
PHYSICAL REVIE% B VOLUME 21, NUMBER 6

Kinks, solitons, and nonlinear transport in solids
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Exact solutions for solitonlike motion of interacting particles in a periodic potential are found to exhibit
curious properties. A kink corresponding to a vacancy or domain wall in this model propagates through the
system only if it is subjected to an external force. The force must exceed a minimum value, and the kink
which propagates most easily moves with a fairly high velocity (comparable with the speed of sound). Kinks
exhibiting this type of behavior wi11 lead to strongly nonlinear transport coefficients, This may relate to the
observed nonlinear conductivity in some quasi-oneMimensional metals.

A wide variety of phenomena in solid-state
physics has been related to the concept of the soli-
ton. For example, it has been argued that soliton-
like motion may be exhibited by dislocation lines
in imperfect crystals, ' domain walls in displacive
phase transitions, 's ions in some superionic con-
ductors, 4 ' and charge-density waves in some
metals. ' ' In these physical situations, the word
"soliton" must be interpreted loosely. Ideal soli-
tons are undamped particles which survive colli-
sions virtually unchanged. "Kink"' may be a more
appropriate word to use in describing the soliton-
like excitations in many solids.

One must make a "continuum approximation" to
justify the soliton picture. This approximation in-
volves replacing a set of particle coordinates u„
by a continuous function u(x) and approximating
differences in the particle coordinates by deriva-
tives of the continuous function. It is not easy to
investigate models of discrete systems without
making the continuum approximation. In order to
gain insight into solitonlike motion in discrete
systems, a model is presented here for which the
steady-state velocity of a kink in an external field
can be obtained exactly. When this nem model is
treated in the continuum approximation, one ob-
tains some standard results: solitonlike kinks
are found which propagate with no intrinsic damp-
ing. However, when the same model is solved
exactly, one finds that the kinks are always
damped. They lose their energy through a
coupling to phonons so that a "phonon wake" trails
behind the kink. Kink damping has been approxi-
mately calculated before, """but one advantage of
the exact treatment is that the peculiar velocity
dependence of the kink damping can be easily seen.
Results to be presented here will show that fairly
rapidly moving kinks offer the least frictional
drag, and a small driving force will not sustain
solitonlike motion. These results contradict some
phenomenal kink-damping approximations" and

predict a nonlinear transport coefficient.
The discrete model considered here describes

particles coupled by nearest-neighbor harmonic
forces subject to an additional periodic background
potential. The periodic potential V(u) is taken to
be an array of parabolas instead of the standard
sinusoidal potential:

and V(u +u) = V(u), where u is the particle position
and n is any integer. This form for the potential
determines length and energy units since the lat-
tice spacing is unity and the potential well depth is

The mass of the particles is also taken to be
unity.

The equation of motion for the interacting par-
ticles is

" —IC(2u„—u„„—«„,) — "+E. (2}

Here u„ is the displacement of the nth particle
from the nth-potential-well minimum, K is the
spring constant for the nearest-neighbor harmonic
interaction, ydu„/dt is a p-henomenological fric-
tional force, and I' is an applied force. Only the
case of pf particles in ++1 potential minima,
periodic boundary conditions, and Ã- ~ will be
considered here. This case corresponds to a
single vacancy (domain wall, etc.}.

The equation of motion [Eq. (2}]will be investi-
gated first in the continuum approximation. Then
the approximate continuum results mill be com-
pared with the exact solution of the discrete prob-
lem.

In the continuum approximation,

u(t)„-u(s, t)i, „,

2u(t)„—u(t)„„-u(t)„,-—
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and Eq. (2) becomes

B'u -5V B'u Bu

Bt 5u Bx Bt
(3)

The simple form for the periodic potential V(u)
makes it easy to find kink solutions of Eq. (3)
even when the damping y is nonzero. A solution
corresponding to a kink moving with a constant
velocity v is

A kink in this model can be thought of as the
motion of the vacancy through the system. Assume
the kink corresponds to a vacancy traveling in the
-x direction. If the kink passes the particle with
coordinate u, at time t =0, this particle moves
from the potential well centered at x=0 to the po-
tential well centered at x= 1 at t =0. This means
the force on this particle due to the background
potential is

(-—,'+F)(1 —e"~* "'~) for (x —vt) «0
u —z=

(+ —,'+F}(1—e'- * "' } for (x- vt) ~0
(4)

-d V(uo)
( )

duo
(8)

with

g, = ,'(yv+ -[4-(E v') +(y—v)']'"/(Z —tr') .

2.0 I ~~mmmmwmmmmm

The dependence of the kink velocity on the applied
force can be obtained from the condition that
u(x, f) have a continuous derivative. The result is

v =2&ICF/((~y)2[1 —(2F} ] +(2F)2)"2.

This continuum approximation for v(F) is shown
as the dashed curve in Fig. 1 for K =4 and y =0.1..
Of course when y =0, no force is necessary for
continuum kink motion. An undamped continuum
kink has a pseudorelativistic energy

(6)

Some properties of the original discrete system
of Eq. (2) can be obtained without resorting to the
continuum approximation. The simplest motion of
the particles corresponds to small amplitude
vibrations or phonons. The dispersion relation for
these phonons for y =0 and no vacancy is

Q(q) =(1 +2K[1 —cos(q)]]'I',

where 9 is the phonon frequency and q is the pho-
non wave vector.

&& [2u(t), u(t 1+/v), —-u(t —1/v), ]

ydu(t)0
( )dt (10)

A Fourier transform further simplifies the prob-
lem. Let

and

U(f) =u(t)o —
2 —F

Then Eq. (12) becomes

(u U((u) =(1+2ff[1—cos(s)/v)]+iy(o]U(u))+~
~2m(o

where 8(t) is the Heaviside step function. lf the
kink moves with a velocity v, then after a time
r =1/v, the system will be unchanged except for
a translation by one unit in the -x direction. This
means

u(t+ 1/v)„=u(t)„„.

Having specified the initial position [Eq. (8)] and
velocity [Eq. (9)] of the kink, the equation of mo-
tion for u, [Eq. (2)] becomes
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FIG. 1. Force I' necessary to move a kink at a velo-
city e. The dotted line corresponds to the continuum
approximation and the full curve is the exact solution.
The spring constant X is 4 and the damping p is 0.1 for
both curves. The dot corresponds to the minimum
force and optimum velocity of a kink when y = 0.

v =f1(q„)/q„. (13)

This describes the matching of the kink volocity v

with a phonon "phase velocity" O(q)/q. For small
v there may be several solutions to Eq. (13}, and
the q„may lie outside the first Brillouin zone.
The peaks in U(&u) at ~ =u&„correspond to oscilla-
tions in U(t) for positive time. When viewing the
whole string of particles, these oscillations in

(12)
One can see from this equation that U(+) will be
peaked at special frequencies cu„when y is small.
These frequencies satisfy the relation u&„=A(&u„/v).

By making the change of variable q =&a/v, the con-
dition which determines the special frequencies
becomes
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g(2~ dA)' (15)

with the q„given by Eq. (13). Solving the above
equation for the minimum force E and the corres-
ponding velocity, v of the kink with the least
friction yields

F = 2/(1+6. 8154K),

v = (1+2.4344K)" /4. 4934,
(16)

where 4.4934 is a solution to z =tan(x}, 2.4344
=2[1 —cos(x)], and 6.8154 =2[1 —cos(x}]—x sin(x).
The minimum force and optimum velocity for K = 4
are displayed as the large dot in Fig. 1. The dot
does not lie on the solid curve because this point
corresponds to the intrinsic minimum resistance
for y =0 instead of y=0. 1.

I believe the results obtained here suggest that
kinks moving at high velocities (v& v ) are soliton-
like. Fast kinks exhibit only a small resistance to
an applied force, provided their velocity does not
approach the speed of sound (-~K. They are stable
in the sense that they can be driven by an applied
force. In the absence of any external force, fast

U(t) appear as a phonon wake which trails behind
the kink. The (d„do not correspond to the mini-
mum phonon frequency as was suggested in Ref. 10.

The force necessary to drive a kink with velocity
v is -[U(0)+-,'] because U(t) =u(t), ——,

' —F and u,
was assumed to be —,

' at t =0 [see Eqs. (8) and (11)].
The inverted Fourier transform of U(&u) gives

1

v, [uP —O((o/v)']'+ (y (u }' 14

This force-velocity relation is a central result.
Typical data obtained from Eq. (14}for the case
K = 4 and y =0.1 are shown in Fig. 1 and compared
with the continuum approximation results discussed
earlier. The complicated structure of this curve
in Fig. 1 shows that the physics of kinks in dis-
crete systems is not simple. The figure shows
that a minimum force E is needed to move the
kink at any velocity, and the kink which propa-
gates with the least drag moves with a relatively
high velocity v . For the case shown here, v
= 0.3VK and v& is associated with a sound velocity
in the continuum approximation.

Some simple analytic results can be obtained
when the damping is zero [y-0 in Eq. (2)]. In this
case, the force-velocity relation of Eq. (14}be-
comes

kinks probably slowly decelerate by losing energy
to their phonon wake. On the other hand, slow
kinks with v& v appear to be less solitonlike.
Their stability is questionable since Sv/SF may be
negative. This means "the harder you push the
slower they go." Slow kinks may be able to rapidly
decelerate by some pinning mechanism.

The model presented here clearly predicts a
nonlinear contribution to transport coefficients
since sustained kink motion can only take place
for applied forces greater than F . Of course,
there could still be linear contributions to trans-
port especially at nonzero temperature where
some diffusive motion seems likely. Nonlinear
transport has been observed in quasi-one-dimen-
sional TTF-TCNQ (tetrathiafulvalenium-tetracyano-
p-quinodimethanide}, " and this behavior has been
related to charge-density waves and solitons. ' '
The model results presented here suggest a
somewhat different interpretation of the data.
The experimentally observed critical field which
produces a large increase in the current in TTF-
TCNQ could be associated with the minimum field
necessary to sustain kink motion F . For large
K, & can be very small. Static kinks may be
present even at low temperatures. If this is the
case, the observed activation energy may corre-
spond to the energy necessary to accelerate a kink
to the velocity v where its behavior is solitonlike.
This energy would be much less than the energy
necessary to create kink-antikink pairs.

One should keep in mind that the model solved
here is classical. It is possible, however, that
a classical model can explain electronic conduc-
tivity. From one point of view, change-density-
wave motion is primarily an ionic phenomenon.
If the electron gas is treated in the Born-Qppen-
heimer approximation, the electrons are merely
the source of the periodic potential V(x) which in-
fluences the ionic motion. Possible applications
of this model to ions in change-density-wave
systems is clearly speculative and one should
bear in mind that the basic nonspeculative conclu-
sion of this paper is that kinks move best when
they move fast.
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