices of
the configuration polyhedron correspond to states of
perfect order.

The characterization of the state of order achieved
by the CVM calculations is very complete: long- and
short-range-order parameters (in the form of. linear
combinations of correlation functions) as well as the
cluster probabilities for all clusters involved are ob-
tained immediately as a result of the free-energy
minimization. Additionally, the treatment of instabil-
ities presented in Sec. III allows the study of ordering
instabilities (spinodals) and of fluctuations in recipro-
cal space.
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