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Contribution of dissipative processes to radiation-induced solid-solution instability
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It is shown that a binary solid solution under irradiation may become unstable when vacancy-interstitial
mutual recombination takes place, while it would be (linearly) stable in the absence of recombination, for
the same average defect concentration. The general conditions for this to occur are elucidated and are not
very restrictive, Available models for solid solutions under irradiation may exhibit the predicted loss of
stability. This points to the possibility of radiation-induced precipitation being an example of the formation
of dissipative structures in solids.

I. INTRODUCTION

There is growing evidence that irradiation by
energetic particles may not only destroy pre-
existing second-phase precipitates, or accel-
erate second-phase precipitation in supersatura-
ted alloys, but also induce second-phase preci-
pitation in undersaturated solid solutions (for re-
cent reviews and discussions see Refs. 1,2).

The clearest evidences for the latter process
are listed in Table I. In the particular case of
Ni-Si, Ni-Qe, ' and' Al-Zn undersaturated solid
solutions, it could be established that the solvus
temperature is a function of the irradiation flux.
The irradiation flux (and not the integrated dose)
therefore appears as an extra control parameter
of the state of a solid solution under irradiation,
thus providing an example in favor of a more gen-
eral statement by Adda, Beyeler, and Brebec. '

As shown by several authors'=' it is difficult to
account for the formation of the observed second
phases in undersaturated solid solutions by the
alteration of the free energy of the system by ir-
radiation-sustained point-defect supersaturation.
On the other hand, several mechanisms for ra-
diation-induced precipitation have been proposed,
where the key role is played by the nonconserva-
tive nature of the point defects. Such is the case
for the growth models of incoherent precipitates
under irradiation ' ". Point-defect elimination
(or creation) at the precipitate-matrix interface
is a prerequisite for a shift of the solvus tem-
perature under irradiation. Such is also the case
for the models of radiation-induced precipitation
at point-defect sinks, where the precipitation pro-
cess is a consequence of the drag of the solute by
the point defect flux' t-owards the sinks (for re-
view and discussion, see Refs. 11,12). Similarly
in the available model of radiation-induced forma-
tion of coherent precipitates, vacancy-intersti-
tial mutual recombination at the precipitate is a
necessary condition for the proposed mechanism
to operate.

In all the above models, the dissipative Pro-

cesses sustained by irradiation (point-defect flu-
xes, and recombination reactions) drive the pre-
cipitation process. This is the reason why the
stability criterion for the solid solution under ir-
radiation, when it may be written in a simple
analytical form" implies kinetic parameters
together with the thermodynamic characteristics
of the system. The above detailed mechanisms,
however, are certainly only some particular ex-
amples of the various possible mechanisms by
which the dissipative processes sustained by ir-
radiation may affect the stability of the solid solu-
tions.

The purpose of this paper is to elucidate under
which general conditions the stability of the solid
solution may be destroyed by the dissipative process-
es sustained by irradiation. The method we use is as
follows: We define a model solid solution by the
atomic concentrations of interstitials, vacancies,
and solute atoms, and consider two different re-
gimes for this solution. In the first regime, here-
after referred to as c (closed), vacancies and
inter stitials are simply extra chemical compo-
nents, with no annihilation reaction allowed (the
defect production is stopped once the appropriate
point-defect concentrations have been reached).
This regime yields the thermodynamical re-
ference state of the solid solution under irradia-
tion. In the second regime, referred to as o
(open), allowance is made for vacancy-interstitual
mutual annihilation. The vacancy and interstitial
concentrations of the reference state can only be
maintained at the expense of a continuous pro-
duction of point defects in the system. The ques-
tion raised is: under what conditions a solid so-
lution which is stable in regime c may be unstable
in regime o. In order to answer this question, we
state simple diffusion-reaction equations for the
concentration of the various components of the
system (Sec. II) and check the stability of the uni-
form steady-state solution of the above equations
with respect to spatial-composition fluctuations
of small amplitude (Sec. III). Assuming the uni-
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TABLE I. Radiation-ilduced precipitation in undersaturated binary solid solutions. In complex alloys also, such as
stainless steels, unexpected phase changes have been reported. Owing to the poor knowledge of the equilibrium phase

diagram outside irradiation it is difficult to certify that the reported precipitation is radiation induced rather than

accelerated. In the particular case of American Iron and Steel Institute (AISI) 316 stainless steels, however, Brager
and Garner (Ref. 34) have checked that the radiation-induced p' precipitates dissolve outside irradiation at the ir-
radiation temperature. '

System Pro jectQe Result Reference

Ni-Be
Ni-Si

Ni-Ge

Al-Zn

%-Re

Ni+

I
Ni+
e-

e-

P-NiBe
v'-Nissi

~

'Y -Ni3Si ) heterogenous
V'-Ntsst I precipitation
V '-Nt&Ge~~ at point-defect' sinks

Zn
Zn, GP zonesl Homogeneous

~

prectpitation
g-WRe3

Okamoto, Taylor, and %1edersich (Ref. 27)
Silvestre, Silvent, Regnard, and Sainfort (Ref. 28)
Barbu and Ardell (Ref. 29)
Barbu and Martin (Ref. 30)
Barbu (Ref. 3)

Farrell (Ref. 31.)
Cauvin and Martin (Ref. 4)

Sikka and Motteff (Ref. 32)
Stiegler and Wiffen (Ref. 33)

~F. A. Garner (private communication).

n~+n~+n„+n~ -1. (lb)

Equation (la) deals with simple interstitials while
(lb} deals with dumbbell interstitials. The balance
equations for the three species i, e, B are

Sng

et
P -Kn, n —div3,0 (2)

form steady state to be stable in regime c, we

look for the conditions for the loss of stability in

regime o (Sec. IV). The implications of the result
are discussed in Sec. V, and specific models of
solid solutions under irradiation are briefly an-
alyzed in Sec. VI.

II. THE SOLID-SOLUTION MODEL

For the sake of simplicity, we describe the state
of the solid solution under irradiation by the local
value of four concentrations: n„, n~, n&, n„which
are, respectively, the solvent, solute, intersti-
tial, and vacancy concentrations (number per lat-
tice site). In fact, a more detailed description
might be given by distinguishing the solvent and
solute interstitials (and even the mixed intersti-
tials in the case of dumbbell interstitial confi-
guration). However, such refinements would sim-
ply make the calculations more complicated with-
out adding much to the point we want to demon-
strate.

Assuming that the point-defect concentrations
(n&, n„}are much smaller than the solute concen-
tration, the total solute concentration n~ is not
very different from the concentration of solute on

lattice sites. Moreover, assuming lattice sites
conservation yields

n„+n~+n, 1 (la)

or

en„
et

" =P -Known -divY
v '-v&

8n~
et

= -div J

P =K' n„. (5)

We now make the assumption that the homo-
geneous solid solution defined by

where P is the defect production rate, K an effec-
tive rate constant for the vacancy-interstitial re-
combination reaction, n„n„, ns and S&, S„, 3s,
respectively, the local concentrations and the
fluxes of interstitials, vacancies, and solute
atoms. As can be seen from Eqs. (2) and (3) no
point-defect elimination on fixed sinks is allowed
for, since we assumed the conservation of lattice
sites. The model is therefore more appropriate
to low-temperature, high-flux irradiation con-
ditions. Relaxing this condition would simply,
but prohibitively, increase the number of balance
equations. We assume S to be zero at the boun-
dary of the system. As explained in the intro-
duction, we consider two different regimes for
this system. In regime c interstitials and vacan-
cies are conservative species; K and therefore
P must be zero. This does not mean that the va-
cancy and interstitial concentrations are zero.
They are fixed to an arbitrary value, n& and n„
and keep this value since no allowance is made
for defect production or elimination. In regime o
interstitials and vacancies may be eliminated by
mutual recombination. The defect production rate
P must be adjusted in order to maintain the aver-
age defect concentrations at the same level as in
regime c:
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n, (r, t) =n, ,

n„(r, t) =n„,

ns(r, t) =ns

(6)

TABLE G. Alternative notations for the diffusion
matrix.

is linearly stable in regime c (P =K =0) (for a dis-
cussion of stability criteria, see Ref. 20).

In order to check the linear stability of a regime,
we proceed as follows: We introduce in the system
a small amplitude concentration oscillation around
n~ (P =i, v, B):

n~(r, f) =n~+v~(k, f) cosk r, (7)

with
I
k

I
=2~/

The system is linearly stable if v~(k, f)-0 when
t-~whatever k. The time evolution of v~(k, t) is
found by introducing (7) in (2)-(4) .

Jn principle, the fluxes J~ may be written as a
function of the concentration gradients

Pa Pa 'e~

Cgv CiB

&V3 CVB

~Bc CB BB

0 =c+

stability of the system in regime o (P and Ke 0) is
governed by the sign of the real part of the eigen-
values of the matrix o given by:

where the c~, are functions of the concentrations
and possibly of the concentration gradients. ""
Since we only discuss the linear stability of the
system, (i.e. , v~ small and therefore ff n~ small)
it is sufficient to assume c~, constant when in-
troducing (7) into (2)-(4). Assuming the system
isotropic the time evolution of the v~'s is there-
fore given by

or

where

0 0 0

ra+K'n„b+K'n, c1

d+K' nv e +K' n~ f
Z 4 7

(12)

8vi 2 2

Bt
= -k c«v) -k c] v -k ciBvB —Kn&vV V B v

-Kn„v, ,

=-kc v~-kc v -kc v -Kn~vBv„ 2 2
Vf vv v vB B v

BP„
c~ = Lp„—--", (10)

where L~„are the phenomenological Pnsager's
coefficients and p „the chemical potentials.

Assuming that the system is linearly stable in
regime c means that all the eigenvalues of the
matrix c have negative real part. Similarly, the

—Kn„v&,

8 VB 2

Bt
= -k CB( V) —k CB V k CBBVB .

V V

(-0'c,z) are the elements of a 3 x 3 matrix c.
They may in principle be expressed in terms of
the mobilities and mutual interaction potentials of
the four speciesA, B, v, i (Refs. 13, 14).

The detailed expression for the elements of the
diffusion matrix c is beyond the scope of this pa-
per. Explicit examples will be given in Sec. VI.
In principle the coefficients c~ may be given the
form

K' =K/k2 (13)

HI. FORMULATION OF THE PROBLEM

The general discussion of the sign of the real
parts of the eigenvalues of 3 x 3 matrices is rather
tedious. Hints to interesting features, however,
have been given by several authors. ' '" We would
rather take advantage of some specific features
of our problem which mill make the discussion
more practicable.

As stated in Sec. II, we want to discuss the sign
of the eigenvalues of the matrices c and o. The

and the coefficients a to i are respectively equal
to the corresponding elements c« to c» of the
matrix c, since the constituents of the system
interact through the same potentials and have the
same mobilities in the two regimes o and C. In
the following we shall use the notations a, . . . , i
or c«, ... , c» without distinguishing between
them. Table II gives the correspondence between
the two notations.

The question raised in the introduction is: under
what conditions at least one of the eigenvalues of
the matrix o has a positive real part, assuming
that all eigenvalues of the matrix c have negative
real parts. We elucidate this question in the fol-
lowing two sections.
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det(o —»»»I ) =0,

where I is the unit matrix. We recall that

(14)

eigenvalues of o are the solution of the character-
istic equation

a +e+i +K, &0,

a'(e+i) +e'(i +a) +i'(a +e) +2aei

—cg(a +i) -hf(e+i) +K, &0,

aei-ahf —cge+K, &0,

(24)

(25)

(26)
o =c if K=O.

Equation (14) may be written as

e '+a, v '+a,e +a~ =0,

with

»e' =(o/h'

(15)

(16)

(17)

with

IC, = 2v' KP/h '

K,=, 2 (a+e+i)' —(a'+e')v'EP

(27)

—(c +f)(h +g) +, (a + e+ 2i), (28)
2v'EP

k2

a, =a+e+i+IC'(n»+n„), (18) K, =v'KP [i (a+e) +(h-g)(c -f)]/h'. (29)

a, =ae+ei+ia -hf -cg bd-
+K'[n»(a+i —d)+n„(e+i -b)],

as =aei -ahf —cge+bgf +cdh —bdi

+K [n»(ai+gf di ——cg)+n„(ei+ch —hf —bi)].

(20)

According to the Routh-Hurwitz criterion, "
Eq. (16) has three solutions with negative real
parts if and only if

The statement that regime c is stable implies
that the conditions (24)-(26) are fulfilled when

E, =E, =K, =0. Assuming this is the case, what
are the requirements for at least one of these
conditions to be violated when KP v O'P

The following section gives a detailed discussion
of these requirements. Before turning to this
section we introduce the following useful change
in variables:

Gc =S(c) —,
5

a, &0,

a,a, -a, &0,

a, &0.

(21)

(22)

(23)

g =S(g)G»»,

(30)

The question raised in the introduction is: under
what conditions at least one of the inequalities
(21)-(23) is violated for K' e 0 (o unstable) knowing
that all are fulfilled for K' =0 (c stable) We w.ere
unable to give the answer to this question in a syn-
thetic form. However, without much loss of gen-
erality, the following two assumptions greatly
simplify the discussion:

(A, ) b =d =0 or c»„=c~ =0,

(A, ) n, =n„=(S'/K)"2.

Assumption (A, ) is indeed verified by the specific
models of solid solutions under irradiation which
are discussed in Sec. VI. Indeed, no coupling
exists between the interstitial and vacancy fluxes
as long as the range of the interaction potentials
between the constituents does not exceed the mu-
tual recombination radius of the Frenkel pair.
That this is the case is certainly a good approxi-
mation. Assumption (A, ) simplifies the analyti-
cal treatment but may be relaxed for numerical
applications of the method.

With assumptions (A, ) and (A,), the conditions
(21) to (23) write:

h =S(h)FQ,

S(x) =sgn(x),

where E, G, u, v are positive numbers.
Moreover, we simplify the discussion by ma-

king assumption (A,): the diagonal diffusion coef-
ficients (c»», c„„,ces) are all positive. This is a
sufficient condition for (24) to be valid. This con-
dition is valid for the specific models which we
will study in Sec. VI.

IV. CONDITION FOR DESTABILIZATION BY
DISSIPATIVE PROCESSES

We first notice that according to assumption (A, )
and to expression (27) of IC„condition (24) is
always fulfilled whatever the values of K and P.
Therefore the loss of stability can only result from
the violation of at least one of the two inequalities
(25) and (26).

The latter inequalities, can be written with the
help of variables defined by (30) as

A -S(cg) (a +i)G' -S(hf) (e +i)F' +K, &0, (31)

with
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A =a'(e +i) +i'(a +e) +e'(a +i) +2aei

and

(32)

K3&0.

aei -S(hf)aF'-S( cg)eG'+K, &0. (33}

The discussion can be easily carried out in the
F Gp-lane. When K, =K, =0 (regime c), the re-
lations (31)-(33)are fulfilled in a portion of the
first quadrant of the F-G plane bordered by the
conic section of the equation which is obtained
by setting the left-hand side of Eqs. (31) and (33)
equal to zero.

For example, the equation of the conic section
corresponding to Eq. (33} is

aei -S(hf)aF'-S(cg)eG' =0. (34)

It is straightforward to verify that whatever the
combination of the signs which are attributed to
c, f, g, h, condition (33) is more restrictive than
(31). As a consequence a sufficient condition for
destabilization is that condition (33) is violated
when K, WO.

When E, sh 0 the necessary condition for (33) to
be violated [knowing (33) is fulfilled when K, =0]
is

Introducing (30) into (29) gives

i (a + e) +FG
~
S ( hc) —+S(fg)—

v'KI' ( u V

k V Q

-S(hf)Fs-S(cg) G2 &0,

which again is fulfilled in a portion of the F-G
plane limited by the conic section

S(hf)F'+S(cS)G' —FG(S(h ) —+S(fS)—
V Q

(35)

Once these two conditions are fulfilled, the con-
dition for regime o to be effectively unstable is
provided by the violation of inequality (33), namely

-i(a+e) =0. (38)

In summary, we were looking for the conditions
under which the system being stable in regime c
may become unstable in regime o. A sufficient
condition for this to be Possible is that the two
following inequalities are fulfilled simultaneously:

aei -S(hf)aF2-S(cg)eG'&0,

S(hf)F'+S( S)G' FG(S(h ) —+S(fS-I—
V Q

—i(a + e) & 0. (38)

VKP aei -S(hf)aF ' -S(cg)eG'

(hf)FS' ( )+GS' cSFG( ( ) S—h+cS(fc-) — —'(h+ )
V Q

(39)

We now discuss the conditions under which Eqs.
(37) and (38) are fulfilled simultaneously. We
first notice that the nature of the conic sections
which delineate the portion of the F-G plane where
the above conditions are fulfilled only depends on
the sign of hf, cg, hc, fg and not on the signs
of h, f, c, g individually. Table III summarizes
all the possible situations: they reduce to eight.
Table III also shows the portions of the F-G plane
positive quadrant where conditions (37) and (38)
are respectively fulfilled, and finally the condi-
tions under which these portions overlap (un-
hatched domains).

Simple inspection of Table III reveals the fol-
lowing features:

(a) If regime c is to be destabilized by dissipa-
tive processes, this can only result from the non-
diagonal terms of the matrix c. This point was
already suggested by Ref. 1V. The physical mea-
ning of this is that the cross interactions between
the species (e.g. , solute-point-defect interaction)
and the coupling coefficients between the fluxes
(e.g. , the solute drag by point-defect fluxes) play
the key role in the destabilization process. That

point-defect fluxes may develop under irradiation
even in the absence of point-defect sinks, as in
our model system, results from the point-defect
mutual recombination as shown in Ref. 4. Such
fluxes can therefore only appear in regime 0.

(b) The conditions for the destabilization of c
to be possible are very loose indeed. The only
cases where the destabilization is not possible are
(cf. lines 7 and 8 of Table III} when c„sand cs, on
one hand and c;~ and c~„on the other have the
same sign in pairs. In all other cases, it is pos-
sible to find a set of values for the parameters
which will make it possible for the system to be
stable in regime c and unstable in regime o.
Assuming that the parameters have appropriate
values, the sufficient condition for the regime o
to be unstable is given by the relation (39). Usual-
ly, the parameters a to i have a term of zeroth
order in k',""so that, except for a fortuitous
cancellation of this term in the dominator of the
right-hand side of Eq. (39) it will always be ful-
filled for sufficiently small values of k'.

Table III therefore gives the conditions for the
system to be unstable in regime 0. We discuss
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TABLE III. Regions of dissipative instability (unhatched) in the parameter space.

DOMAIN OF VALIDITy OF DOMAI& OF COMPATIBILITY OF 37 ANO 38

f h C, g hf Cga fg CONDITION37 CONDITION 38 Shape and location Condition
of existence

+ m +
Same as the domain

of validity of 39
No extra
Condition

.Vei' ~F
a a +

+ m m m
G

+ ~ t +

m + m m

+ + a a

hey fg

a a m a

+ 4 + +
+++ +

Conditions 37 and 38

are not compatible

this question in more detail in the following sec-
tion.

U. DISCUSSION

A. Stability criterion for a solid solution under irradiation

We have just demonstrated that it is possible
for a homogeneous solid solution containing va-

cancies and interstitials to be stable when vacan-
cies and interstitials are conservative species
and unstable when vacancy-interstitial mutual
recombination is allowed for. The required con-
ditions on the parameters of the system are sum-
marized in Table III.

This justifies the idea stated in the Introduction
that the stability of a solid solution under ir-
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radiation is not governed only by the properties
of the free energy of the system, as a function of
the point-defect concentrations. Indeed, the state
of a system governed by Eqs. (2)-(4} and (8) is
entirely defined once the temperature T and the
concentrations n~, n„, nq are given. In the present
model, the point-defect concentrations (n„, n&} are
uniquely defined by the temperature (which fixes
K) and the irradiation flux (which fixes P); ac-
cording to assumption (A, ) in Sec. III

fp /

n g n ~JE

T oK

/0

Therefore, the domain of radiation-induced in-
stability can be defined in a Qux-temperature-con-
centration diagram.

Such a diagram has already been used to re-
present the experimental limit of solubility of
Si in ¹iunder irradiation. ' In this latter case
however, this representation is only tentative.
Indeed, from theoretical arguments it is shown
that the solubility limit under irradiation in this
Ni-Si system is a function of the dislocation den-
sity" and it is not certain that the dislocation den-
sity under irradiation is independent of the history
of the system. It has sometimes been objected
that the irradiation Qux is not a thermodynamic
intensive variable (since there is no associated
extensive variable), and should therefore not be
confused with variables such as the temperature
or the composition. ' This is perfectly correct.
Nevertheless, the flux-temperature-composition
diagram is simply the diagram of the control para-
meters of the state of the solid solution under ir-
radiation. When the irradiation Qux is zero, the
control parameters reduce to the standard ther-
modynamic variables. This is an illustration of
a common feature of the theory of dissipative
structures. "

According to the preceding sections, radia-
tion-induced solid-solution instability may have
its origin in two different processes:

Olssipative

instability limit
DPA (sec)'

FIG 1 Tentative representation of the instability lim
it of a solid solution under irradiation.

(a) Either the diffusion coefficients c,~
are such

that the system is unstable in regime c. This
corresponds to the case where the solid solution
supersaturated with point defects is unstable for
thermodynamic reasons;

(b) or the coefficients c,
&

are such that the sys-
tem is stable in regime c but unstable in regime
0. The instability is driven by the dissipative
processes. "

Following a general argument of the theory of
dissipative structure, ""we suggest that for a
given «~pe&atm'e when the point-defect super-
saturation is low (i.e. , when the irradiation flux
is small), the minimum solute content for the
solid solution to be unstable is determined by
criterion (a). In other words, the stability cri-
terion may be deduced from the thermodynamics
of the system. Qn the other hand, when the point-
defect supersaturation is large (and therefore
the dissipation is intense) criterion (b) will hold.
Figure 1 depicts a possible shape for the stability
limit in the Qux-temperature-composition space.

B. The time scale for the dissipative instability

it is unstable only for those harmonics of the con-
than a threshold value given by Eq. (39) which can

(40)v—-i(a+e)
Q

define k» =2m, ')

Once the system is known to be unstable in regime 0,
centration fluctuations with a wave length (2v/k) larger
also be written

4&' aei S(kf)aF' S(cg-)eG'-
GCP S(SS)P'+S(cS)G' PG(S(cc) —+-S(iS)

X~ may be taken as a scaling length of the system. We

For a given set of diffusion coefficients c&&

[which implies a given value of the average defect
concentration n, =n( =n„= (P/KP~ '] Eq. (40) shows

that k'/v'KP fixes the magnitude of the reduced
wave vector k/ks'. On the other hand, as shown
by Eqs. (1V) and (2V)-(29), &o' =&a/k' is fixed once
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c;~, ne, and k'/VKP are given. The latter para-
meter may be rewritten as k' n, /P which shows
that 1/P appears as a scaling time.

Indeed, for given diffusion coefficients point-
defect concentrations (P/K) and reduced wave-
length ( o k'n, /P) increasing the defect production
rate increases k' a,ccordingly, and ~ as shown
by Eq. (I'I). In other words, withthe constraints
just cited the relaxation time of a fluctuation (I/&o)
is proportional to 1/P. Therefore, the more dis-
sipative the system in regime o, i.e. , the larger
the defect production rate necessary to sustain
a given defect supersaturation, the shorter the
relaxation times of the concentration fluctuations,
and in particular the more rapid the radiation-
induced precipitation process.

C. Comparison with previous work

In a previous attempt to describe radiation-
induced destabilization" the author had restricted
himself to a three-components system (A, i, v).
The instability which was discussed was that of
the homogeneous point-defect population. The
loss of stability in this earlier work resulted from
the change of sign of one of the diagonal terms of
the matrix c.

The required change of sign was triggered by
an attractive defect-defect interaction energy
which could drive up-hill diffusion. In such a
model, the instability had a thermodynamic ori-
gin, while the vacancy-interstitial mutual recom-
bination reaction had a stabilizing effect as was
discussed in the original paper. " Indeed, when
the point-defect concentration increases locally,
the mutual recombination increases and there-
fore opposes the growth of the concentration fluc-
tuation.

In the present study, however, this is no longer
true as was just shown in the preceding sections.
Interstitial-vacancy recombination may trigger
the instability. One possible mechanism for this
to occur has been proposed in Ref. 4. If a solute
concentration heterogeneity attracts the point de-
fects, the recombination rate will be larger in

the region of this heterogeneity, therefore sus-
taining a point-defect current towards this region.
The defect current may drift a solute current
which, depending on the sign of the latter, en-
hances or smooths the solute concentration he-
terogeneity. %'e now turn to specific solid solu-
tion models.

TABLE IV. Sign of the diffusion coefficients in the
dilute-solid-solution models of Refs. 22, 3.

induced segregation at point-defect sinks, either
in dilute allpys ~3 pr in concentrated alloys.
In this section we show that the solid solutions
obeying these models may become unstable under
irradiation.

For all the above models, the balance equations
for the interstitials, vacancies, and component
B are given by Eqs. (2)-(4). Moreover, assump-
tions (A, ) and (A, ) of Sec. III are fulfilled, i.e. ,

(A, ) c,„=c„,=0,

The expressions for the remaining coefficients
vary from model to model.

(a) Dilute solid solutions; The statistical ther-
modynamical model of dilute solid solutions con-
taining point defects proposed by Howard and Li-
diard" has been extended to the case where non-
interacting vacancies and interstitials are simul-
taneously present. "" The two versions of this
extension simply differ by the expressions of c
in terms of the jump frequencies of the defects
in the vicinity of the solute atoms.

The sign rules obeyed by c, according to Bar-
bu" are depicted in Table IV. Comparison of
Tables III and IV shows that the stability of such
a solid solution under irradiation is not guaran-
teed. Indeed, relaxing assumption (A, ) we have
verified by numerical evaluation of Eqs. (21)-(23)
that some steady states predicted by Barbu's
model are indeed unstable, in particular at low

temperature. It is worth noticing that it is pre-
cisely in the region of the control parameter space
where the algorithm used to solve numerically
Johnson and Lam" equations often fails to con-
verge.

(b) Concentrated solid solutions: The descrip-
tion by Manning of diffusion in concentrated alloys
under irradiation" has been simplified by Wie-
dersich, Qkamotp and I am' . Simple inspection

TABLE V. Sign of the diffusion coefficients in the
concentrated solid-solution model of Ref. 23.

VI. APPLICATION TO SPECIFIC lNODELS

Several models are available for the descrip-
tion of a solid solution under irradiation. They
have been used until now to describe radiation-

V

B
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of the balance equations of this latter model shows
the sign rules depicted in Table V. According to
Table GI, radiation induced loss of stability is
possibleinthismodel, except for c&~&0 and c„~&0.

The above two models are only approximate
models of the thermodynamics of a solid solution
containing interstitials and vacancies. A general
model is highly desirable.

VII. SUMMARY AND COPjjl'CLUSION

The vacancy-interstitial mutual recombination
reaction is shown to play a crucial role in the
stability of a binary solid solution under irradia-
tion. For given point-defect concentration, the
solid solution may be unstable if this reaction is
allowed for, while it is linearly stable if this re-
action is forbidden.

Under simplifying assumptions which are shown
not to be very restrictive, the general conditions

for the above behavior have been elucidated and
are depicted in Table III. Available models for
solid solutions under irradiation may exhibit the
predicted loss of stability.

Although this was not done in detail in the above
sections, the formalism used suggests that the
reverse process may occur. An unstable solid
solution might be stabilized under irradiation by
the vacancy-interstitial recombination reaction.
Finally, according to the above arguments radia-
tion-induced precipitation might provide an exam-
ple for the formation of dissipative structures in
solids.
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