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Surface-plasmon dispersion relation in the presence of surface roughness
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The dispersion relation for surface plasmons on a statistically slightly rough surface is obtained from our
earlier results for the effect of surface roughness on the electrostatic image potential. It is found that this
curve consists of two branches, in contrast with the single branch that is obtained in the case of a flat
surface. On the basis of a Gaussian model for the correlation function of the surface roughness, explicit
results are obtained for the dispersion relation and for a response function that enters the theory of the
scattering of electrons by surface plasmons. Our results are similar to those obtained recently by
Kretschmann et al. [Phys. Rev. Lett. 42, 1312 (1979)] by a different approach and for a difFerent model of
the correlation function of the surface roughness, and are consistent with recent experiments that
demonstrate the splitting of the surface-plasmon dispersion relation.

Recent experimental work' ' on the propagation
of surface plasmons over a rough planar surface
of a metal shows that in the presence of roughness
the surface-plasmon dispersion curve possesses
two branches, in contrast with the one branch pre-
dicted and observed for a flat surface. 4 Although
a theory of this effect has now been presented, '
we offer in this note what we believe to be a simp-
ler, more direct derivation of the splitting of the
surface plasmon dispersion curve by surface
roughness. It proceeds directly from the elec-
trostatic approximation, rather than reaching it
as a limiting case of a calculation that includes
the effects of retardation, as was done in Ref. 5.
We present more explicit results than was done
in Ref. 5, and we discuss aspects of the solution
that were not treated there.

The work described here is based on results
obtained in our recent paper' on the effects of
surface roughness on the image potential. In Ref.
6 we considered a system consisting of vacuum
above the surface x, = f(x~~) and of a dielectric me-
dium characterized by an isotropic, frequency-de-
pendent dielectric tensor e„„(&u)=6„„e(&u)below
this surface. Here xll =x,x, +x,x„where x, and x,
are two mutually perpendicular unit vectors in the
plane x, = 0. The surface-roughness-profile func-
tion g(x~~) was assumed to be a stationary stochas-
tic process, possessing the following two proper-
ties:

(1a)

(1b)

square departure of the surface from flatness
and the correlation function W(lx„—x,', l) in con-
crete calculations will be assumed to have the
Gaussian form'

ii'(lxii —xril) = exp(- lxii —xril'/o') .
The length a appearing in Eq. (2) is called the
transverse correlation length: it is a measure of
the mean distance between consecutive peaks and
valleys on the surface.

A central result of Ref. 6 is the Green's func-
tion G(x, x'l~) that is the solution of the Pois-
son equation

—4rl5(x —x )y xg& ((xg)y xg& g(xg)

0, x, «(x~~), x,'& &(x,()
(sb)

and satisfies the boundary conditions

GÃ, x'l~)l, =„:, =G(x, x'l~)l, =„;„„, (4a)

e((u)s'vGg, x'l~)l. ,=„;„=svG(x x'l~). =„-,„...
(4b)

at the vacuum-dielectric interface. Here n is the
unit vector normal to the surface x, = g(xq) at each
point

Averaged over the ensemble of realizations of
the surface roughness the solution of Eqs. (3)-(5)
can be written as

The angular brackets ( . ) in these equations de-
note an average over the ensemble of realizations
of the surface roughness; 5 is the root-mean-

d k
~ exp[» '(xi'- x(i)lg(~iwlx. xl),

(6a)
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where f(( ls the two-dimensional wave vector f((
xj ky + x2k2 and the Fourier coeffici ent has the

form

g(k((((7 [xpxg (exp(- k)(~x xg()
2r

4e ((u) (() () (())

[e((u) —1] 5' e((o}
M„(k)(a)}——4[ ( )

x [-,' },(t') —2 A, (5) + -.'8, (()],

(9a)

+ a (k)((0)exp [-k)((x3+ x3}]),

for x, &0, x,'&0. (We will not need the form of
this coefficient for x,&0, xt&0.) The poles of
g(k„&u~x,xg give the frequencies of the excitations
of the system. In the present case these excita-
tions are the surface plasmons, whose dispersion
relation is therefore given by the pole(s) of the
function a(k((&a). The strengths of these poles can
be defined operationally in the following way. It
has been shown in Ref. 6 that the probability
P (lf(( (0) that an electron, constrained by a static
electric field to move along a parabolic trajectory
over the surface of a metal, ' is scattered by its
interaction with the metal into unit volume of
(K)( 4l) space about the point (f)), v) is

e'm exp(-2k)(x„,}
PI((~])y +)—

x exp[-((u+k() V((} nNE/k)(]lma(k)(~) ~

('I}

In this expression Sk~] is the component of the
electron's momentum parallel to the surface of
the metal, h~ is the energy loss of the electron,
V], is the component of its velocity parallel to the
surface, x03 is the classical turning point of the
parabolic trajectory, and E is the magnitude of
the vertical force on the electron that keeps it in
parabolic motion. The amplitudes of the peaks in
the function Ima(k((&u) will therefore give a mea-
sure of the relative strengths of the several
branches of the surface-plasmon dispersion rela-
tion.

The function a(k(((d) can be written in the form'

( )
1 M22(k)~}k~(k()&o} M~2(k((N)k2(k(((d}

[~ ((d) +1] IQ(k((~) I

(s)
where the elements of the 2 x2 matrix M(k)~) are
given to O(5 /a ) by

M»(k))ru) =1+-—2 g'—1 5', 4[a((o) —1] 5'
2 a [e(&o)+1] a

X —
2 6 (gJ —

g Q0 $

[e((u)-I] 5' 1
M2i (k)(a)) = 4

[
[l&,(k)- & (5)+l&,($)],

1 5', 4[a(ra)) —1) 5'
M22(k(~) =1+- ~( —

[ )

1x —,
2

[g(~}—2]&0(&}

(9c)

(9d)

k, (k, ((u) =2 1+- ~ ( +~1 5', 5 1 —e((u)
2 g 0 6(d+1

(10b)

In writing these expressions we have introduced
the dimensionless wave vector

$ =k(]a,

and the functions

,)„(()= -"'J a "'«'* )„(,)-
0

w'"
=

18
e $'{I„I, ,($'/8)

+ [I+ (4/5') —(«/5')]
x I„„(~'/8)], (12)

where I„(x) is a modified Bessel function of the
first kind.

Although we will present below the results of
calculations of Ima(k(y) based on the expression
given by Eqs (8}-(12),.it is useful in understanding
these numerical results to have an approximate
analytic expression for Ima(k((&o). Such an expres-
sion can be obtained for frequencies ar in the
vicinity of the resonances of this function. We
recall that the frequencies of surface plasmons
at a planar vacuum-dielectric interface are given
by the zeros of the equation'

e (a)) + 1 = 0 .
For frequencies co close to the roots of this equa-
tion we can write

while

it) 5 1
k, (k)((d) = [I-~((u)]~ +—~$'+2a a ere+I

«p)a. (() ~ (2«(«) ~ ) (().(())),

(10a)
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[e((u)+1] ( 1 1
( ie)l =

2[I (6/ )2~2 ] 6 f(t. ) r(t)
cu} +I]-2v2 —

[1+~(5/ )2(2]lg~ [e((y)+I]+2~ [1+-'(6/ )2t']

where

f(5) =—[38 (5) —4 } (&)+ g.(()l' '1

Thus, if we denote a solution of Eq. (13}by &u„
which is complex in general, since e(&u) is complex
in general, we see from Eq. (14) that in the pre-
sence of surface roughness the frequency of that
surface polariton is given by

2~2 6 f($)
~'(~,) a [I+ (6/a)'&']"' ' (16)
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FIG. 1. Functions f($) and f~g) that determine the
splitting of the surface-plasmon dispersion curve by
surface roughness according to Eqs. (16) and (31), re-
spectively.

Equation (16) demonstrates the splitting of the sur-
face-plasmon dispersion curve caused by surface
roughness. A plot of the function f(t') is given in
Fig. 1.

The same dispersion relation is obtained if, in-
stead of studying the poles of the response function
—Ima(k~~co}, one employs the usual method for ob-
taining the surface-plasmon dispersion relation. '
One first obtains the solutions of Laplace's equa-
tion V'rp(x) = 0 for the electrostatic potential in
the dielectric and in the vacuum above it that va-
nish with increasing distance into each medium

from the interface. The dispersion relation is then
obtained as the solvability condition for the pair
of homogeneous equations that arises from satis-
fying the boundary conditions.

We see from Eq. (16) that the separation be-
tween the two branches of the surface-plasmon dis-
persion relation,

&~(t') =~.(5) -~ (t')

4m 6 f(()
e'(~o) a [I+ (6/a)' t' ]' ' '

is proportional to the ratio (6/a) rather than to
the smaller quantity (6/s)'. The same is true of
the frequency shift ao, ($) —&u, itself. In the region
of frequencies e and wave vectors kII where the
effects of retardation are important, the rough-
ness-induced shift in the frequency of a surface
polariton has been shown to be of O((5/a)'}.""

The fact that the splitting of the surface-plas-
mon dispersion curve vanishes both as $ -0 and
as $ -~ is not difficult to understand. In the for-
mer limit the wavelength of the surface plasmon
is much greater than the transverse correlation
length, and the surface plasmon does not "see"
the roughness over which it propagates. In the
latter limit the wavelength of the surface plasmon
is much shorter than the transverse correlation
length and the surface plasmon follows the rough-
ness adiabatically. In either case the surface plas-
mon sees a flat surface, and its frequency is that
for a flat surface. For intermediate values of $,
e.g. , for $ = 1 when the wavelength of the surface
plasmon is comparable to the transverse correla-
tion length, a kind of resonant interaction of the.
surface plasmon with the roughness occurs, and
the splitting of its dispersion curve goes through
a maximum.

We also see that the damping of surface plas-
mons in the presence of surface roughness is due
to the imaginary part of e(ru), that in turn contri-
butes an imaginary part to ~, and to the rough-
ness-induced frequency shift given by the second
term on the right-hand side of Eq. (16}. This is
in contrast with the situation when the effects of
retardation are taken into account. In that case a
surface polariton can be damped even in the limit
as Ime(&a)-Oby two mechanisms' "'4: the sur-
face polariton can radiate energy into the vacuum,
and it may be scattered by the surface roughness
into other surface-polariton states. Such dynami-
cal, or radiative, processes are not possible in
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where e, (&o) =Res(&ue (u), e, (&o) =1m'((o), and

(t)
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[2 &.(t) —48, (t') + .J, (h)]'~'
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dX 1
cj Act))

where z is the vertical distance above the metal
surface at which the potential felt by the electron
due to the normal electric field and its image
potential is a maximum. The integrations on the
right-hand side of Eq. (21) tend to wash out the
structure present in Ima(k„&u).

' It would be of con-
siderable interest to have the experiment of
Lecante et a/. ' performed in a manner thatwould
permit P(k„, &o) itself to be measured rather than
the less informative dX/d(k&a).

The physical reason for the splitting of the
surface-plasmon dispersion curve has been in-
dicated by Kretschmann et al. ' A rough surface
can be regarded as a superposition of diffraction
gratings, each with its own spacing, amplitude,
and orientation in the x,x, plane which vary con-
tinuously from one grating to the next. Each
grating can split the surface-plasmon dispersion
relation. This splitting occurs at a given fre-
quency on the dispersion curve if hvo degenerate
surface plasmons with different wave vectors
can couple through the wave vector of the grating.
Since the dispersion relation for a surface plas-
mon given by Eq. (13) is flat, i.e. , it depends
neither on the magnitude nor direction of the
wave vector k„, all wave vectors entering the
Fourier decomposition of I(x„) couple two de-
generate surface plasmons with different wave
vectors, and split the dispersion curve thereby.

Although this explanation is correct, we feel
that it is useful to present an alternative way of
looking at the origin of the splitting that can also
be applied to the discussion of other physical

(21)

that for each»(ru) = —1. We have also drawn the
individual peaks whose sum constitutes the ap-
proximate total response function in Eq. (18).
These two curves do have their peaks shifted to
either side of the flat-surface peak but they are
sufficiently broadened that their sum exhibits only
one peak. The response function resulting from
the exact expression also has only a, single peak.
This broadening of the individual peaks can be
traced to the imaginary part of the dielectric
function, and the rather large value of e, in the
data of Irani et al."manifests itself in merging
the two peaks together in their sum. If the ratio
5/a is made very large, the splitting does emerge
but the validity of our results for such large val-
ues of 6/a is questionable.

The double-peaked structure of Ima(k„~) was
not observed in the experimental and theoretical
results of Leeante et al. ' because instead of
studying the probability P(k„, v) they considered
the derived cross section

phenomena in which surface roughness plays a
role.

In Ref. 6 it was shown that the effects of sur-
face roughness on the image potential can be
reproduced by a simple model in which the sur-
face roughness is replaced by a thin layer of di-
electric material straddling the plane x, =0 whose
dielectric constant &, is intermediate between
that of the vacuum above it and that of the di-
electric medium below it. The thickness of the
layer is L and it occupies the region -nL &x3
&(1 —n}L with 0&a& 1. The values of the pa-
rameters e~, L, & obtained in Ref. 6 are

«, ((u) = —,'[«((o) + 1],
L =3r' '6(5/a),

0=-=2

(22a)

(22b)

(22c}

a(k„(o) =e "~~

(1+».) (», —«) + (I —«, )(».+»)e "~~~

(«+» )(«+ 1) + (« —«)(« —1)e

Because the film of dielectric constant &, is thin,
we expand the numerator and denominator of the
expression given by Eq. (23) to first order in L.
When the values of the parameters given by Eq.
(22} are substituted into the resulting expression
we obtain for a(k„&u) the result that

a(k„(o) —= [1 —»((u}]

«(00}+ 1+—,'w' ~ '(5/a)'( [» (&u) —5]
[«(a)) +1]'——,

' v"'(5/a)'][«(~) —1]'

—,'[1 —»(&u)) —,', v6 w'~'(6—/a)$'~'[»((u) —5]
»(00)+I+-,' W6v' '(5/a)g' '[«((u) —1]

—,'[1 —»((o)] —~~2 v6 v' '(5/a)$' '[»((u) —5]
»((u)+1 ——,

' W6v'~'(6/a)t'~'[«((o) —1]
(25)

Thus this simple three-layer model for surface
roughness yields a two-pole structure for a(k„00)
just like the exact calculation. If we solve for
the positions of the poles we find for the surface-
plasmon frequencies

(d ($)=&d + 1r' '(6/a)t' '.vY
a 0 «s(~ }

(26)

This is exactly the result given by Eq. (16) to
O(5/a) when the small $ expression for f(f)
given by Eq. (15a) is substituted into it.

The physical reason for the splitting in the
present case is the presence of two interfaces

The response function a(k„ar) obtained on the basis
of this model is
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in the three-layer system: the interface between
vacuum and the thin layer of dielectric constant
2, (&u} at x, = ,L;—and the interface between the thin
layer of dielectric constant 2,(~) and the sub-
strate of dieiectric constant t((d} at x= —', L. A

surface plasmon can be associated with each in-
terface because at each interface one of the two

dielectric media in contact across it is active
(i.e., it has a negative dielectric constant), while
the other is inactive (i.e., it has a positive di-
electric constant}. This is the condition for the
occurrence of a surface plasmon.

In the immediate vicinity of the frequency at
which e((d)+1=0 Eq. (25) yields the following
result for Ima(k)((d)

[1—v6 v' (5/a}$' '] e(()d
Ima(k„(d) =-

[a,((u)+1 —&6)i"'(6/a) &"'] + e 2(2(o)

calculations of this paper on the basis of Eq. (28).
The required changes in the expressions given by
Eqs. (8)-(12) are the replacement of (62/a') in
Eqs. (9)-(10) by (6k+)', of $ by I}=k„/k~, and of
$

' g„($) by 2IZ„(II), where

1 Q

2)i „„( [1—(II-u) 2]'12[( II+u)' —1]"' '

(soa)

u(rP+u' —1)
[1 ( )2]1/2[( )2 I]1(e2 e (

[1+&6)i' '(6/a)$' ']c ((d)

[g ((d)+1+~6)i (5/a)$ ]2+ g (+2)

(2V}

This expression differs from the small-$ limit
of the exact expression, Eq. (18), only through a
missing factor of —, multiplying the terms con-
taining v 6)i'i'(6/a}$'i2 in the two numerators.
The good, semiquantitative agreement between
the predictions of this simple three-layer model
and the exact results testifies once again to its
utility in surface-roughness calculations, in ap-
propriate limits.

In their theory of the splitting of the surface-
plasmon dispersion curve by surface roughness,
Kretschmann et al. assumed for the Fourier
transform of the correlation function W(~x„~ },
called the surface-structure factor, the form

z(e„)= f e (e() „))e*ee(- i„

1ee) (II2 2 1}2 2~2 2

[1 —(II —u)']'~'[(II )' —1]' '

The surface-plasmon dispersion curve is there-
fore given by

)2 1 6k 2 2]1j2
f,(II)

1+-,' Ok, 'g' '" '

where

f, (II}=2I"'[&&.(II) 4g, (2I)+—&,( )]II"' .(&2)

The function f2(II) is plotted in Fig. 1 together with
the function f($). It is seen that the two functions
differ by roughly a factor of 2 in magnitude through-
out the ranges of arguments 0& $, q &10.

In Fig. 4 we plot -Ima(k„(d) as a function of &u

on the basis of Eqs. (28) and (29), for II =0.45 and
several values of ~kR. There is a quantitative dif-
ference between the line shapes in Fig. 4 and the

= —6(k„—k~) e

277
(28)

7.0

6.0

where kR is a wave vector related to the wave-
length X„around which the roughness wavelengths
peak by ka =2(i/I1z. This is in contrast with the
expression

g(k„) =)ia'exp(- —,
' a'k, ', ) (29)

W(/x„i) = a, (k„ix„i). (&0)

that follows from our choice for W( x2~) Eq.
(2). The correlation function W(~x„) corres-
ponding to this choice for g(k„) is the Bessel func-
tion

5.0

3
a 40

3.0
E
I

2.0

I.O

0.0
3.3

I I I I I

3.6 3.7 3.8 3.9 4.0
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To test the sensitivity of our results to the dif-
ference between the two expressions for g(k„)
given by Eqs. (28) and (29}we have repeated all the

FIG. 4. Response function —Ima(k„, (d) for silver as-
suming a delta-function structure factor [Eq. (28)]. Here
q= 0.45.
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corresponding ones for the Gaussian-structure
factor plotted in Fig. 2. The separation of the
peaks is much sharper in the latter for similar
values of the parameters 5/a and 6ks appropriate
to each. Also, from Fig. I we see that the maxi-
mum splitting, which is proportional to the func-
tion f($) or f, (q), occurs at a smaller value of
ri(0.45) for the delta-function structure factor than
of $(1.0) for the Gaussian one. The actual mag-
nitude of the response function js also larger in
Fig. 2 than in Fig. 4.

We have not carried out an exhaustive comparison
of the consequences of the two forms for the func-
tion g(k„) given by Eqs. (28) and (29). However,
the comparisons presented here suggest that there
are no significant qualitative differences between
the predictions of the two models, even if there
are quantitative differences.

We have presented here a simple theory of the
effects of surface roughness on the dispersion
relation for surface plasmons that demonstrates
the roughness-induced splitting of that dispersion

relation observed in recent experiments, and
yields quite explicit expressions for the freq-
uencies of each of its two branches and their
relative intensities. Agreement between theory and
experiment can be achieved for reasonable values
of the parameters characterizing the surface
roughness in our model. These results suggest
that the effects of surface roughness on the sur-
face-plasmon dispersion relation can be suffici-
ently large that they need to be accounted for in
precision studies of optical, or more generally
electromagnetic, properties of solids in the vici-
nity of the surface-plasmon resonance.
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