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Effective-medium theory of chemical binding: Application to chemisorption
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An approximate theory of the total energy change connected with the embedding of an atom in an

inhomogeneous host is developed. The primary effect of the inhomogeneous environment is included by

replacing it with a homogeneous electron gas of a density equal to that of the host at the atom site. The

lowest-order corrections to this simple picture are derived. The scheme, which is computationally very

simple, is tested against first-principles calculations for several chemisorption systems. It is found that

including a simple first-order correction gives excellent agreement for H and 0 adsorbates. For less

electronegative atoms like Si and Li, it seems that a second-order term involving the polarizability of the

atom in a homogeneous electron gas must be included.

I. INTRODUCTION

The total energy change connected with, e.g.,
introducing an impurity in a solid, chemisorbing
an atom on a solid surface, or forming a molecule
has only been calculated accurately in rather few,
simple cases. ' ' Even with the simplifications
offered by the local-density approximation' rela-
tive to the Hartree-Fock approach, for example,
the direct calculation of total energies is very
complicated, especially in situations where the
symmetry is low. A simple way of determining
the energy of a combined system from the prop-
erties of the constituents has therefore been an
important goal for the theoretical description of
such systems.

In the present paper, we present such a scheme
for the calculation of the energy change hE ac-
companying the embedding of an atom or a group
of atoms in an inhomogeneous host. The basic
idea is to approximate nE by n, E"'m(po(r)), the
energy of the atom embedded in a homogeneous
electron gas of a density equal to that of the host
at the atom position, p,(r). The effect of the
true inhomogeneous environment on the atom is
thus simulated by that of an effective homogeneous
medium. In the simplest formulation, the effect
of the host therefore only enters through its elec-
tron density distribution, p, (r), and the atom
properties are included through aE ~ (p,) which,
owing to the spherical symmetry, is much easier
to calculate than nE Furtherm. ore, 6E"'m(PO)

can be calculated once and for all for each atom.
The scheme can be viewed as a local-density ap-
proximation for a whole atom. The formal justi-
fication for the method will be described in Sec.
II, and the leading correction terms will be found.

We will concentrate in the present paper on
chemisorption systems. Apart from being in-
teresting in themselves, they represent a con-
venient test case where a few first-principles

calculations" exist for comparison. These tests
are described in Sec. ID. The implications of the
theory for the understanding of the chemisorptive
bond are discussed. Finally, in Sec. IV, the
possibilities of using the method in more com-
plicated situations are considered, as well as the
limitations of the method.

II. THE EFFECTIVE MEDIUM APPROXIMATION

In connection with a study of the properties of
hydrogen impurities in simple metals, Nf(rskov'
found that the electronic structure and total
energy of hydrogen impurities depends primarily
on the local environment. The energy change
associated with the embedding of a hydrogen atom
in a homogeneous electron gas n,E"' (p,), con-
sidered as a function of electron gas density p„
is shown in Fig. 1.' Given hE™(p,), one can,
for instance, determine very accurately the en-
ergy of hydrogen in a vacancy simply by reading
off the energy in Fig. 1 corresponding to the elec-
tron density in the middle of an undisturbed
vacancy. ' This approach was used to obtain the
energy of hydrogen in a vacancy as a function
of the distance from the vacancy center. ' The
same type of approach has been successfully used
to obtain the binding energy of H, outside a metal
surface based on far simpler calculations for H,
embedded in homogeneous electron gases of dif-
ferent densities. ' Stott and Zaremba' have de-
veloped the idea as a way of obtaining binding
energies of atoms in any inhomogeneous electron
system and have, for instance, applied it to
diatomic hydride molecules. They also derive
the leading corrections to the simple picture out-
lined above. ' In the following, we will give a
short derivation of these corrections in a way
somewhat different from that of Stott and Zarem-
ba. '

We are looking for the binding energy ~ of

2131 1980 The American Physical Society



2182 J. K. NQRSKOV AND N. D. LANG 21

0

E

4J

itself is a large perturbation, but all that is
needed for the second-order expression to hold

is that the perturbation does not vary too strongly
over the size of the atom [as defined by hp(r) or
5n.p(r)].

If we choose the average density p, such that"
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po(a.u. )

0.03

6Q r&pordr= hQ r por -p, dr

=0

FIG. l. Energy AE~ of hydrogen and oxygen em-
bedded in infinite jellium as a function of jellium density

po. The energy zero is the energy of the free atom.
Calculations (non-spin-polarized) were done for densities
down to 0.001 a.u. , after which each curve was joined to
a point at zero density corresponding to the negative of
the measured electron affinity of the free atom.

an atom (or cluster of atoms) embedded in an
inhomogeneous electron system of density p, (r)
(e.g. , the bare surface electron density). Since
we want to express AE in terms of the binding

energy of the atom in a homogeneous system,
consider as a starting point an atom embedded
in a homogeneous electron gas with a uniform
positive background to ensure charge neutrality
(infinite jellium). The electron gas (or back-
ground) density will be denoted P„ in order to
indicate that we will in fact choose it as some
average of the inhomogeneous electron density

p, (r) over the atom. The energy of the atom-plus-
jellium minus the energies of the bare jellium
and the free atom is AE™(p,). The electron
density of the atom-plus-jellium system is de-
noted p(r), so that the atom-induced density in
jellium is n, p(r) = p(r) —p, . We now introduce
an external perturbation 5v(r) which changes the

homogeneous electron density p, to that of the
inhomogeneous system: p, (r) =P, + p5, (r). In the
case of, e.g. , a surface calculation, 5v(r) will
be the difference between the potential due to the
positive background of infinite jellium and the
potential due to the ion cores of the bounded sub-
strate. We also introduce the change in atom-
induced density 5hp(r) = 5p(r) —5po(r). Atom-
induced changes are thus denoted by ~, while the
perturbation-induced changes are denoted by 5.
To second order in 5v, the change in 5.E"' (p2)
will be'0

66E= Apr -Z6r ~vr r

+
2

f5ap(r)5v(r)dr.

The atom is taken to have charge Z and to be
situated at r=0. In most cases of interest, 5v(r)

where nQ(r) = 1 [np(r') -Z5(r')]1r-r'1 'dr' is the
atom-induced electrostatic potential in the homo-
geneous jellium, we can express the first-order
term in E[I. (1) in terms of the change in total
electrostatic potential 5[I[),(r) = 5v (r)
+ J5p2(r')1r —r'1 'dr' instead of 5v(r) alone:

)'~d" = f [~p[r) -zn( )]))e,[r)Sr.

The second-order term can be written

56E2] = — 5Ap(r)5/2(r)dr2) 1

5AQ (r)5p, (r)dr .

Defining the response functions R and R' by

»~()= f&[)»[,)&'."
))aO [i) = f2' [r, r')», [r')ter',

(3)

we can write E[I. (3) as

55 E[2)

R r, r' -R' r', r 6Q r 5p r' drdr'.

(5)
R and R' can be expressed in terms of the static
polarizabilities I' and I', and dielectric functions
e and e, of the homogeneous electron gas with
and without the atom through the formal equations"'

R= (Pe '-P,~, ')(P,e, ') ',
R =(f f[) )Eo)

R -R'=(P-P, )~-'(P,~ )-'.
R, R', and R -R' are obviously connected with the
relative strength of the response of the atom em-
bedded in a homogeneous system. This wiQ de-
pend on the detailed atom-induced electronic
structure. Since the usual second-order expres-
sion for a response function such as I' involves
a sum of the inverse excitation energies of the
system, "the existence of a resonance in the
atom-induced density of states close to the Fermi
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level will make the second-order term large. If,
on the other hand, there are no atom-induced
states near the Fermi level, we expect this term
to be small.

From the above, we extract the following set
of rules for obtaining approximately the energy
~E of an atom in an inhomogeneous electron sys-
tem whose electron density in the absence of the
atom is p, (r):

(1) Choose an average density P, such that

r &~o r dr=- bQ r po r -Po dr=0, 7

where b, p (r) is the atom-induced electrostatic
potential in the homogeneous electron gas of the
density Po."

(2) Then the zeroth-order contribution to
aE[p,] is

gg(0) —
nE ham (p )

(3) The first-order correction to this is

ad" = f [aplr) —zncr)]y, (r)d,

where P, (r) is the substrate electrostatic poten-
tial and b,p(r) is the atom-induced density in the
homogeneous electron gas of density p,. (Note

that &ft) o=p o because the electrostatic potential for
a homogeneous electron gas is a constant which is
taken to be zero. )

(4) The second-order correction is given by

2-

CHEMISORBED H/rs = 2,07

(a)

To make a jellium surface, one half-space of the
uniform positive background, which plays the role
of the metal ions of a real metal, is cut away. "
This model for the substrate is chosen simply
because first-principles calculations exist for
these chemisorption systems. " In making these
comparisons we will be working within the local-
density approximation of Kohn and Sham. '

In Fig. 2, the first-principles results of
Hjeimberg' for the chemisorption energy rhE(d)
of hydrogen as a function of distance d outside
the positive background edge is compared" to
the zeroth-order approximation nE~ (P,(d)) for
two different substrate densities. It is seen that
the zeroth-order approximation reproduces the
true equilibrium binding energies within a few
tenths of an eV. Figure 2 also illustrates the fact
that the distance at which the substrate electron
density p, (d) is around 0.002 a.u. , where
AEh' (p,) has its minimum (see Fig. 1), is clearly
correlated with the equilibrium distance d~. This
means that on a high-density substrate, d~ is
larger than on a lower-density substrate. For
very low substrate densities (bulk density 0.0039
a.u. , corresponding to Na) virtually no minimum

[R(r, r') R'(r', r-)]Q (r)5p (r')drdr',
2

(10)

0
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b, E (d)

~b,E(')INCLUDED-

~EhNIl( (d))

where again 6p, (r) is the deviation of the sub-
strate density p, (r) from p, .

It is thus seen that nE[p, ] can be obtained to
second order in the deviations of p, (r) from its
averaged value from only a knowledge of the
substrate density p, (r) and electrostatic potential

Q, (r), and the energy ~~ (p,), induced density
Ap(r), and response functions R and R' of the
atom in a homogeneous electron gas. From Eq.
(7) we see that the atom samples the surround-
ings over a volume determined by hP(r), which

is very localized.

III. APPLICATION TO CHEMISORPTION SYSTEMS

The scheme suggested in Sec. II is only formally
justified in cases where the substrate electron
density and electrostatic potential do not vary too
strongly over a typical atomic volume. The ques-
tion is whether the density variations at a metal
surface are too rapid for the approximation to
work for chemisorption energies. To test this,
we apply the scheme to a number of cases of
light-atom chemisorption on jellium surfaces.

I- 2
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FIG. 2. Chemisorption energy of hydrogen on jellium
surfaces as a function of distance d outside the jellium
background edge. Full curves are first-principles re-
sults (Bef. 4), dashed curves give the zeroth-order ap-
proximation, and dots give the first-order approxima-
tion. (a) High-density substrate (r = 2.07 corresponding
to Al), (b) intermediate-density substrate (r~= 2.65 cor-
responding to Mg). The density parameter r is defined
in terms of the bulk substrate density po(—~) through
j./po(- ~) =74 mr~a.
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in b,E(d) is seen in the first-principles results,
as one would expect from Fig. 1.

The zeroth-order result is seen generally to be
too low at large d [small p, (d)]. This is because
nE"' (po(d)) goes to a limit other than EE(d) as d
becomes large. Because the atomic affinity A„
of hydrogen is smaller than metallic work func-
tions, hydrogen goes towards the limit of a neu-
tral atom when it is moved away from a surface.
nE(d), which in Fig. 2 is shown relative to the
energy of a free atom, therefore goes to zero.
nE"' (P,), on the other hand, goes to -A„when
p, goes to zero, as indicated in Fig. 1. This is
because as p, of the infinite jellium goes to zero,
the chemical potential also goes to zero, making
the filling of the hydrogen affinity level ener-
getically favorable. ' The d-~ limit of
nEh' (P,(d)) is therefore -AH. The problem
noted here only arises at rather large d, well
away from d„.

In Fig. 1, hE"' (p,) is also shown for oxygen. "
The general shape of the curve is quite like that
for hydrogen. These curves are conveniently
discussed in terms of their slope dr)Eh' (P,)/dPO.
As shown by Stott and Zaremba, ' it is easily seen
from Eq. (1) that if we consider a perturbation
representing an overall change of the jellium
density, then to first order

&4E= — h(t) r &po r dr,

giving

d~E horn
a(3I} r dr.

dpo

For a free negative ion, the integral (11) diverges.
This means that for atoms like H and 0 where the
p, =0 limit is a negative ion, the initial slope of
the AE"' curve will be ~. As the negative ion
is screened out more efficiently at higher p„
the slope increases, passes zero around the low-
est metallic densities (p, = 0.002 a.u.), and
reaches an almost constant positive value. This
accounts for the existence of the minimum in
aEh' (P,} for these atoms. For an atom such as
He, where no negative ion exists, there is no
minimumv in 6E"' (P ).

The zeroth-order approximation AE"' (Po(d))
for the binding energy of oxygen outside a high-
and a low-density jellium surface is compared
with the first-principles results of Lang and
Williams in Fig. 3. Again agreement is seen so
far as the general characteristics of the curves
are concerned. For the high-density substrate,
a minimum exists at about 1 a.u. outside the sur-
face, while oxygen tends to penetrate the low-
density surface, because the bulk density of the
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latter substrate is close to the position of the
minimum in the AE"' (P,) curve of Fig. 1. The
absolute errors are greater, though, than in
the hydrogen case. Also the fine structure of
the low-density curve is not described.

Including the first-order correction (9) sig-
nificantly improves the agreement. In Fig. 3 the
dots indicate the values of dE"' (P,(d)) +b,E'" (d).
It is seen that now only a small discrepancy per-
sists at the lowest substrate densities [Fig. 3(b)].
This is probably again connected with the fact that
nE"' (P,} goes to the ionic instead of the atomic
limit when p, goes to zero. The effect of b,E'"
is mainly to lower the energy just outside the
surface and increase it just inside. This can be
understood in the following way. Since the density
distribution [np(r) —Zt)(r —d)] is spherically sym-
metric, nE ') can be written approximately as

~&"(~) = f [~r i') -&&( -~))4.)')&
- $0(d+a)+$0(d-a) —2&0(d)

,, &'40(z)
2

a=a
(12)
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FIG. 3. Chemisorption energy of oxygen on jellium
surfaces as a function of distance p outside the jellium
background edge. Full curves are first-principles re-
sults {Ref. 3), dashed curves give the zeroth-order ap-
proximation, and dots give the first-order approxima-
tion. (a) High-density substrate (~~= 2 corresponding
approximately to Al), (b) low-density substrate (~ =4
corresponding approximately to Na).
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where a is the characteristic size of the adatom.
Therefore nE'~ is negative just outside the sur-
face where the curvature of Q, is negative,
changes sign around the inflection point at d = 0,
and becomes positive at smaller d.

The success of the first-order approximation
suggests that the second-order contribution is
small for oxygen. This seems to be a very rea-
sonable assumption in view of the fact that the
oxygen is completely ionic in homogeneous elec-
tron gases of the densities P, (d) considered here.
This means that the oxygen 2p resonance is well
below the Fermi level, and thus the response
functions of Eqs. (4) and (6) will be small. One
further indication that this is true comes from
the finding that using the ap(r) of the first-princi-
ples surface calculation instead of the infinite
jellium np(r) in the calculation of nE" only
changes the values insignificantly.

For hydrogen we also expect the second-order
term to be small since the hydrogen-induced state
is well below the Fermi level, ' as it is for oxy-
gen. This is again reflected in the good agreement
shown in Fig. 2 between the first-order approxi-
mation" n.E"' (p, (d))+n, E "(d) and the first-prin-
ciples result.

The success of the simple first-order theory
for oxygen and hydrogen chemisorption has also
some bearing on the understanding of the chemi-
sorption bond for these adsorbates. It means that
the bond should not be discussed in terms of
covalency or related concepts which concentrate
on the buildup of charge in the region between the
adsorbate and the substrate. Because most of
the binding stems from AE"', the discussion of
AE" vs p, above suggests that the binding should
rather be attributed to the tendency of these atoms
to form negative ions.

The validity of the first-order approximation
has also been tested for silicon and lithium ad-
sorbates. " In these cases the agreement was not
as good as for oxygen and hydrogen. This must
mean that the second- (and perhaps higher-) order
terms are important for these atoms. This can
be understood from the electronic structure of the
atoms in jellium. At a typical jellium density,
both the hydrogen- and oxygen-induced resonances
are well below the Fermi level, as mentioned
above. The silicon resonance is situated further
up and the lithium 2s resonance is right at the
Fermi level. According to the discussion in Sec.
II, this means that the response functions and
therefore the second-order terms should be
larger for silicon and lithium than for the other
two atoms. The ordering of the atom-induced
resonances is obviously connected to the tendency
of the atoms involved to form a closed-shell con-

figuration. It should be mentioned that at low
jellium densities, the hydrogen and oxygen states
also come close to the Fermi level. These densi-
ties, however, correspond to distances from the
surface outside the range we are considering here.

IV. CONCLUSIONS

We have developed a theory for the interaction
of an atom or cluster of atoms with an inhomo-
geneous electron system according to which the
true inhomogeneous host can be replaced by an
effective homogeneous environment for which
calculations are much simpler. For host densi-
ties that do not vary too strongly over the spatial
extent of the atom, the interaction energy is
shown to be obtainable from the density and elec-
trostatic potential of the host and properties of
the atom embedded in a homogeneous electron
gas (energy, atom-induced density, and po-
larizability).

The scheme has been tested for light atoms
outside jellium, where first-principles calcula-
tions exist for comparison. For the electro-
negative adsorbates hydrogen and oxygen, a sim-
ple first-order approximation not involving the
polarizability gives results in excellent agree-
ment with the first-principles calculations. For
adsorbates such as silicon and lithium, it ap-
peared that the second-order term, which takes
the nonspherical deformation of the adsorbate
into account, must be included. Since the genera-
lized polarizability of an atom embedded in a
homogeneous electron gas has not been calculated
at present, this term is much harder to handle.
The immediate usefulness of the scheme is thus
limited to adsorbates like hydrogen and oxygen
that are not particularly polarizable.

The density variation at a jellium surface is
typical of at least simple-metal surfaces. The
method can therefore be expected to work as well
for such surfaces as it does in Figs. 2 and 3.
Whether thea electrons at transition-metal sur-
faces introduce density variations that are too
large for the simple theory to work remains to
be seen. The simplicity of the scheme does,
however, make it appealing even if the quantita-
tive agreement is not as good as in the cases
tested in this paper. Again the inclusion of the
second-order term woIuld improve the agreement.

Finally, we point out that, although the applica-
tion above to the case of chemisorption has been
based on the local-density approximation, ' the
scheme is completely independent of the approxi-
mations used in the actual calculation of the en-
ergies involved.
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