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Finite-size rounding of a first-order phase transition
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The finite-size broadening of a first-order phase transition is estimated to be proportional to
the inverse of the product of the system size and the latent entropy of the transition. The rela-

tion to the usual second-order-transition case is discussed. The limit of a small first-order tran-

sition is shown to be consistent with a second-order one. These results are relevant both for
real and computer experiments on systems that are quite small but larger than microscopic sizes.

It is well known that phase transitions are infinitely
sharp only at the "thermodynamic limit, " (N ~ at
constant density, where N is the number of particles
in the system). For a finite N, the phase transition
acquires a finite width over a range of 4 T, around
the transition temperature T, . AT, /T, is expected to
behave like a negative power of N for large N, i.e.,
6 T/T, ~ N, where f is the "smearing exponent".
Thus, the finite-size 4 T, is usually immeasurably
small for macroscopic system sizes. The understand-
ing of how 5 T, vanishes with N or the value of the
exponent f for various phase transitions is, however,
a question both of a fundamental interest and of
relevance for the interpretation of experiments on
small systems. We cite as a specific example adsor-
bates on small graphite flakes which have generated a
considerable interest recently. '. Also, theoretical
computer simulations2 are done on systems of rather
small values of N and the knowledge of f in various
cases would be useful for the interpretation of these
"experiments" as well.

The finite-size broadening of a second-order transi-
tion is quite well understood from specific models,
physical arguments, 4 and scaling assumptions. ' One
important consideration being that the finite system
size is felt once the correlation length (, which
diverges at the second-order transition, becomes
comparable to the linear size of the system L —N'
(for convenience we shall take all lengths measured
in units of some basic microscopic length a). Since (
does rIot diverge at a first-order transition, the above
idea and usual scaling forms5 are not directly applica-
ble to this case. In the present very short note we
shall generalize a simple, nonrigorous, but physically
reasonable further idea used in Ref. 4 (see also Ref.
6) to make an independent estimate of 5 T, in terms
of the specific-heat singularity, to the first-order case.
This estimate for the second-order transition in the
simplest case where the specific heat diverges,
correctly yielded the hyperscaling and other scaling
relations. 4 Although the generalization to first-order
transitions is rather trivial, the result is nontrivial,

and we believe that it is useful to present it.
We take the large system to have a latent heat per

particle A. If the first-order transition is smeared
over a small temperature range, AT„ the 5 function
specific-heat peak of the infinite system will be
smeared into a finite peak of width 5 T, and height
-A/AT, . This assumes, of course, that the system
is larger than microscopic, so that the total entropy
change per particle is of the same order of magnitude
as in the infinite system. A possible finite-size shift
in the transition temperature T, is included. We now
use the well-known' result for the temperature fluc-
tuations in a finite system

(AT2) = kT kTc 6 T,

Nc„NA
where in the second approximate inequality the order
of magnitude of A/hT, was used for c„(the specific
heat per particle). The single physically plausible as-
sumption" that (hT') plays the role of the intrinsic
temperature uncertainty in the system is now made.
This determines the smearing AT, . We immediately
obtain our main result

AT,
or f=1

Tc Ncr

where o. is the latent entropy (A/T, ) measured in
units of k. This very small, O(1/N), width of the
first-order transition is to be compared with
AT, /T, —N '~t2 ) for the second-order case. Here a
is the second-order specific-heat critical exponent.
This difference in f is not surprising. The latent heat
is a stronger specific-heat singularity than a power-
law one. The strongest power-law singularity possi-
ble, o. 1 (this follows from requiring that the. entro-
py be finite), will in fact yield a finite-size smearing
in agreement with Eq. (2). Equation (2) is also in
accord with the fact that when the first-order transi-
tion is driven by an intensive thermodynamic field
other then the temperature, the 1/N smearing also
follows. The simplest example4 8 is the O(1/N)
magnetic field needed to choose one of the two or-
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dered states of an Ising-like model below T,.
We emphasize that the considerations presented

here are for the equilibrium case only. Supercooling
and metastability were not considered, although
finite-size effects may certainly be relevant for their
understanding as well.

It is interesting to inquire what happens to the
broadening (2) when the first-order transition be-
comes second order' as a function of some "nonor-
dering" intensive parameter p, at the point p, = p,
Approaching criticality will make the latent heat van-
ish like ~ p, —p,,~', where a is the specific-heat criti-
cal exponent of the appropriate second-order point.
Assuming that the broadening in p, of the second-
order transition is the same as that in temperature (a

universality assumption, not valid when p, is an "or-
dering field" ), we obtain a characteristic width
hp, , —N ' . This yields a characteristic latent
heat on the order of N " ', which when used in
Eq. (2), yields the usual second-order broadening
AT —N ' f=(2—o.) '.
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