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Renormalization-group studies of antiferromagnetic chains.
I. Nearest-neighbor interactions
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The real-space renormalization-group method introduced by workers at the Stanford Linear

Accelerator Center (SLAC) is used to study one-dimensional antiferromagnetic chains at zero

temperature. Calculations using three-site blocks (for the Heisenberg-Ising model) and two-site

blocks (for the isotropic Heisenberg model) are compared with exact results. In connection with

the two-site calculation, a duality transformation is introduced under which the isotropic Heisen-

berg model is self-dual. Such duality transformations can be defined for models other than

those considered here, and may be useful in various block-spin calculations.

I. INTRODUCTION

During the past few years the real-space
renormalization-group (RG) technique introduced by

workers at the Stanford Linear Accelerator Center-
(SLAC} has been successfully applied to several lat-

tice models of field theories and spin systems. ' It
has been shown to yield accurate results for correla-
tion functions and low-lying energy levels, and to lo-
cate phase transitions reliably. Furthermore, calcula-
tions using this technique can be systematically im-

proved to provide arbitrary accuracy.
This is the first of two papers in which the RG

technique is applied to an antiferromagnetic Heisen-
berg spin system with long-range interactions on a
one-dimensional lattice at zero temperature:

1
where S (i) denotes a spin- —, operator acting on the

ith lattice site. This model is of interest in view of
rigorous theorems proved by Dyson and Ruelle for
the Ising model analogous to Eq. (1.1).' According
to these theorems, the Ising model is disordered at all

finite temperatures if p & 2, while for p ( 2 there is
order at sufficiently low temperatures. One would
like to know whether the model (1.1) also has dif-
ferent phases as p is varied, even at zero tempera-
ture. Further motivation for studying the model
comes from the fact that the power-law interaction of
Eq. (1.1) also appears in lattice field theories when
the lattice gradient is defined according to the SLAC
prescription. In this paper various block-spin
methods will be tested on the nearest-neighbor
Heisenberg model which is the p ~ limit of Eq.
(1.1), reserving the case of general p for subsequent
work. In particular it will be shown that a three-site
blocking procedure is much more suitable for study-

ing the model (1.1) than a two-site calculation.
This paper is organized as follows: In Sec. II the

three-site blocking procedure is described and applied
to the nearest-neighbor spin chain with anisotropy
(Heisenberg-Ising model). This is done to facilitate
comparison with the calculation of Sec. III: it will be
useful to have studied the isotropic model of interest
as an unstable fixed point (in the RG sense) of a
more general model. It is shown that the three-site
calculation correctly reproduces the qualitative phy-
sics of the model and gives the ground-state energy
density to within 12'lo. Section III describes a two-
site blocking procedure for the isotropic nearest-
neighbor model. After the first blocking the model
has been embedded as an unstable fixed point in a
more general model of integer-spin particles. It is
shown that a naive application of the blocking pro-
cedure leads to entirely incorrect physics for the iso-
tropic model, and that this is due to the instability of
the fixed point and the approximate nature of the cal-
culation. Although the problem is easily understood
in this context, it makes the two-site calculation too
unreliable to use for general p. The situation is fur-
ther clarified by introducing a duality transformation
for the integer-spin model. It is suggested that such
duality transformations may have applications beyond
this particular model. Section IV describes ways to
improve the three-site calculation of Sec. II. In par-
ticular, an approximate calculation on a nine-site
block is discussed. Section V contains some conclud-
ing remarks.

II. NEAREST-NEIGHBOR HEISENBERG-ISING
ANTIFERROMAGNET

In this section the three-site blocking algorithm is
described and applied to the nearest-neighbor model
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with Hamiltonian

H = X [S„(i)S„(i+1) +S (i)S (i +1)

+ys, (i)s,(i+1)], y «0, (2.1)

where the infinite-volume limit N ~ will generally
be assumed. The lattice sites may be grouped into
blocks of three and labeled by ordered pairs (k, a)
where k =1,2, . . . ,—N specifies the block and

a =1,2, 3 labels sites within that block. Thus the ith
lattice site may be relabeled (k, a) where
i =3k —3+a. Three-site blocks are convenient be-
cause the block states will have half-integer spin as
do the original degrees of freedom. The Hamiltonian
may now be decomposed into two pieces, H;„and
H,„,, where H;„couples sites within a single block
and H,„,couples sites in adjacent blocks:

H = H;„+H.„,,
Hi„=$ [S„(k, 1)S„(k, 2) +S„(k, 2 )S„(k, 3)

k

+Sy(k 1)sy(k 2) +Sy(k 2)sy(k 3)

0 E=0

(2ITLT& —
ILTT&

—
ITT l& ).

plus the four corresponding states with all spins
flipped and negative total S„where F. is the energy.

For e ~0, Hb]„j,is invariant only under rotations
about the z axis (plus the discrete symmetry z —z

which keeps the energy independent of the sign of
S,) so that states of different total spin but equal S,
can mix. One finds that

~
—, , z ) is still an eigenstate,

with energy z y, ~ z, z )p is still an eigenstate with
1 1 1

energy 0, but that
~ z, z ) and

~ z, z ) i do mix. By di-3 1 I 1

agonalizing a 2 x 2 matrix, one finds that the lowest-
energy eigenstate is

to give a total spin 0 or 1, which is then coupled to
3

S (2). These states form a spin- —, multiplet and two

spin- —, doublets and are (notation is ~s,s, ) )

I-', .-', ) =ITTT& .
1E=+-

(ITLT& + ILTT& + ITT l& ),
j

(2.4)

+ yS, (k, 3)S,(k +1,1) ] . (2.2)

I

+ ys, (k, l)S, (k, 2) + ys, (k, 2)S,(k, 3) ]

H,„,= $ [S„(k,3)S„(k+1, 1) +S (k, 3)S (k +1, 1)
k

[+—, ) =(1+2xz) ' z([ —, , —), + J2x~ —,—))

& = ——[y+(y'+8)'i']

x —= 2(y —1)[8+@+3(y'+8)' '] '

(2.S)

Hi@ g Hblock( k)
k

H „,„=S(1)S(2)+S(2) S(3)

+ [aS(1 ) S(2) + S,(2)S,(3)]

= —,
'

([S (1) + S (2) + S (3)1'

—[S(1)+ S(3)1'——,']
+a[s,(1)s,(2) +S,(2)S,(3)] (2.3)

where ~=y —1.
For ~ =0, Hbl„[,is rotationally invariant, and its

eigenstates are found by combining S (1) and S (3)

To diagonalize H;„,it suffices to consider a single
block

Thus far the state of the lattice has been described
in terms of the state —spin up or spin down —of the
spin- —particle at each site. Since the eight eigen-

states of Hb]„1,form a complete set, an equally good
description (corresponding to a different basis in the
Hilbert space of states) is obtained by specifying the
eigenstate of each block. However, it is physically
reasonable to expect the low-lying states of the lattice
to be predominantly formed from the low-lying
eigenstates of Hbj„l,. I therefore make the approxi-
mation of restricting attention to the sector of states
built from the block states ~+ —, ) and

~
—,) only,

~

——, ) being obtained from
~
+ —, ) under z —z.

1 1

The next step is to write an effective Hamiltonian
which has the same matrix elements as the original
Hamiltonian within this sector of states.

More explicitly, the lowest-lying states of Hbl„l, are

(+ —,') =(1+2x')-'" [ITLT)(2x+2)+~TTL)(2x-1)+)LTT)(2x-j)],

)
——') = —(1+2xz) ' 2 [~LTL)(2x+2) + [LLT)(2x —1) + [Tjj)(2x —1)]

2

(2.6)
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(S (1)) = &S (3) ) = " " &S'), (2.7)

&s,(») =&s,(3)) = "+", &s, ),
where the notation & ) indicates any one of the four
matrix elements involving the states

~
+

2 ), and the

equality &S(1)) = &S(3) ) follows from the even
parity of these states. Using the relations (2.7) to
eliminate the S operators from H,„„andremember-
ing that H;„has been diagonalized, the effective
Hamiltonian can be written

N/3 ( N/3) -1
H"'= Xa + X b fS„'(k)S„'(k+1)

k 1 k 1

+Sy'(k) Sy'(k +1)
+ y, S,'(k) S,'(k +1)], (2.8)

at ————'[y+ (y'+8) 't']
t
' 2(1+x)(1-2x)

3(1+2x')

1+x
1 —2x y

Because this Harniltonian has the same form as the
original one, apart from the energy shift a1 and the
scale factor b1, the blocks of the original lattice may
be viewed as sites of a new lattice and an identical
blocking procedure applied to H ' . In this way one
generates a sequence of Hamiltonians H describing
the physics of ever larger length scales (block sizes)
and obeying the following renormalization-group equa-
ti ons:

N/3m (N/3m) 1

Ht t = X a + X b [S„(k)S„(k+1)
k 1 k 1

+s, (k) s, (k +1)
+ y.s, (k) s, (k +1)],

a ~t =3a —,'b [y +(—y'+8)«']

2(1+x )(1 —2x )
3(1+2x2) (2.9)

1+x
1 —2xxm

&

ap=0, bp=1 yo=y

The overall sign difference between the states reflects
Condon-Shortley phase conventions. The effective
Hamiltonian is constructed from new spin operators
S defined by &+

q IS* I
+

2 ) =
2

= —2, etc. With this definition it is easy to check

that in each block

&S„(1))= &S„(3))= 2(1 +x 1 2x &S„')
3(1+2x2)

where

—= (y — )f +y + (y'+8)'"] '

h.„=8.— b. fy. +(y.'+8)'"] .
1

3m ™ IN

p=0 (2.10)

Since the whole RG procedure may be viewed as a
variational calculation in which the set of variational
trial states is "thinned out" or "truncated" with each
iteration, the energy density computed from Eq.
(2.10) will always be an upper bound on the true en-
ergy density.

The RG equations have three fixed points in the
region y ~0: y=0 (isotropic I'model), y= 1 (iso-
tropic Heisenberg model), and y = ~ (Ising model).
I now proceed to discuss them.

a. y =0. Near this point the RG equations be-
come

1

ym+I 2 ym

b„„=[—,'+O(y. ) lb. ,

(2.11a)

(2.11b)

& +t =h — b (2v2+y )
1

3 IN
(2.11c)

Equation (2.1la) implies that if ~y~ is smail the sys-
tem will be driven to the isotropic XY form'. the
y =0 fixed point is stable. According to Eq. (2.11b),
lim b =0, which implies that the isotropic XY
model is a massless theory: after sufficiently many
iterations it is possible to construct variational trial
states with arbitrarily small excitation energy. It is
also possible to compute the energy density at the
point y=0: Eqs. (2.lib) and (2.11c) imply
8 +t

——b' —(J2/6 +'). This leads to a geometric
series for b whose sum is b =——,42= —0.2828,
to be compared with the exact result' b = —1/~
= —0.3183. The error is 11%.

b y=l. Near this poi.nt y=1 +a with ~e~ ((1,

(The primes on the block spin operators in Ht i have
been dropped for simplicity. ) Here a is a e-number
contribution to the energy which after sufficiently
many iterations of the blocking procedure becomes
the dominant contribution. In fact, on the finite lat-
tice of length N, after roughly rn =log3N iterations
the whole lattice has been reduced to a single block
and a is the onlycontribution to the energy. Since
at each iteration the number of lattice sites drops by a

factor 3, the energy per original lattice site is to be

computed as a /3 —= h . Returning to an infinite
lattice by letting N ~, one obtains an energy densi-
ty given by lim 8, where 8 satisfies
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and the RG equations become

5
m+~ 3 6m

b+i= —b (1 ——e )
4 2

h +t
——iti —

+, (1+n )
bm

(2.12a)

(2.121 )

(2.12c)

1x = —1—m
ym

(2.13a)

1 3 2

ym
(2.13b)

Equation (2.12a) shows that this fixed point is un

stable: however small ep may be, after many iterations
one will have a —1 and Eqs. (2.12) will cease to
hold. According to Eq. (2.12b), b 0 at a=0 so
that the isotropic Heisenberg model is massless. Fi-
nally, using Eqs. (2.12b) and (2.12c) to compute the

4 menergy density at e =0 gives +t = S ——, (» ), a

geometric series whose sum is h„=——„=—0.3913.
This differs by 12% from the exact result, '
b =—0.4431.

c. y = ~. In the limit y && 1 the RG equations
become

which is the gap at the stable Ising fixed point. This
quantity is shown to be nonzero in the discussion of
end-to-end order given below.

The picture that emerges from this analysis is that,
for 0 ~ y ( 1, the system is driven to the massless
isotropic XY form, while for y & 1 it is driven to the
massive Ising form. The unstable fixed point y =1
separates the two regimes. This is precisely the
known behavior of this model. ' One might ask how
this approximate calculation is able to locate the
correct phase transition exactly, at y =1, This is
guaranteed by a symmetry: at y =1 the system be-
comes rotationally invariant, and the RG transforma-
tion has been defined so as to preserve rotational in-
variance if it is initially present. This point will be
important in Sec. III.

It is also possible to calculate the end-to-end order
in the ground state, defined as l(S(1) S(N)) I.
This is done, in direct analogy to the treatment of H,
by replacing the operator S (1) S (N) with an effec-
tive operator having the same matrix elements in the
sector of states retained at each iteration. Since the
first and last spins on the lattice are also the first spin
in the first block and the third spin in the last block,
Eqs. (2.7) and (2.9) show that after m iterations the
appropriate effective operator is

4
bm+& =

2 bm 1+
ym

(2.13c)

1 1 n

[S (1) S(N) ]ti7~ = b S,(1)S„+Sy(1)S

1
6m+a in 6(3m) m ym (2.13d) + by S,(1)S, — . (2, 16)

Equation (2.13b) demonstrates the stability of the

y = ~ fixed point: once y becomes large, it essen-
tially cubes itself with each iteration. Equations
(2.13b) and (2.13c) imply that for y sufficiently
large,

Since b 0 in all cases, the end-to-end order may
be computed as

I &S(» S(») I

= I(S,(1)S,(last))
I

—b-y, (2»)

bm+]ym+J bmym bpyp = y

so that Eq. (2.13d) gives the energy density as

1

(6 X 3m) 4

(2.14)
where the expectation value on the right-hand side is
evaluated in the ground state of the fixed-point Ham-
iltonian H . Clearly this predicts no end-to-end or-
der for 0 ~ y ~1. The vanishing of the order for

y =1 may also be obtained as a consequence of the
rotational symmetry of the theory and the cluster
property

This is the exact result for the Ising model y
which is easily understood since the block states

I
+

~ ) become in this limit

I+-', ) =ill]& ——l]]l& ——' ll]]&,
y y

I

——,
'

) = —
I l] l & +—

I l ]]& +—11]l &

y . y

(2.15)

iim [(S(1) S(N)) —(S(1)) (S(N))] =0 .
hf ~oo

For y & 1 the system is driven to the Ising model for
which l(S,(1)S,(last))l = 4. Using Eqs. (2.9), one

has for y &1

l(S(1) S(N))l = —fJ —— "
. (2.18)4 (1+x„)'

' „~9 (1+2x„')'

so that the RG algorithm constructs the exact Ising
ground state. The fact that b 0 in this case is not
sufficient to give a massless theory because y
The mass gap for any y & 1 is in fact given by b y

This infinite product is in fact convergent and
nonzero. For m sufficiently large that y »1, one
finds from Eq. (2.13a) that 9 [(1+x )"/(1+2x ) ]
=1 —0(y ~). The product (2.18) is finite and
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nonzero if and only if the sum

X ln [1 —O(y„')]=——$ O(y„')
a functional equation which is solved by

1&S(I) S(w))1(.) .", 0««I,
n&m n)m

converges. Since y„+~= y„for n & m, the sum is

highly convergent. It is important to note that the
end-to-end order depends not only on which fixed
point is ultimately reached, but also on the rapidity
with which it is approached.

It is also easy to obtain the limiting behavior of the
end-to-end order as y 1+ using Eq. (2.18). Set
y =1 + e with

I eI (( 1. According to Eq. (2.12a),
one iteration of the RG equations changes e into —,e.
Since xo =—0 for y =—1, it follows from Eq. (2.18) that

1(S (1) S (&))1(e)= —', 1(S (1).S(&))1(3a) .

(2.19a)

where

ln( —)
1.6 =

In( —', )
(2.19b)

Figures 1 and 2 show the results of numerical '

iteration of the RG equations. Figure 1 compares the
ground-state energy density computed from Eq.
(2.10) with the exact solution of Orbach, 9 while Fig.
2 displays the results of the. present calculation for
the end-to-end order and the mass gap. Note that
the energy density and mass gap both refer to the
Hamiltonian used by Orbach, which differs slightly
from that used here'.

Hob„a= $ [(1—n) [S„(i)S„(i+1) + Sy(i) Sy(i +1)] + S (i)S(i +1)}
I

= —X [S„(i)S(i +1) +S (i)S (i +1) +yS(i)S (i +1) ]
y I

(2.20)

with

1y=
1 —a

so that the region 1 ~ y ~ ~ corresponds to
0 ~ a ~1. Due to the factor 1/y in Eq. (2.20), the
RG results for the order and the mass gap for this
Hamiltonian differ only by a factor of 4, as shown in

Fig. 2. The greatest error in the energy density is the
12% error at o, =0, and the general shape of the
curve is correct. According to Eq. (2.19b) the curve
in Fig. 2 behaves as n' for 0/ near zero, whereas in

fact both the gap' and the order" are known to van-

I
I

I
I

I
I

I
I

I

ish exponentially as o. 0+. This substitution of
power law for exponential behavior is a common
feature of simple block-spin calculations of this type
and can be corrected by improving the calculation us-

ing variational techniques. Except for this feature,
the results of the simple RG calculation given here
are completely consistent with the known properties
of this model.

III. TWO-SITE CALCULATION FOR THE
ISOTROPIC HEISENBERG MODEL

A rule of thumb for block-spin calculations states
that theories involving half-integral spins or fermion-
ic degrees of freedom should be treated using an odd
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FIG. 1. Comparison of the exact ground-state energy
density for Ho,»,h (lower curve) with the result of the
renormalization-group calculation (upper curve).

FIG. 2. Results of the renormalization-group calculation
ot the end-to-end order
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and the mass gap
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H= X s(I) s(I+1) . (3.1)

Decomposing the Hamiltonian into pieces which do
and do not connect different two-site blocks yields:

H =H;„+H,„,

number of sites per block to preserve these features.
The consequences of ignoring this good advice will

now be examined by applying a two-site blocking pro-
cedure to the isotropic Heisenberg model

N-1

and S, are the usual spin operators for a spin-1 parti-
cle whose states are

I
+ ), I0), and

I

—); these
operators annihilate the spinless state

I
x ). Q; thus

acts only within the spin-1 subspace while T; connects
the spin-0 state to the spin-1 states. It is easy to
check that the following relations between matrix ele-
ments of the spin- —, operators appearing in Hb]0«and
of the operators introduced in Eqs. (3.6) and (3.7)
hold between any pair of the states

I
+ ), IO), I

—),
and lx&:

H,„=XS(k,1) S(k, 2)',
k

(3.2) (S (1)) = —,
'

&Q + T ) &S (2) ) = —,
'

&Q —T )

(3.8)
H,„,= XS(k, 2) S(k +1, 1)

k

Anticipating that tensor operators will be useful in
the description of the integer-spin block states, I
write the operators appearing here in terms of raising
and lowering operators:

S(k,a) S(k', a') =So(k,a)So(k', a')

—S, (k, a)S,(k', a')

—S t(k, a)S, (k', a'), (3.3)

These relations may be inverted

(Q;) = &S;(1)+S;(2)), &T;) = &S;(1)—S;(2))

(3.9)

Thus, for example, S(k, 2) S(k+1, 1) may be re-
placed by the scalar operator

—$( —1)'[Q;(k) —T(k)][Q;(k+1)+ T;(k+1)]

—= —„[Q(k)—T(k)][Q(k+1) + T(k+1)]
where So = S, and S+I =—+ (1/J2)(S„+iS~)

The block Hamiltonian is introduced by

Hm = x Hbio. ~(k)
(3.4)

It is also possible to record the diagonalization of
Hb],« in the form

&S(k, 1) S(k, 2)) = ——+—
&Q (k)), (3.10)

Hg b=S(1) S(2)

The eigenstates of Hbh, ], form the familiar singlet and
triplet which will be labeled as follows:

since Q'=2 in the spin-1 subspace and Q'=0 in the
spin-0 subspace. Using Eqs. (3.8) and (3.10), the ef-
fective Hamiltonian after the first blocking may be
written

I+& =
ITT&

(IT[&+ I]T&) ~ E =+ —,
'

(3.5)

N/2
Hto) = X [Eo + coho Q'( k) ]

k 1

(N/2)-1
+ X c,[g(k) g, T(k)]—

k 1

x [Q (k +1)+ go T(k +1)], (3.11)

The Hamiltonian must now be rewritten in terms
of block-spin operators which act on the states (3.5).
To keep rotational i+variance explicit, it is useful to
define spherical tensor operators of rank 1, Q;, and
T;, i= —1, 0, +1, by

Qo=S* Q+t=+ (S +i~y)1

2

&0I Tol x
&

= 1, &
x

I Tol0& = 1 ,

&+ITtl x
&
=1.

&
—IT-tl x ) =1

&
x IT-il+) = —1,

(3.6)

(3.7)

and all other matrix elements of T; =0, where S„,S~,

3 1
where Ep= —4, cp= 4, Ap=2, and gp=l. It is im-

portant to realize that no approximation has been
made yet because

I
+ ), IO), I

—), and I
x ) form a

complete set of block states. A new basis in Hilbert
space has simply been chosen, so that the Hamiltoni-
an (3.11) now describes a lattice of length , N with a-
spin-1 triplet state and a spin-0 singlet state at each
site. The change of basis and its inverse are
described by Eqs. (3.8) —(3.10).

Since the sum of two integer spins is again an in-

teger, it will be possible to implement a two-site RG
transformation under which Eq. (3.11) retains its
form. In fact, restricting H to a particular two-site
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block produces a block Hamiltonian

&b)o k =2Eo+ co~o[Q (1) + Q (2) ]

+ cp[ Q(1) —gpT(1) ] [ Q(2) +gpT(2) ]

(3.12)

According to the general rules for combining spins,
Hb]«k will have 16 eigenstates: two spin-0 singlets,
three spin-1 triplets, and a spin-2 quintet. In order to
preserve the form of Eq. (3.11) an effective Hamil-
tonian will be written for the subspace of states built
from the lowest-lying singlet and triplet eigenstates of
Eq. (3.12). These states are readily found to be

lp 0) =(3+r ) '~ (rol x x)+lpp&
—I+-&-I-+&), E=E, ,

(3.13a)

I11)=(2+2so) (~2[so(1+x)+I x+))
+(I0+) —I+0))]

ll, p) =(2+2so')-' [so(10 x ) +
I xp))

The Hamiltonian (3.11) has the decomposition as
e;„+fI.„,

W/4

/f(o) g H(o)„(/)
k 1

(W/4)-1

+ $ c()[Q(k, 2) g() T—(k, 2) ]

x [Q(k + I, 1) +gpT(k + 1, 1 )]

and use of Eqs. (3.13e), (3.13f), and (3.14) leads to
a new, approximate, effective Hamiltonian of the
same form as Eq. (3.11). In fact, the general RG
equations are readily seen to be

H( ) = $(E„+c(5 Q2(k) +[Q(k) —g T(k)]
k

x[Q(k+1)+g T(k+I)]])

(3.15a)
2 7
1+2g s +s

Cm+1 = Cm

+(I -+) —I+- &)],
I1, —1) = (2 +2sp ) [sp(l —x ) +

I
x —) )

+(I -o) -lp-»],
E =E1' (3.13b)

gm+1 =
1 1/2

c 2+g s (1+r )
c (2+2s2)1 2(3+f2)1 2

+, —— (1 —2gs +g r )
2c +1

E+1=2E +c (4A —2 —r g )

(3.15b)

so =[I+[(»o-I+go )/4gp]2]t"

+ (2ho —1 +g()2 )/4gp

E1 = 2Ep + cp(45p —2 —rpgp )

E) = 2Eo+ co(4ho I —2sogo)

(3.13d)

(3.13e)

(3.13f)

where

r p
——[3 + [(2ho —I ) /gp2 ]2}'~2+ (2ho —1)/gp2, (3.13c)

where

r = [3+ [(2b~ —1)/g ] ] ~ +(2h —1)/g

s = (1+[(2h„—1+g')/4g ]']'~

+ (21)1 —1+g2)/4g

3 1Ep=, cp=, Ap=22 gp 1

(Q, (k a)) = u, (Q (k) ) +2), (T (k))

(T(ka) ) = )v, (Q (k) ) +z, (T (k) )

2)) = —2)2=2(2+2sp2) ' (3+rp ) '

W) = W2=Sp/(1 +Sp )

z)=zz=so(1+ro)(2+2s ) (3+r )

(3.14)

The next step is to define new tensor operators Q
and T which act on the states (3.13a) and (3.13b)
exactly as Q; and T, acted on the states (3.5):
(0, plTp Il, p) =1,etc. The resulting relationships
between matrix elements are

As usual, the energy per original lattice site is to be
computed as lim E /2 +'.

Numerical iteration of Eqs. (3.15) leads to a
ground-state energy density of —0.4210, only 5%
higher than the exact result of —0.4431. Because the
isotropic Heisenberg model is massless, one would
expect to find c 0. In fact, one finds that
g- 1, 5 0, but c a nonzero constant! This
limiting theory with 4 =0 can be solved exactly by
using Eqs. (3.9) and (3.10) to rewrite it on an under-

lying spin- —, lattice (recall that this transformation is

exact). The condition 6 =0 means that the two

sites within any one block on the spin- —, lattice are

uncoupled. The spin-
~

couplings are therefore as

shown in Fig. 3. This theory has a fourfold-
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1FIG. 3. Couplings for the spin-2 theory equivalent to the

in ~ integer-spin theory [Eqs. (3.15)]. 0.84

degenerate ground state in which each coupled pair of
sites has total spin 0 while the uncoupled sites at the
ends of the lattice have total spin 0 or 1. There is a
finite mass gap to the highly degenerate first excited
state in which some pair of coupled spins have total
spin 1, and additional mass gaps seParate the higher
excited states. Clearly this bears no resemblance to
the physics of the isotropic Heisenberg model with its
massless spin-wave excitations. What went wrong?

Recalling the calculation of Sec. II, suppose that
here also the Heisenberg model 4 =2,g =1 is an un-
stable fixed point of the more general model of Eqs.
(3.15). The RG calculation should find this fixed
point, but being an approximate calculation it need
not locate it precisely at 4 =2,g =1. In such a case
the RG equations with Heisenberg-model initial con-
ditions will iterate away from the unstable fixed
point, toward a stable fixed point with totally dif-
ferent physics.

Figure 4 shows the qualitative behavior of the RG
trajectories resulting from Eqs. (3.15) near the
Heisenberg point 4 =2,g =1 and supports the picture
just sketched. The unstable fixed point is quite close,
at LL =1.7,g =0.84, but the Heisenberg model iterates
to the stable fixed point 5 =0. There is also a stable
fixed point at 5 = ~. At the unstable fixed point the
Hamiltonian just rescales by a factor less than 1 at
each iteration, leading to the correct massless
behavior.

Recalling that the y =1 unstable fixed point of the
three-site calculation was located correctly as a conse-
quence of rotational invariance, it is natural to ask
whether the model (3.15a) possesses some symmetry
at the Heisenberg point which is not preserved by the
RG transformation. I now show that such a sym-

I.O I.7 2.0 5.0

FIG. 4. Qualitative behavior of RG trajectories in the
two-site calculation. The point ~ is the Heisenberg-model
point and + is the unstable fixed point.

metry can be defined as invariance under a duality
transformation.

To define the duality transformation it is con-
venient to rewrite the Hamiltonian (3.15a) in the
generic form:

H = ${F.+ GQ2(k) +AQ(k) g (k +1)

+BT(k) T(k +1)

+D[g(k) T(k+1) —T(k) g(k+1)][,

(3.16)

where 6 =ch, A =c, 8 = —cg, and D =cg. The
change in notation is necessary because the duality
transformation will not preserve the form of the
nearest-neighbor couplings in the Hamiltonian
(3.15a) except for special values of the parameters.

The first step is to use Eqs. (3.9) and (3.10) to
write a spin-2 Hamiltonian equivalent to Eq. (3.16).
This is the same trick used to solve exactly the
fixed-point Hamiltonian. It yields a spin- —, Hamil-

tonian which, if blocked using two-site blocks, would
reproduce (3.16). The spin-Ti Hamiltonian is

I

H =X[E+—G+2GS(k, 1) S(k, 2) +(2 +B)S (k, 1) S(k+1, 1) +(2 +B)S(k,2) S(k+1,2)
k

+ (A —B —2D) S (k, 1) S (k +1,2) + (A —B +2D) S (k, 2) S (k +1, 1) ] (3.17)

The spin-2 lattice is now shifted one unit to the right by letting (k, 1) (k, 2) and (k, 2) (k+1, 1) (period-

ic boundary conditions are useful here). This shift interchanges interblock couplings with intrablock couplings.
Finally, blocking the Hamiltonian back to the integer-spin form using Eqs. (3.8) and (3.10) produces the dual
Hamiltonian

8= X {E+Gg (k) +AQ(k) g(k +1)+BT(k)T(k +1)+D[g(k) T(k +1)—T(k) Q(k +1)]

+F[g (k) —T(k) ] [g (k +2) + T(k +2) ]] (3.18)
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where

E = F. +
~

G —
4 (A —B +2D)

6 = —,
'

(A —B+2D),

A = —(A +B+G)

B = —(A +B —G)

D= —G
2

F = —(A —B —2D)
4

Note that the dual gap parameter G depends on the
original couplings A, 8, and D while the original gap
parameter contributes to the dual couplings. Next-
nearest-neighbor couplings have also appeared. H
and H clearly describe the same system in different
ways and have the same spectrum and other proper-
ties. A system is self-dual in the sense that H = H if
its spin-

~
form is translationally invariant. The self-

duality condition reduces to A —8 = 2D = G, which
implies 5 =2,g =1. Only multiples of the Heisenberg
Hamiltonian are self-dual. Therefore, a calculation
which respected translational invariance would lead to
the correct physics for the Heisenberg model.

The RG transformation will not preserve self-
duality (translational invariance). Indeed, RG calcu-
lations of this type treat intrablock and interblock
couplings quite differently. The former are diagonal-
ized and contribute to the gap parameter at the next
iteration, while the latter contribute to the new cou-
plings. In the present calculation the initial Hamil-
tonian was self-dual while the 5 =0 fixed point which
was finally reached was not. This fixed point corre-
sponds to A —8 =2D ~0, and G =0. It is dual to
the point A =8=2D =0, and G A0 which is the
5 = ~ fixed point of Fig. 4. The 5 = ~ fixed point
corresponds to Fig. 3 with the coupling pattern shift-
ed one unit to the right.

Several remarks should be made regarding the
problem with this calculation and its resolution as dis-
cussed above.

(i) Although the RG equations, naively applied,
lead to the wrong fixed point, a glance at the trajec-
tories of Fig. 4 is sufficient to reveal the problem and
indicate the correct physics. Unfortunately, models
with long-range interactions such as Eq. (1.1) involve
an infinite number of different couplings, so that RG
trajectories cannot be mapped out. Without the tra-
jectories there is no way to locate unstable fixed
points. Thus, the two-site calculation of this section
cannot be reliably used to study the phases of the
model (1.1) even though it may well yield a good
ground-state energy density.

(ii) The problem encountered in the two-site cal-
culation is clearly very general: it may occur in any

theory when the first RG blocking embeds the theory
at or near an unstable fixed point of a more general
model. However, the following considerations sug-
gest a rule for determining which of several possible
calculations may be most seriously affected by the
failure of the RG technique to preserve self-duality.
In the two-site calculation, the ground state in a
block was a singlet, In order to get the correct mass-
less physics it would have been necessary for both the
gap parameter G and the couplings A, 8, and D to
iterate to zero. This did not happen because the RG
calculation treats gaps and couplings asymmetrically.
In the three-site calculation the ground state in a
block was a doublet, and the subspace of lattice states
formed from these doublet block states was iso-
morphic to the space of states of the original Heisen-
berg model. This would remain true even in a

three-site calculation using all eight block states. As
long as.all couplings iterate to zero in such a calcula-
tion, this subspace contains massless excitations
yielding the correct spectrum even if'nonzero gaps
separate the lowest doublet from the other states in

one block. This suggests the following rule of
thumb: given a choice, one should prefer that calcu-
lation for which the ground state in a block has the
highest multiplicity. This maximizes the number of
lattice states that can be constructed from the block
ground states alone. Physics which depends on this
sector of lattice states only will be independent of
gaps between block states, and therefore independent
of asymmetrical treatment of gaps and couplings.

(iii) The duality transformation introduced here
has applications beyond this particular model. Such a
transformation can be defined in any calculation in
which all the block states are kept at the first block-
ing, so that the blocking is "reversible". In a two-site
calculation the square of the duality transformation is

unity; in a calculation using m-site blocks the duality
transformation generates a Z symmetry group.

(iv) In addition to its utility in classifying fixed
points, the duality transformation may be used to in-

crease the accuracy of the RG calculation itself. Con-
sider the following scheme. Beginning with the Ham-
iltonian Hto' of Eq. (3.11), one blocks as usual to ob-
tain H "~ H is obtained by blocking the dual-(i)
Hamiltonian H (note that this blocking removes
the next-nearest-neighbor couplings introduced by
the duality transformation) and one continues by al-
ternately applying the duality transformation and the
blocking procedure. Since the underlying spin- —, lat-

tice is shifted to the right at each iteration of this
scheme, one might hope that more translationally in-
variant states than usual are being constructed and
that edge effects due to the ~alls of the blocks are
being "smeared out. " This scheme does in fact im-
prove the energy density found in the two-site calcu-
lation very slightly.
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IV. IMPROVING T.HE THREE-SITE
CALCULATION

where

2'2 ~ 2'2 1 2' 2

—I-,'. --,' &tl-,'.—,
'

&tl-,'.—,')i) (41)

( —21!tl& + I!it& +
I

tie�&)

If the Harniltonian on a nine-site block is written in

the form

black
= &0+ ~

HD=S(1) S(2)+S(2) S(3)

+S(4) S(S)+S(S) S(6)

+S(7) S(8)+S(8) S(9)

(4.2)

V=S(3) S(4)+S(6) S(7)
then lP) is an eigenstate of HD with eigenvalue —3.
To the extent that V can be regarded as "small", lP)
approximates an exact nine-site eigenstate. In actual-
ity V will mix lP) with the additional states
Villi), V'lp), etc. , of which the most important will

be Vlf) if Vis "small. " It is then reasonable to do a

One might try to improve the three-site calculation
for the isotropic Heisenberg model (y = I in the no-
tation of Sec. II) in a variety of ways. One method is

to keep more than two of the block states (2.4). One
might keep both spin- —, doublets, or even all eight

states in which case a duality transformation could be
employed. Alternatively one might try to select a
better pair of states to keep, which need not be
eigenstates of Hb) k ~ In this problem, symmetry con-
siderations make this impossible: rotational sym-

metry forbids mixing spin-2 with spin- —, states, and

parity rules out a linear combination of the two spin-
—multiplets. A third course is to use larger blocks.

In this section, I describe a way to improve the
three-site calculation by using it to approximate a
nine-site calculation.

Consider performing a nine-site calculation by

keeping only the lowest-lying spin- —, doublet of
eigenstates on a block at each iteration. Such a calcu-
lation can only be done with the aid of a computer.
However, 'two iterations of the three-site calculation
have the effect of constructing a pair of spin-2 states

on a nine-site block. The S, = —, member of this pair

is [cf. Eq. (2.4)]

nine-site blocking calculation using as the S, = —, state

the lower-lying state obtained by diagonalizing the
matrix of H„~„„in the subspace spanned by lQ) and

Vlf) only. This is a 2 X2 matrix, and the calcula-
tion is not difficult. It yields a ground-state energy
density in error by 5.4% as compared to 11.7% for
the three-site and 5.0% for the two-site calculation.
Like the three-site calculation, it also yields the
correct massless spectrum. Although perturbative in

spirit, this method is not a consistent expansion to
some particular order in Vas is the method of Ref.
12. However, it can easily be improved further by di-

agonalizing the matrix of Hb~„k in a larger subspace
spanned by more of the states lP), Vlf), V'lP), . . . ,

and choosing the lowest-lying state. Eventually these
states will span the entire spin- —, , S, = —, , even parity

subspace on nine sites, and one is back to the exact
nine-site calculation. This technique should also be
suitable for studying the model (1.1) with long-range
interactions.

V. CONCLUDING REMARKS

In this paper block-spin calculations for the isotro-
pic Heisenberg model employing both two-site and
three-site blocks have been discussed in great detail.
The three-site calculation and its nine-site generaliza-
tion gave good results and should be suitable for
studying the model (1.1) with long-range interactions.
The two-site calculation is not reliable for this pur-
pose. Results of the three- and nine-site calculations
for the long-range model will be presented in a sub-
sequent paper. The duality transformation intro-
duced in Sec. IIt can be defined for models other
than the one studied here, and it is hoped that it will

be useful in other calculations of this type.
After this work was completed, I learned from

Marvin Weinstein that improving the two-site calcu-
lation by variational techniques suffices to obtain the
correct massless spectrum. In such an improved cal-
culation, the block states are allowed to depend on
one or more variational parameters. These parame-
ters are adjusted to minimize the ground-state energy
computed after many RG iterations, rather than to
diagonalize the block Hamiltonian. This "feedback"
mechanism allows the physics at scales much larger
than the block size to influence the selection of block
states.
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