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Interpolation functions for Fermi surfaces in strained metals

J. D. Gavenda, W. M. Theis, ~ and Brian Mulvaney
Department of Physics, The University of Texas at Austin. Austin, Texas 78712

(Received 18 October 1979)

A straightforward method for finding expansion functions with the symmetry of a strained lattice is

described. The method is applied to copper under hydrostatic and uniaxial strains. Changes in Fermi-
surface cross-sectional areas are computed, based on a fit to energy shifts calculated by D. M. Gray and A.
M. Gray [Phys. Rev. B 14, 669 (1976)]. The results compare favorably with experimental values. The
method is also used to find expansion functions for a crystal under an ultrasonic strain.

I. INTRODUCTION

When a metal is strained, the electron energy
bands shift by an amount 4E which depends on the
tensor components of the strain E as well as the
electron wave vector k. For non-volume-con-
serving strains the Fermi energy will also change.
As a result, the Fermi surface of the strained
metal will differ slightly from that of the un-
strained. Accurate prediction of the difference
is a severe test of an energy-band calculation.
Furthermore, &E is directly related to the de-
formation potential which determines the strength
of the electron-phonon interaction in the metal.

Because of the reduction in symmetry for a
strained crystal, Fermi energies are usually
calculated only at points of relatively high sym-
metry. In order to make comparisons with ex-
perimental data, such as de Haas-van Alphen
measurements of Fermi-surface cross-sectional
areas, it is necessary to devise appropriate in-
terpolation functions for the strained Fermi sur-
face.

In this paper we outline a general method of
obtaining functions with the proper symmetry for
a strained lattice and apply it to face-centered-
cubic crystals. We fit these functions to points
calculated by Gray and Gray' (GG) for the basic
static strains in copper, and compare computed
area changes with those found experimentally.
Finally, we show how the method also yields ap-
propriate functions for acoustic strains and thus
provides a convenient means of obtaining para-
metri. zed deformation-potential functions for cal-
culations of the attenuation and velocity of ultra-
sonic waves.

II. EXPANSION FUNCTIONS FOR A STRAINED LATTICE

We begin with a plane-wave expansion of E(k),
the electron energy in the unstrained lattice3:

E(k) =g C-„e""

E(k) =Q CqS)(k),

where S&(k) is the function belonging to the jth
star of lattice vectors R:

(2)

)if, e R
Sq(k) = (2)

R& fth star

We will assume that E(k) can be fitted by using
the Sf for the first few nearest neighbors and
finding the appropriate values of Cf.

In the strained lattice the stars are split (except
in the hydrostatic case) into stars of lower sym-
metry which we designate as S~(k), where

Sq(k) =Q Sq(k) . (4)

The five nearest-neighbor stars which result
when a face-centered-cubic lattice is subjected
to the various strains are listed in Table I.

The energy in the strained lattice may be ex-
panded in terms of the stars of lower symmetry:

E'(k) = CISI(k) . (5)

The energy shift &E which results from straining
the lattice is given by

Ck=k'tk) —k(k)= Cjk) —
/CIST'.sf

If the magnitude of the strain e is small, the co-
efficients Cf should differ little from the coeffi-
cients Cf for the high-symmetry star in the un-
strained lattice. We make the expansion

C'=C +a ' +O(e')
8R'f a~

and neglect higher-order terms in &.

where R represents a crystal lattice vector. All
of those vectors which are equivalent under a given
symmetry operation are said to belong to a "star, "
and will have the same expansion coefficient Cg.

It is convenient to rewrite Eq. (I) as
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&E/e =- QB~f~(k), (8)

Substitution of the zero- and first-order terms
of the expansion into Eq. (6) yields

(The factor a, has been omitted, since it is com-
mon to all terms in the expression. ) We substi-
tute into this expression Eqs. (12) and (13}and
obtain, after some reduction,

where the

f,(k) =g (aR(/BE) S( (9)

f,(tet}= -(I/v 2 ){2cos(—,'k„a, ) cos(—,'k„a, )

-cos(zk, a,)[cos(-',k„a,)

+ cos(-,'k„a,)]}. (15)
are fitting functions with the symmetry of the
strained lattice. We assume that the BC', /BR~ are
independent of i at & =0 and replace them by fitting
coefficients B&. The derivatives of R& with strain
can, of course, be evaluated explicitly for each
strain.

III. FUNCTIONS FOR A STRAINED FACE&ENTERED4:UBIC
LATTICE

The strain dependence of the 8& may be found by
first writing them as linear combinations of basis
vectors a, which depend explicitly on the strain:

R~= la, + ma, + na, . (10)

In what follows, we assume a cubic lattice with
lattice constant ao. For hydrostatic strain a,
= (1+ z)ao; for tetragonal strain along a, a, = a2
= (1 —e/2)ao, a, = (1+ z)ao; for trigonal strain
a, = [z+z(y+z)]a„a, = [y+ z(z+x)]a„and a,
= [z+ z(x+y)]a, . Substitution of these relations
into Eq. (10) yields

(Im+ m'+ n')'~ '

[n' --,'(I'+ m'}]

(1/a )(BR&~/Be), =( x(I'+m'+n ) '~

2(lm+ mn+ nl)

x(l+m+n)' '

for hydrostatic, tetragonal, and trigonal strain,
respectively. Strain derivatives for the first five
stars of the face-centered-cubic lattice are given
in Table I.

In order to illustrate the method, we solvefor f,
for a face-centered-cubic crystal subjected to a
tetragonal strain. From Table I we find

S,(tet) = exp[i(-,' k„+ —,
"k, )a,] + exp[i(-,' k, --,' k, )a,]+c.c.

= 2[cos(-,'k, +-,'k )a,+ cos(-,'k, —,'k„}a,]. (12)

Similarly,

S',(tet) = 2[cos(—,'k, +-,'k, )a, + cos(—,'k, --,'k, )a,

+ cos(zk, + zk, )ao+ cos(zk, ——,'k, }a,]. (13)

Using the values of BR&/Bz from Table I, we
have

f,(tet}= —,'(I/v 2 }9',(tet}+—,'(I/M2)$', (tet) . (14}

Functions derived in this fashion are given in
Table II for j= 1-5.

IV. APPLICATION TO COPPER

To illustrate the use of this expansion technique,
we will apply it to copper. Davis, Faulkner, and
Joy' (DFJ}calculated the energy bands in copper
under small hydrostatic strains using the Koringa-
Kohn-Rostoker method. From the strained and
unstrained bands they found the change in Fermi-
surface cross-sectional area for several ex-
tremal orbits. GG used a perturbation technique
in conjunction with the modified plane-wave
method to find electron energy shifts at four re-
latively high-symmetry points on the copper
Fermi surface.

We fit our expansion functions to the results of
GG because they are given for three basic strains
(hydrostatic, tetragonal, and trigonal) and can
easily be used to demonstrate the use of our
method. Since only four points are available, we
chose to fit the first three nonzero f& to them by
a least-squares method. The resulting values of
8& are given in Table II.

We can test the validity of the fitted functions by
using them to compute changes in extremal cross-
sectional areas to be compared with those mea-
sured with the de Haas-van Alphen effect. 'The

change in Fermi wave vector k~ can be found from
~(kz) for a given strain e using a relation based
on Eq. (8) of GG:

((ZY = m(~ —BED)/~ BE/Bk~ -e k, (16)

where v is a unit vector along BE/Bk which, along
with k~, is computed by using the coefficients in
Table I of Bosacchi and Franzosi' to evaluate
Eq. (29) of Bosacchi, Ketterson, and Windmiller. '
Area changes are then calculated from M~ values
around extremal orbits.

In order to compare the calculated values with
experimental results for hydrostatic strains, the
volume compressibility of copper was used, as
in GG, to convert strains to pressures. Our re-
sults are given in Table III along with the experi-
mental results of Templeton' and the calculations
of GG and DFJ.

For uniaxial tensions, linear combinations of
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TABLE III. Dependence of Fermi-surface extremal cross-sectional areas in copper on hy-
drostatic strain. (EA/A)/~ is given in units of 10 ~ bar-~.

Orbit
Present

work GG DFZb Templeton (Expt. )

[100]belly
[111]neck
[111)b lly
[110]dog bone
[100] rosette

4.66
16.0
4.11
3.79
2.83

4.28
12.6

4.62
15.3
4.36
4.04

4.42+ 0.03
19.8 +0.5
4.21 + 0.03
4.04+ 0.02
4.42+ 0.03

~ Reference 1.
b Reference 4.
'Reference 7.

hydrostatic and tetragonal or trigonal strains are
used, as in GG. Tables IV and V present calcula-
ted and experimental results for uniaxial tension
along [001] and [111],respectively. Here the
experimental values are those of Shoenberg and
Watts' and the calculated values are those of GG
and Davis. ' In most cases, area changes obtained
from our three-term fitting function agree with
experiment almost as well as the more detailed
calculations of DFJ and Davis.

TABLE IV. Dependence of Fermi-surface extremal
cross-sectional areas in copper on unaxial tension
along [001) [d(lnA)/&(lnAJ, where A~ is the diametral
area of a free-electron sphere whose volume remains
exactly half that of the Brillouin zone).

Orbit
Present

work GG' Davis
sw'

(expt. )

V. EXPANSION FUNCTIONS FOR ULTRASONIC STRAINS

In order to compute the effect of conduction
electrons on the attenuation and dispersion of
ultrasonic waves, one must know the deforma-
tion potential. As shown elsewhere, ' the deforma-
tion potential is simply related to ~(kr).

One can construct any ultrasonic strain from a
linear combination of hydrostatic, tetragonal,
and trigonal strains; thus a linear combination
of bS's for these strains should give the deforma-
tion potential. However, for model or parame-

1
-2„(qp + g, ), (17)

or, equival. ently, a.s

e~&
= (e/2)(qu+ uq),

where e is the strain amplitude and q and u are
unit vectors.

We now follow the same procedure as in Sec.
III to find the expansion functions with the sym-
metry of the ultrasonic strain. The strain de-
rivatives can be computed from

8e 0 [Hf
(19)

This method has been used' to obtain expansion
functions for shear waves propagating along [111]
in copper. The two modes used in the experiment
had I(~ [112] for e, and u (( [110]for c~ For simp-
licity we carry out the calculations in a reference

TABLE V. Dependence of Fermi-surface extremal
cross-sectional areas in copper on uniaxial tension
along fill] fd(lnA)/d(lnA )].

trized calculations it is more convenient to ex-
pand ~ in basis functions which are natural to
the ultrasonic strain.

An ultrasonic strain g can be expressed in terms
of the propagation vector q, the particle velocity
u, and the frequency & as

[100]belly
[001]belly
[111]neck
[111]belly
f110] dog bone
[100] rosette
[011]dog bone
f001] rosette

-0.52
3.94

-0.99
0.97

21.1
1.72

-8.88
-2.40

0.5
2.7
2.9

-0.3
3.6
5.1

-0.6
18
2.0

-7.8
-3.0

2.4+ 0.5

-2.1+0.8

Orbit

[001]belly
[111)neck
[ill] neck
fill) beQy
[111]b Dy
f100] rosette

0.98
-50

14.4
-1.36
1.72
0.23

1.0
-32

14

102

-28 -44 + 10
19
1.0 0.6+ 0.2

-0.1
7.7

Present sw'
work GG' Davis (expt. )

~ Reference 1.
"Reference 9.

Reference 8.

~ Reference 1.
Reference 9.
Reference 8.
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frame related to the geometry of the experiment.
We take q () [100], u (( [1TO] for e„and iT(([010] for

l..e. ,

with the coefficients obtained by fitting to ultra-
sonic attenuation measurements. '

0 0 1 0 1 0 VI. SUMMARY AND CONCLUSIONS

e e
2

00 0, e, = — 00—2 2
(20)

1 0 0 ,0 0 0

yzpt c~etL1 &

where

(21)

1 1

v3 ~3 v3

in the experiment reference frame. Vectors can
be transformed from the crystal to the experiment
frame using

A straightforward method for deriving expan-
sion functions with the symmetry of a strained
lattice has been developed. Fermi- surface cross-
sectional area changes, computed with expansion
functions fitted to calculated energy shifts, are in
good agreement with de Haas-van Alphen experi-
ments.

Expansion functions with symmetries appro-
priate to ultrasonic waves are convenient for
parametrized calculations of attenuation and can
be used, in conjunction with experiments, to ob-
tain values of the deformation potential over the
Fermi surfaces of metals.

1 1
~2 v2 (22)
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