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The dispersion relation for surface plasmons on a statistically slightly rough surface is obtained from our
earlier results for the effect of surface roughness on the electrostatic image potential. It is found that this
curve consists of two branches, in contrast with the single branch that is obtained in the case of a flat
surface. On the basis of a Gaussian model for the correlation function of the surface roughness, explicit
results are obtained for the dispersion relation and for a response function that enters the theory of the
scattering of electrons by surface plasmons. Our results are similar to those obtained recently by
Kretschmann et al. [Phys. Rev. Lett. 42, 1312 (1979)] by a different approach and for a different model of
the correlation function of the surface roughness, and are consistent with recent experiments that
demonstrate the splitting of the surface-plasmon dispersion relation.

Recent experimental work!~3 on the propagation
of surface plasmons over a rough planar surface
of a metal shows that in the presence of roughness
the surface-plasmon dispersion curve possesses
two branches, in contrast with the one branch pre-
dicted and observed for a flat surface.? Although
a theory of this effect has now been presented,®
we offer in this note what we believe to be a simp-
ler, more direct derivation of the splitting of the
surface plasmon dispersion curve by surface
roughness. It proceeds directly from the elec-
trostatic approximation, rather than reaching it
as a limiting case of a calculation that includes
the effects of retardation, as was done in Ref. 5.
We present more explicit results than was done
in Ref. 5, and we discuss aspects of the solution
that were not treated there.

The work described here is based on results
obtained in our recent paper® on the effects of
surface roughness on the image potential. In Ref.
6 we considered a system consisting of vacuum
above the surface x,=¢(X,) and of a dielectric me-
dium characterized by an isotropic, frequency-de-
pendent dielectric tensor €,,(w) =6,,¢ (w) below
this surface. Here X,=x,%, +x,%,, where %, and %,
are two mutually perpendicular unit vectors in the
plane x;=0. The surface-roughness-profile func-
tion ¢(%X,) was assumed to be a stationary stochas-
tic process, possessing the following two proper-
ties:

(g(-iu» =0 ) (13-)
€& &) =6°W (|, - %)) . (1b)
The angular brackets (*++) in these equations de-

note an average over the ensemble of realizations
of the surface roughness; 6 is the root-mean-

square departure of the surface from flatness

and the correlation function W(|X,-X%{|) in con-
crete calculations will be assumed to have the
Gaussian form”

W(X, - Xj|) = exp(~ |, - %{|*/a®) . @)
The length @ appearing in Eq. (2) is called the
transverse correlation length: it is a measure of
the mean distance between consecutive peaks and
valleys on the surface.

A central result of Ref. 6 is the Green’s func-
tion G(X,X’'|w) that is the solution of the Pois-
son equation

V26X, % |w) = {'4"5&'3’('); x3> 0y, x5>¢(&)

0, r<t®), woi® Y
(3b)

and satisfies the boundary conditions
€635 ()] B SN €6 35 3 (%)) B ou (42)
€W VGRE, X' W), < )y- =7 VEE, X' |w), ¢ y+ »
(4b)

at the vacuum-dielectric interface. Here 7 is the
unit vector normal to the surface x,=¢(X,) at each
point

(-8 _BE ) [ (3) %)2 e
n-( ax,’ ax2’1 1+ 8x, * 9x, : ®)
Averaged over the ensemble of realizations of

the surface roughness the solution of Egs. (3)—(5)
can be written as

(G Fl0) = [ 5 explik, - (= R ]g ol
(62)
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where K| is the two-dimensional wave vector K,
=X, k, +X,k,, and the Fourier coefficient has the
form

2
glkyw|x5x%) =71z {exp(— INEREA)!

+a(knw)exl)[—ku(xa+x§)]} s (6b)

for x,>0, x;>0. (We will not need the form of
this coefficient for x;<0, x;>0.) The poles of
g(kyw|x;x3) give the frequencies of the excitations
of the system. In the present case these excita-
tions are the surface plasmons, whose dispersion
relation is therefore given by the pole(s) of the
function a(kw). The strengths of these poles can
be defined operationally in the following way. It
hag been shown in Ref. 6 that the probability
P(K,,w) that an electron, constrained by a static
electric field to move along a parabolic trajectory
over the surface of a metal,®is scattered by its
interaction with the metal into unit volume of
(K,, w) space about the point K,,w) is

e m ex (=2kx,
PGEII: ) kzl.)I
X exp[—(w +K,* V) mF/k | Ima(kw) .
(7
In this expression %K, is the component of the
electron’s momentum parallel to the surface of
the metal, 7w is the energy loss of the electron,
T’" is the component of its velocity parallel to the
surface, x,, is the classical turning point of the
parabolic trajectory, and F is the magnitude of
the vertical force on the electron that keeps it in
parabolic motion., The amplitudes of the peaks in
the function Ima(kw) will therefore give a mea-
sure of the relative strengths of the several
branches of the surface-plasmon dispersion rela-
tion.
The function a(kw) can be written in the form®

_ 1 My, (Ryw)h, (kyw) — M, (kyw)h, (R Q)
alkiw) =3 1T (o) |
®)

where the elements of the 2x2 matrix M(k,w) are
given to O(Gz/az) by
4e()=1] &*
[e)+1] &°
1
—s(<e (@) = $)9()
4e (w)
e(w) 1

4[6((.0) 1] 6 €(w)
[e@)+1F & £

X[ESO(E)—231(§)+§32(§)], (Qb)

Mn(kn‘*’) 1+_ 52

@) g ¢)_1g, (g)) (92)

My, (kyw) = -

alew)-1] & 1
sz(klx"))‘4[€(w)+1]2 z 2

X[igo(ﬁ) -28,()+29,)], (9c)

4e()-1] 6"’
"Tew+1F &

xg%(% fe @) - 2]5,6)

de(w)
cw) -1

My, (kw) =1 +'2‘ 7

-9, +£%) g (s)) (%)
while

mbw)-(-c(1] 825

x E—lg{&(g) +[26(0) +1]9, )}) ,

(10a)
h(kw)=2[1+ — £2 —67——-—-1_6(w)
23 a® e(w)+1
1 4[e(w)+1!
X§2(32(§)+ e(w)—l ‘gl(g)—‘go(é)>] .
(10b)

In writing these expressions we have introduced
the dimensionless wave vector

E =k“ay (11)

and the functions

g,€) =" f Cdue

_E /sgﬁ{ /2 1(§2/8)

+[1+(4/8%) - (4n/87)]
X L, (E%/8)} (12)

where I,(x) is a modified Bessel function of the
first kind.

Although we will present below the results of
calculations of Ima(kw) based on the expression
given by Eqs. (8)-(12), it is useful in understanding
these numerical results to have an approximate
analytic expression for Ima(kw). Such an expres-
sion can be obtained for frequencies w in the
vicinity of the resonances of this function. We
recall that the frequencies of surface plasmons
at a planar vacuum-dielectric interface are given
by the zeros of the equation*

€(w)+1=0. (13)

For frequencies w close to the roots of this equa-
tion we can write
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()| e s 1]

1

" 2[1+(6/a)’t” ] [

where

f(£)='gl'[380(£) —49,() + 4,2

—) ¢ 1~ E+e0r), Ex1
4 3Vm (152)

1/2
(%) <€l+£§+---), E>1. (15b)

Thus, if we denote a solution of Eq. (13) by w,,
which is complex in general, since € (w) is complex
in general, we see from Eq. (14) that in the pre-
sence of surface roughness the frequency of that
surface polariton is given by

2V 6 f€)
wy(E)=wox €' (W) a [1+5(6/a)E?? °

Equation (16) demonstrates the splitting of the sur-
face-plasmon dispersion curve caused by surface
roughness. A plot of the function f(£) is given in
Fig. 1.

The same dispersion relation is obtained if, in-
stead of studying the poles of the response function
- Ima(kw), one employs the usual method for ob-
taining the surface-plasmon dispersion relation.®
One first obtains the solutions of Laplace’s equa-
tion V2¢(X) =0 for the electrostatic potential in
the dielectric and in the vacuum above it that va-
nish with increasing distance into each medium

(16)

0.0 1 1 1 1 1 1
o 2 4 6 8 10 12 14

E(orm)

FIG. 1. Functions f(¢) and f;() that determine the
splitting of the surface-plasmon dispersion curve by
surface roughness according to Eqs. (16) and (31), re-
spectively.

1
+
e(w)+1]—2‘/7% [l+%(6/(fz;252]1 2 [e-(w)”]*zﬁ% [1+§(5’;(§))5 IS
r

, (14)

from the interface. The dispersion relation is then
obtained as the solvability condition for the pair
of homogeneous equations that arises from satis-
fying the boundary conditions.

We see from Eq. (16) that the separation be-
tween the two branches of the surface-plasmon dis-
persion relation,

Aw(E) =w, () -w_(§)

_4V2 8 Ji3)
€'(wy) a[1+5(6/a)%]?"

is proportional to the ratio (6/a) rather than to
the smaller quantity (6/a)°>. The same is true of
the frequency shift w,(£) — w, itself. In the region
of frequencies w and wave vectors k, where the
effects of retardation are important, the rough-
ness-induced shift in the frequency of a surface
polariton has been shown to be of 0((6/a)?).}°-*3

The fact that the splitting of the surface-plas-
mon dispersion curve vanishes both as £ -0 and
as £ - is not difficult to understand. In the for-
mer limit the wavelength of the surface plasmon
is much greater than the transverse correlation
length, and the surface plasmon does not “see”
the roughness over which it propagates. In the
latter limit the wavelength of the surface plasmon
is much shorter than the transverse correlation
length and the surface plasmon follows the rough-
ness adiabatically. In either case the surface plas-
mon sees a flat surface, and its frequency is that
for a flat surface. For intermediate values of &,
e.g., for £ =1 when the wavelength of the surface
plasmon is comparable to the transverse correla-
tion length, a kind of resonant interaction of the.
surface plasmon with the roughness occurs, and
the splitting of its dispersion curve goes through
a maximum.

We also see that the damping of surface plas-
mons in the presence of surface roughness is due
to the imaginary part of € (w), that in turn contri-
butes an imaginary part to w, and to the rough-
ness-induced frequency shift given by the second
term on the right-hand side of Eq. (16). This is
in contrast with the situation when the effects of
retardation are taken into account., In that case a
surface polariton can be damped even in the limit
as Ime (w) - 0 by two mechanisms'®!*'14. the sur-
face polariton can radiate energy into the vacuum,
and it may be scattered by the surface roughness
into other surface-polariton states. Such dynami-
cal, or radiative, processes are not possible in

am
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the electrostatic limit. The attenuation of the sur-
face plasmon in this limit, therefore, arises only
from the dissipative processes present in the bulk
of the dielectric that give rise to the imaginary
part of the dielectric constant € (w). The damping
of the surface plasmon manifests itself through
the widths of the peaks in the function Ima(k,w)
considered as a function of w.

If we combine Eq. (14) with Eq. (8) and use Eqs.
(9) and (10) to obtain an expression for V,,h, —M,,h,
to leading nonzero order in (6/a) that is valid in
the vicinity of each of the resonances displayed
by |M(z,w) [*, we obtain the following approximate
expression for —Ima(kw):

[1-(6/a)g(t)]e,(w)

- Ima(k) =T T T 6/ @) Fr @)
N [1+(6/a)g(€)]e,(w)
[e,(w) +1+2V2 (6/a)fE)F+ei(w)’
(18)
where ¢, (w) =Ree (w), €,(w)=Ime(w), and
_4V2 Jo&) - 9,)
0= Bg®-40,0: soF 19
= %@7{1/451/2(1 _ﬁ# RN ) , Ex1
(20a)
=§\/—3_§<1-¥12+--->, E>1, (20b)

We have simplified Eq. (18) slightly by replacing
the factor [1+(6%/24%)£%]'/2 in the expression for
the frequency shift in Eq. (16) by unity, since that
shift is already of 0(6/a).

We see from Eq. (18) that the peak in Ima(kw)
at the frequency corresponding to the more nega-
tive value of €,(w) has a larger intensity than the
peak at the frequency corresponding to the less
negative value of €,(w). This result has already
been obtained by Kretschmann et al.®

In Fig. 2 we plot —Ima(kw) for silver as a
function of w for fixed values of k, and a and for
several different values of 6. In these calculations
the complete expression for this response func-
tion obtained from Eqs. (8)-(12) has been used.
For the dielectric constant of silver the experi-
mental values of Irani ef al.'® were used. The
splitting of the single peak in this function for a
flat surface (6=0) into two peaks as the surface
roughness increases, i.e., as 6 increases, is
clearly visible in this figure. A separation of the
peaks of the magnitude observed experimentally,?
0.15-0.2 eV, can be achieved for a reasonable
value of 8, viz., 6/a =0.3.

Although surface roughness causes a splitting
of the surface-plasmon dispersion curve, this
splitting does not always manifest itself in the
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FIG. 2. Response function — Ima(k,w) for silver as-
suming a Gaussian-structure factor. Here £=1,

frequency dependence of the response function.

In such cases, the widths of the peaks are com-
parable to the separation between their centers.
To illustrate this point we compare, in Fig. 3, the
results of a calculation of — Ima(kw) based on
the complete expression given by Eqgs. (8)—-(12)
and the simpler, approximate, analytic expression
given by Eqgs. (18), (19), and (15). Since the latter
is correct only to O(6/a), and is further restricted
to the range of frequencies for which € (w)=-1,
we have chosen values of 6, a, and k, in making
this comparison such that 6/a is small and the
separation between the two peaks is small enough

70 T —T T T T T
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FIG. 3. Comparison between the response function
— Ima(k,w) for silver calculated on the basis of Egs.
(8)—(12) (dash-dot curve) and calculated on the basis
of Egs. (15), (18), and (19) (the full curve). The dashed
curves correspond to the two terms in Eq. (18). Here
£= 0.5 and 6/a=0.1.
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that for each e (w)~~-1. We have also drawn the
individual peaks whose sum constitutes the ap-
proximate total response function in Eq. (18).
These two curves do have their peaks shifted to
either side of the flat-surface peak but they are
sufficiently broadened that their sum exhibits only
one peak. The response function resulting from
the exact expression also has only a single peak.
This broadening of the individual peaks can be
traced to the imaginary part of the dielectric
function, and the rather large value of €, in the
data of Irani et al.'® manifests itself in merging
the two peaks together in their sum. I the ratio
6/a is made very large, the splitting does emerge
but the validity of our results for such large val-
ues of 6/a is questionable.

The double-peaked structure of Ima(k,w) was
not observed in the experimental and theoretical
results of Lecante et al.? because instead of
studying the probability P(k,, w) they considered
the derived cross section

d—(dﬁ—);,): };}f& dxoa fdzk"P(E”, w)’ (21)

where z,, is the vertical distance above the metal
surface at which the potential felt by the electron
due to the normal electric field and its image
potential is a maximum. The integrations on the
right-hand side of Eq. (21) tend to wash out the
structure present in Ima(k,w).® It would be of con-
siderable interest to have the experiment of
Lecante et al.® performed in a manner that would
permit P(k,, w) itself to be measured rather than
the less informative d\/d(7w).

The physical reason for the splitting of the
surface-plasmon dispersion curve has been in-
dicated by Kretschmann et al.> A rough surface
can be regarded as a superposition of diffraction
gratings, each with its own spacing, amplitude,
and orientation in the x,x, plane which vary con-
tinuously from one grating to the next. Each
grating can split the surface-plasmon dispersion
relation. This splitting occurs at a given fre-
quency on the dispersion curve if two degenerate
surface plasmons with different wave vectors
can couple through the wave vector of the grating.
Since the dispersion relation for a surface plas-
mon given by Eq. (13) is flat, i.e., it depends
neither on the magnitude nor direction of the
wave vector T{,,, all wave vectors entering the
Fourier decomposition of ¢(X,) couple two de-
generate surface plasmons with different wave
vectors, and split the dispersion curve thereby.

Although this explanation is correct, we feel
that it is useful to present an alternative way of
looking at the origin of the splitting that can also
be applied to the discussion of other physical

phenomena in which surface roughness plays a
role.®

In Ref. 6 it was shown that the effects of sur-
face roughness on the image potential can be
reproduced by a simple model in which the sur-
face roughness is replaced by a thin layer of di-
electric material straddling the plane x,=0 whose
dielectric constant €  is intermediate between
that of the vacuum above it and that of the di-
electric medium below it. The thickness of the
layer is L and it occupies the region —aL <x,
<(1- o)L with 0<a<1. The values of the pa-
rameters €g, L, « obtained in Ref. 6 are

€, (w) =3[e(w)+1], (22a)
L =31'/25(5/a), (22b)
a =% . (220)

The response function a(k,w) obtained on the basis
of this model is

a(k"w) = 2k oL

(1+e)(e,—€)+(1 —€)(e, +€)e®nE
(e+€,)(e,+1)+ (€ —€)(g, — 1)L °

(23)

Because the film of dielectric constant €, is thin,
we expand the numerator and denominator of the
expression given by Eq. (23) to first order in L.
When the values of the parameters given by Eq.
(22) are substituted into the resulting expression
we obtain for a(k,w) the result that

a(kuw) = [1 - €(w)]

€(w) +1+37'/2(5/a)*t[€(w) - 5]
[e(w) +1] = 3 7'/%(6/a)?t[e(w) -1}

(24)

_2[l-€e@)]- V8 7/4(6/a)" e (w) - 5]
(W) +1+2V6 7*(6/a) " Y[e(w) - 1]

. 3[1 - €(w)] - & V6 7'/ 4(5/a) £ *[e (w) - 5]
€(w)+1-3V6 1/%(5/a)E e (w) - 1]
(25)
Thus this simple three-layer model for surface
roughness yields a two-pole structure for a(k, w)
just like the exact calculation. If we solve for

the positions of the poles we find for the surface-
plasmon frequencies

V6

€' (w,)

w,(E)=wyt /4 (5/a)Er/ 2, (26)
This is exactly the result given by Eq. (16) to
0(6/a) when the small £ expression for (&)
given by Eq. (15a) is substituted into it.

The physical reason for the splitting in the
present case is the presence of two interfaces
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in the three-layer system: the interface between
vacuum and the thin layer of dielectric constant
€,(w) at x;=3L; and the interface between the thin
layer of dielectric constant € (w) and the sub-
strate of dielectric constant €(w) atx=-2L. A
surface plasmon can be associated with each in-
terface because at each interface one of the two
dielectric media in contact across it is active
(i.e., it has a negative dielectric constant), while
the other is inactive (i.e., it has a positive di-
electric constant). This is the condition for the
occurrence of a surface plasmon.

In the immediate vicinity of the frequency at
which €(w) +1=0 Eq. (25) yields the following
result for Ima(k,w)

_ [1- V6 7'/%(5/a) " ?]e (w)
[€(w)+1 - VBT %(5/a)t 2] +€(w)

Ima(k,w) =

- [1+V6 7*/4(5/a)£" e ,(w)
[€,(w)+1 +V6rt/(5 /a)gl/z]z+ €§(w)'
(27)

This expression differs from the small-£{ limit
of the exact expression, Eq. (18), only through a
missing factor of 2 multiplying the terms con-
taining V6 7'/ 4(6/a)£!/? in the two numerators.
The good, semiquantitative agreement between
the predictions of this simple three-layer model
and the exact results testifies once again to its
utility in surface-roughness calculations, in ap-
propriate limits.

In their theory of the splitting of the surface-
plasmon dispersion curve by surface roughness,
Kretschmann ef al. assumed for the Fourier
transform of the correlation function W(|%, |),
called the surface-structure factor, the form

g(k,) = f d?x, W(|%,|) exp(~ik,* X,)

2
=7 6l ~ kg), (28)
R

where %k, is a wave vector related to the wave-
length X, around which the roughness wavelengths
peak by k, =27/X,. This is in contrast with the
expression

g(k,) =ma*exp(-1 a’k;) (29)
that follows from our choice for W(|%,|), Eq.
(2). The correlation function W(|%,|) corres-
ponding to this choice for g(k,) is the Bessel func-
tion

W(liu |)=J0(kR |§|| I) . (30)

To test the sensitivity of our results to the dif-
ference between the two expressions for g(k,)
given by Eqs. (28) and (29) we have repeated all the

calculations of this paper on the basis of Eq. (28).
The required changes in the expressions given by
Egs. (8)-(12) are the replacement of (62/a?) in
Egs. (9)-(10) by (5kg)?% of £ by n=Fk,/ky, and of
£2 9,(¢) by n&,(m), where

1 1+n u2
=3 || T
(30a)
31(7?) = % %
Len u(m®+u®-1)
X o T T G e 500)

1 1
£, = '2? Py

1+ (n2+u2 - 1)2 - 2n2u2
xf du [1--w?[(n+u)*-1]"2

| 1=nl

. (30¢)

The surface-plasmon dispersion curve is there-
fore given by

- 2v2 JAQ)
w0, (1) =wox = (Bkp) [1+%(64kg)2n2]”2 , (1)
where
£ (m) =n'"?[3L,(n) — 48, (M) + £, (] 2. (32)

The function f,(n) is plotted in Fig. 1 together with
the function 7(£). It is seen that the two functions
differ by roughly a factor of 2 in magnitude through-
out the ranges of arguments 0< £, 7<10.

In Fig. 4 we plot ~Ima(k,w) as a function of w
on the basis of Eqs. (28) and (29), for n=0.45 and
several values of 6k;. There is a quantitative dif-
ference between the line shapes in Fig. 4 and the

flat n
surface

8kg= 0.2

-Im a (ky, w)

20+ —

0.0 I 1 1 1 I
3.3 3.4 35 36 37 38 39 40

w(eV)

FIG. 4. Response function — Ima(k,, w) for silver as-
suming a delta-function structure factor [Eq. (28)]. Here
n= 0.45.
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corresponding ones for the Gaussian-structure
factor plotted in Fig. 2. The separation of the
peaks is much sharper in the latter for similar
values of the parameters 6/a and 6k, appropriate
to each. Also, from Fig. 1 we see that the maxi-
mum splitting, which is proportional to the func-
tion f(¢) or f,(n), occurs at a smaller value of
1(0.45) for the delta-function structure factor than
of £(1.0) for the Gaussian one. The actual mag-
nitude of the response function js also larger in
Fig. 2 than in Fig. 4.

We have not carried out an exhaustive comparison
of the consequences of the two forms for the func-
tion g(k,) given by Eqs. (28) and (29). However,
the comparisons presented here suggest that there
are no significant qualitative differences between
the predictions of the two models, even if there
are quantitative differences.

We have presented here a simple theory of the
effects of surface roughness on the dispersion
relation for surface plasmons that demonstrates
the roughness-induced splitting of that dispersion

relation observed in recent experiments, and
yields quite explicit expressions for the freq-
uencies of each of its two branches and their
relative intensities. Agreement between theory and
experiment can be achieved for reasonable values
of the parameters characterizing the surface
roughness in our model. These results suggest
that the effects of surface roughness on the sur-
face-plasmon dispersion relation can be suffici-
ently large that they need to be accounted for in
precision studies of optical, or more generally
electromagnetic, properties of solids in the vici-
nity of the surface-plasmon resonance.
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