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The induced staggered magnetic field effects recently proposed by Blume er al. on the basis of
general symmetry considerations are discussed in terms of detailed microscopic mechanisms,
with special reference to the experimental situation in dysprosium aluminum garnet (DAG). It
is shown that all of the low-field effects observed in DAG can be accounted for quantitatively
by a mechanism based on the way in which the completing interactions affect the spin-spin
correlations. Approximate calculations of the high-field effects are also discussed, and it is
found that the same mechanism is probably responsible for these as well. A second mechanism,
which is based upon the inequivalence of the g tensors of different spins is also considered, and
although this mechansim does not appear to be important in any of the experiments performed
to date, we find that it will be the dominant mechanism at both low and high temperatures. It
is possible for the two mechanisms to compete, and if this should be the case, it would lead to a
new phase transition in a hitherto uninvestigated region of the phase diagram below about 1.1 K.
Two additional mechanisms involving higher-order Zeeman effects and anisotropic non-Ising
spin-spin interactions are also considered, but their effects are found to be negligible in DAG.
In other antiferromagnets for which symmetry also allows induced staggered field effects, any or
all of these microscopic mechanisms may be important, and a correspondingly wide range of
behavior may be expected. Semiquantitative estimates predict relatively small effects in CoF,

and FeF,, but large and readily observable effects in several rare-earth gallium and aluminum

garnets.

I. INTRODUCTION

Dysprosium aluminum garnet (DAG) has been the
subject of a large number of experimental studies.!™
One reason for the interest in DAG is that it has
been found to be a close approximation to an Ising
antiferromagnet, ! and it was therefore considered to
be an ideal system in which to study various types of
phase transitions. For a time, there was a rather puz-
zling situation in which some experimental results
agreed very well with the usual theoretical predic-
tions, while others, particularly those involving mag-
netic fields applied along a [111] direction, did
not. 1245

The first insight into the solution of this problem
was provided by Blume er al.,® who recognized that
DAG belongs to a hitherto unrecognized class of an-
tiferromagnets in which the antiferromagnetic order
parameter (the staggered magnetization M;) can cou-
ple directly to an applied magnetic field. The idea
was extended by Alben et al.” who considered the
general problem from a group-theoretical point of
view, and showed that in certain systems it is possible
to have terms in the magnetic free energy which are
not usually considered, involving M; and various
third- or higher-order functions of the field. The
simplest term of this kind which is allowed in the

case of DAG has the form
AF =aH,H,H,M; , 1)

where a is in general a function of temperature and
H,, H,, and H, are the components of the applied
magnetic field. The effect of a term of this kind will
be the same as that of a real staggered magnetic field
which, if it could be produced in the laboratory,
would add a term to the free energy of the form

AF =—HM;. The quantity (—aH,H,H,) was there-
fore referred to as an "induced staggered field."

The physical consequences of an induced staggered
field were discussed by Blume et al.® and by Alben
et al.,” who showed that it qualitatively explained a
number of the previously puzzling features in the
behavior of DAG. In particular, it explains the ob-
served magnetic hysteresis at low temperatures>’
which is found to result from an inequivalence of the
two time-reversed antiferromagnetic states 4™ and
A~ in the presence of a magnetic field along [111]. It
also explains the absence of a second-order phase
transition in the presence of a [111] field and the
nonsingular variation of the order parameter with
field, as observed by neutron scattering.®

As in the case of all arguments based on symmetry
considerations alone, these explanations did not pro-
vide an answer to the physical origin of the mecha-

2008 ©1980 The American Physical Society



21 INDUCED STAGGERED MAGNETIC FIELDS IN . .. 2009

nism(s) responsible for the induced-staggered-field
effects. In the original paper, Blume et al.® men-
tioned two possible mechanisms, one involving the
inequivalence of the g tensors at different rare-earth
sites, the other involving the anisotropy of the Van
Vleck susceptibility. Of these, the g tensor mecha-
nism was subsequently considered by Foglio and
Blume, '° who concluded that it was too small to ac-
count for any of the effects observed in DAG while,
as we will see below, the Van Vleck susceptibility
mechansim turns out to be ineffective for the partic-
ular induced staggered fields which we seek to ex-
plain.

In this paper we shall consider two additional
mechanisms based on the detailed form of the spin-
spin interactions corresponding to the symmetry of
the garnet lattice. One of these, involving non-Ising
terms in the interactions, is also found to be too
weak to account for the behavior observed in DAG,
but the other, which depends on the relative signs of
the Ising-like interactions, is shown to account quan-
titatively for the principal observations. This mecha-
nism, which we term the staggered interaction
mechanism, is of particular interest since it results
from multiple-spin correlation effects involving three
or more spins, which are completely ignored by
mean-field and similar approximations.

The relatively subtle nature of the effect which we
seek to explain can be appreciated by estimating the
size of the induced staggered field which is required
to account for the experimental observations. Thus,
for example, in the optical magnetization measure-
ments, Dillon er al.® found a difference in the mag-
netization AM between the 4* and A4~ states
amounting to only about 2.5 emu/cm? in an applied
field of 3.0 kOe and at a temperature of 1.3 K. If we
ascribe all of this to a term in the free energy of the
form of Eq. (1), we obtain

_—lAF(4%) —AF(47)]
oH

aH2 6Hs
=-2 N M; I M; , 2)
where we have put H,=H,=H,= H/\/?correspond-
ing to a [111] field and have identified
H,=—aHH,H,. A value for |M;| ~600 emu/cm?
may be estimated from the neutron scattering results
of Blume er al.% and, solving for H;, we obtain
H; ~2 Oe. This is less than 0.1% of the applied
field, and it is clear that a rather careful approxima-
tion may be required to account for the effects prop-
erly.

Fortunately, in the case of DAG the microscopic
Hamiltonian describing the interactions of the spins
with each other and with the field is well known from
previous work, and we can therefore start from a
rather reliable model for detailed calculations. In Sec.

AM

II we summarize the features of the microscopic
structure and interactions which we shall need for
our analysis. For the statistical approximations, we
shall use series expansions at low and high tempera-
tures, and these will be discussed in Secs. III and IV.
A less precise, but for our purposes quite adequate,
cluster calculation suitable for intermediate tempera-
tures will be discussed in Sec. V. Quantitative com-
parisons with the available experimental data are
made in the corresponding sections. In Sec. VI we
discuss the possible role of various microscopic
mechanisms in producing observable induced-
staggered-field effects in materials other than DAG,
and in Sec. VII we summarize our conclusions which
suggest a number of directions which may warrant
further study.

Before discussing our calculations in detail, we feel
that it is important to understand how they relate to
previous work in this area. Nearly all of the previous
discussions were expressed in terms of induced stag-
gered fields. This emphasized the analogy between a
"normal" system in the presence of a real staggered
field and a system such as DAG which exhibits
induced-staggered-field effects when subjected to
only an ordinary (uniform) magnetic field. Although
this analogy is a very useful one, we do not em-
phasize it in this paper. We are here concerned pri-
marily with making quantitative estimates of the ef-
fects of the "induced staggered field," so as to deter-
mine the relative importance of various microscopic
mechanisms. We therefore choose to emphasize
quantities which are experimentally observable, such
as the difference in the magnetizations of the two an-
tiferromagnetic states. It is of course possible to re-
express the results of our calculations in terms of an
induced staggered field [as was done above in con-
nection with Eq. (2)1, but this in no way affects the
calculations or any of the conclusions which we will
draw from them. As a result, our paper contains cal-
culations of the effects of the induced staggered field,
but no calculations of the "size" of the induced stag-
gered field itself, except for the rough estimate given
in Eq. (2) above.

II. MICROSCOPIC STRUCTURE AND
INTERACTIONS IN DAG

A. Structure

The structure of DAG is fairly complicated, with
24 spins per unit cell, as shown in Fig. 1.1'71* How-
ever, the sites are all related by simple symmetry
operations, and if, as throughout this paper, we re-
strict ourselves to the case of magnetic fields applied
along a [111] crystal axis, we need consider only two
inequivalent sites. These are shown schematically in
Fig. 2. Other sites are related to these by simple 120°
rotations about the [111] axis.
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FIG. 1. Zero-field antiferromagnetic structure of DAG
shown in a [001] projection of the unit cell (after Ref. 13).
The numbers give the heights above the Z =0 plane in
terms of the unit-cell edge length. Spins pointing along Z
are indicated by current loops with a right-hand sense. For
fields directed along the [111] direction, this structure corre-
sponds to the AT antiferromagnetic state discussed in the
text. The A~ state can be constructed by simply reversing
the direction of every spin.

B. Single-ion interactions

At the temperatures of interest in this paper, the
jons may be represented* in terms of effective spins
S= %, and the interaction of these with a magnetic
field is described accurately by a magnetic g tensor
whose principal axes for both of the sites shown in
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FI1G. 2. Configuration of nearest-neighbor spins in DAG
for sites on the two sublattices, @ and b. The solid and
dashed lines denote ferromagnetic and antiferromagnetic in-
teractions, respectively. The notation is the same as that
used in Fig. 1, with the exception that the spins around (and
including) the a site are numbered in accord with the discus-
sion in Sec. II C.

Fig. 2 are [110], [110], and [001] relative to the cubic
crystal axes.!* For one of the sites, which we shall
denote as a (see Fig. 2), the principal g values corre-
sponding to these axes will be g, g,, and g, while
for the b sites they will be g,, &, and g,."* For a
field applied along the [111] direction, the effective g
values for the two sites will thus be

ga=(+g+ g (3a)
and
g =(3g2+ i (3b)

For some rare-earth garnets, the values of g, and
g, are quite large and quite different from one anoth-
er, but in DAG both g, and g, are very small. There
are no really accurate estimates for g, and g,, but ex-
periments* have obtained an upper limit for the
difference |g2 — g?| < 0.25 which we shall need for
our calculations. The third component, g,, is large
and well known, and its value is close to 18. For a.
further discussion of the g values and references to
earlier work, see Ref. 4.

In addition to the first-order Zeeman effect charac-
terized by the g tensor, there is also a second-order
interaction with the magnetic field which results in
the Van Vleck temperature-independent susceptibili-
ty. Microscopically, this susceptibility will also be an-
isotropic, with the same principal axes as the g tensor
for each ion site. If we denote the principal values of
the a-site ion in Fig. 2 as ay, a,; and a,, the princi-
pal values of the b-site ions will be a,, ax, and «;.
The «’s can in principle be calculated from the
known wave functions, ' but for our purposes it will
suffice to estimate an upper limit for the difference
|ay —a,|. This may be found simply by noting that
the experimentally measured bulk Van Vleck suscep-
tibility Xyv is related to our a«’s by

XVV=%(ax+ay+az) » (4)
and since all the a’s are positive, we have
|txx—01y| =3Xxyv=3.7 x 1073 emu/cm3 , 5

using the results given in Ref. 4. This is a very small
value, but, as we shall see, even if it were larger it
could not explain the observed staggered-field effects.

There will, of course, also be higher-order interac-
tions with the applied field, and in general we would
expect these to be even smaller. Some of these
could, in principle, contribute to the observed effects,
but in DAG they will be so small that we shall ne-
glect them. In very large fields, or in systems with
low-lying electronic states, terms such as the fourth-
order Zeeman effect could well be important.
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C. Interactions between ions

The description of the effective spin-spin interac-
tions is more complex, and its discussion involves a
number of unusual features. The most general form
for the interaction of two spins §,~ =;— and §j =% is

=

SCU-=§,~'J,-_,~§,~ » (6)

where T} is a tensor with nine independent terms.
Previous work has established that in DAG one of
these terms is dominant for each pair of spins, corre-
sponding to the two spin components parallel to the
local z axes of the g tensors at the two sites. One
may thus describe the interactions as predominantly
Ising-like, but with the implicit understanding that
the z axes are not parallel in real space. In the ab-
sence of a magnetic field this presents no difficulty,
since we are clearly free to choose an axis of quanti-
zation at each site. In the presence of an applied
field, a more careful description is required, since the
components of the field are fixed with respect to the
crystal axes. In particular, one has to be careful
about the relative signs of different interactions, in a
way not recognized previously.!

Consider, for example, the interaction of the cen-
tral a-site spin Sy in Fig. 2, with two of its nearest
neighbors S; and S,. For the central spin, the local z
axis corresponds to the crystal Z axis, but for S; and
S, the local z axis is parallel to the crystal X axis.
Under the influence of, say, magnetic-dipole interac-
tions and the highly anisotropic g value, the spins will
be aligned as shown. Relative to the /local axes, one
may describe spins Sp and S} as ferromagnetically
aligned; with an effective interaction —KS§S{ and
K >0, whereas the pair (S,S,) are antiferromag-
netically aligned with an effective interaction +KS§S53.

Had we described all the interactions in terms of a
common set of crystal axes, this difference would
have followed directly from the symmetry. For the
pair (S, S;) the dominant interaction term would
have appeared as K§S5S{, which, under a rotation of
180° about the z axis, would transform to
—K§1S§S5=K§S55S5. Thus K& =—K5i, and if we
identify the local z axes with Z and X, respectively,
we get the change of sign noted previously.

Applying these considerations to other spin pairs,
we get the arrangement of nearest-neighbor interac-
tions shown in Fig. 2. We now note an interesting
difference between the arrangement associated with a
and b sites. In both cases, two of the nearest-
neighbor interactions are ferromagnetic and two are
antiferromagnetic, but the geometrical arrangement is
different for the two types of sites. Specifically, we
may note a triangle of spins (S,, S;, S3) associated
with an a site, in which all three nearest-neighbor in-
teractions are ferromagnetic, while there is no similar
triangle associated with the b-site spins.

The identification of ferromagnetic and antifer-
romagnetic bonds shown in Fig. 2 is of course not
unique, since it depends on the signs of spin direc-
tions relative to a set of crystal axes, which is itself
not unique. Thus, we have a choice of eight combi-
nations of directions for the x, y, and z axes, which
we may characterize by the eight directions in space
of the corresponding [111] axes. However, examina-
tion of the entire unit cell, shown in Fig. 1, reveals
that four of these choices are really equivalent, while
the other set of four corresponds to a reversal of all
the spin directions shown in Figs. 1 and 2. The prop-
erties of the antiferromagnetic state 4~ in a field
along [111] thus correspond identically to those of
the state A" in a field along [111]. We can therefore
restrict ourselves to considering only the particular
choice shown in Figs. 1 and 2 with +H along [111].

A pattern of staggered interactions of this kind is not
unique to the garnet lattice. Among the simplest ex-
amples of other lattices showing the same feature is
two-dimensional Kagomé net with two ferromagnetic
and two antiferromagnetic nearest-neighbor interac-
tions. We have previously discussed the properties of
such a system (see Giordano and Wolf in Ref. 17 and
see Ref. 18) and have demonstrated that the princi-
pal staggered-field effects found experimentally in
DAG are also properties of this simple model, even
though the essential symmetries are somewhat dif-
ferent.!®

In DAG, there are additional features of the in-
teractions which must be taken into account for a
complete description. First, we must consider the
remaining eight terms in the interaction tensor T,-j
[Eq. (6)]. These non-Ising terms have been dis-
cussed in Ref. 4, and it has been shown that none of
them is larger than about 3% of the dominant Ising-
like terms. In view of the smallness of the stag-
gered-field effects which we seek to explain, this is
no guarantee that these terms will be negligible, but
we will show in Sec. III C 1 that the effect of terms
of such magnitude is, in fact, negligible in the
present case. For other garnets, with less anisotropic
interactions, staggered-field effects associated with
some of the non-Ising terms could well be important.
To include such effects, one would have to apply the
same kind of symmetry considerations as discussed
above to determine the relative signs of correspond-
ing terms for various neighbors, and one would, of
course, also have to estimate the sizes of the indivi-
dual terms themselves. In practice, this can be quite
difficult, and it is fortunate that DAG is described so
well by an Ising model, albeit one with an unusual ar-
rangement of ferromagnetic and antiferromagnetic in-
teractions.

So far, we have discussed only the nearest-neigh-
bor interactions, and these are indeed the dominant
terms in DAG. However, there are also second- and
third-nearest-neighbor interactions which are by no
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TABLE 1. Interaction constants for first-, second-, and
third-nearest neighbors, K, K,, and K3, and the T=H =0
excitation energy, A taken from Refs. 4 and 19. Note that
the K; are normalized such that 2K; is the energy required
to reverse an /th nearest-neighbor spin.

K,/kg K,/kg Ks/kg Alkg

0.770 K 0.159 K -0.402 K 7.54 K

means negligible, and in any quantitative calculations
we shall also have to include these. As in the case of
the nearest neighbors, the major part of the interac-
tions is specified by one parameter per pair, and
values for these have been estimated from experi-
mental data by Schneider ef al.'® The results are
summarized in Table I, where K; denotes the in-
teraction parameter for first-nearest neighbors, etc.
For fourth and more distant neighbors, the interac-
tions may be calculated to sufficient accuracy?® simply
from the magnetic-dipole coupling, taking into ac-
count the highly anisotropic g tensor.

In summary, then, we may describe DAG in a field
H along [111] by an interaction Hamiltonian which
has the form

4
H=3,+3 Ve (7a)
k=1
where
3 =—(3)""upHg, 3,57+ 3 K;Sis; . (7b)
i (ij)

Vi=—(3)"PugHg, 3,87

i=a

—(3)"ugHg, 387, (70)
i=b
Vo=3 3 J&SeSE (7d)
(ij) a=xy ,
Vvi=3 3, JgesesP (Te)
(ij) a, B=x,y

Vi=— 2%(%&; +%ax)H21,-
i=q
—Ei(la1+la YH, (70
573 3 %y i
where (/j) denotes a sum over all pairs of spins, the
1, denote unit operators at the /th site, and we as-
sume implicitly that only the lowest Kramers doublet
of each ion is populated under the conditions to be
considered (7 << 100 K). At higher temperatures,
additional effects due to excited crystal-field states
will, of course, become important.
The leading term 3C; in Eq. (7a) has the form of a
single-axis Ising model used previously,* but with the

understanding that the signs of the individual pair in-
teractions K;; are to be determined according to the
symmetry considerations discussed above. The terms
in the V; represent various deviations from a simple
Ising model. We shall find that none of these is in
fact important for the effects which have been ob-
served in DAG so far, but they may become signifi-
cant at higher and lower temperatures, and also in
other systems.

III. LOW-TEMPERATURE EFFECTS

One of the simplest and most reliable methods of
treating a Hamiltonian such as Eq. (7a) is to consider
the energy of the ground state and the low-lying exci-
tations. If we treat the V) as perturbations, it is easy
to find the unperturbed states, since the energy levels
of the Ising Hamiltonian [Eq. (7b)] can be written by
considering various simple spin configurations.

The antiferromagnetic ground-state configuration
of DAG is well known theoretically!! and experimen-
tally!2!? and it is simply an extension of the patterns
shown in Fig. 2, as indicated in Fig. 1. Its energy Eg
is independent of field, and we shall measure all en-
ergies relative to F£y. The excited states correspond
to one, two, three, etc., spins reversed relative to
their orientation in the ground state, and we shall cal-
culate the energies of these states as we need them.

A. g-value mechanism

This is the mechanism which was first suggested by
Blume et al.,® and it corresponds to the term V; in
Eq. (7c). The microscopic origin of this mechanism
can be seen most clearly by considering Egs. (3a) and
(3b). Since all of the spins on the a sublattice couple
to the field with the g value g,, and all of the spins
on the b sublattice couple with g,, and since g, # g,
this will lead to an effect equivalent to that of an in-
duced staggered field. Foglio and Blume!? have re-
cently considered this mechanism using a mean-field
approximation, but their calculation was essentially a
numerical one, and it is hard to compare their results
with those of the other mechanisms considered here.

It is easy to find the perturbation of the ground
state due to V;. Since V, is composed solely of sin-
gle factors of S¥ or S7, it will have no diagonal matrix
elements within the eigenstates of 3C; and thus to
first order V| will have no effect on the ground-state
energy. It will, however, contribute in second order
since it will mix the ground state with the excited
states in which on spin is flipped from the ground
state. A straightforward calculation (given in Appen-
dix A) shows that to second order in the perturbation
and to lowest order in the field, the ground-state
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energy is
Ey=Eo— 5N (u3H?/A) (g +g)
—(Npd/12v300) g, (g2 —gH H® | (®)

where N is the total number of spins and A is the en-
ergy required to flip one spin at T =0 and H =0. If
we had considered instead the effect of V; on the
time-reversed antiferromagnetic ground state 4™, we
would have obtained the same expression as Eq. (8),
but with H replaced by —H. We see, therefore, that
the third term in Eq. (8) has the form corresponding
to Eq. (1), and it will contribute to the induced-
staggered-field effects predicted on the basis of sym-
metry. As predicted,’ there is no linear term in H.

Before we can compare the effect of this mecha-
nism with experiment, it is necessary to extend the
calculation to finite temperatures. This involves con-
sidering excited states with one and two spins flipped
and finding the corresponding perturbed energies.
Using these to calculate the partition function Z, one
then finds the free energy F from which other ther-
modynamic functions can be determined. Details of
the calculation are given in Appendix A. The results
show that the leading terms in the expansion of F has
the form

F=E,— 5 NkpTlexp(=A/kgT)

+exp(—4,/kgT)] , (92)
where '

Ay=A—gugH /3 + (udH?g2/34)

x (1 +gusH/34) , (9b)
A, = A +gusH/N3+(ujHg}/34)

x (1 —g;uH/~34) .

E, is the ground-state energy given by Eq. (8), and
kg is Boltzmann’s constant. Previous experiments
have shown* that A=7.5kg, and for reasonably low
temperatures and fields the effect of the additional
terms due to the excited states will therefore be quite
small.

From Eq. (9a) we can calculate the magnetization
using M =—9F/dH, and we can thus find the differ-
ence in magnetization AM of the A* and A~ states in
a field. AM can then be compared with the experi-
mental results of Dillon er al.’ To lowest order in H
we find

AM/My= (u}/A?) (g2 — g?) H?
x[1-2¢"*8T(A/k,T+1)] ,  (10)

where My = Np,Bg,/Zﬁ is the saturation magnetiza-
tion. To compare Eq. (10) with the experiments, we
substitube for up and A, put (g2 —g?) =0.25, the

TABLE II. Comparison of the experimental results for
the difference AM in the magnetizations of the two antifer-
romagnetic states measured at A =2.5 kOe, with the values
predicted on the basis of the g-value effect [Eq. (10)] and
assuming (g2 —g?)=0.25.

AM (obs) AM (calc)
T (K) M, (Ref. 9) M, [Eq. (10)]
1.32 7(+4) x 1074 1.18 x 1074
1.50- 1.5(+0.4) x1073 1.14 x 1074
1.80 6.0(+0.4) x 1073 1.04 x 104

largest value allowed, and evaluate the expression for
H =2.5kOe and T=1.32, 1.50, and 1.80 K. The
results are shown in Table II.

It is clear that the g-value mechanism is quite in-
adequate to account for the observations. Not only is
the absolute magnitude much too small, but also the
temperature dependence is much too weak. These
failures cannot be ascribed to approximations in the
calculation, which should be quite accurate, or to er-
rors in the parameters, which are all well known, and
we must conclude that the g-value mechanism itself
is not the correct mechansim to account for at least
these experiments. A similar conclusion was also
reached by Foglio and Blume, !° who considered the
induced antiferromagnetic order at higher tempera-
tures.

Nevertheless, it would be wrong to conclude that
the g-value mechanism is always inadequate to ac-
count for observable induced-staggered-field effects
in DAG. In particular, we note that the effect tends
to a constant value as 7 —0 K, which is not the case
for the other major mechanism which we shall con-
sider next. Thus, at very low temperatures we would
expect the g-value mechanism to become dominant,
and we shall discuss some consequences of this in
Sec. III D.

It is also worth pointing out that the g-factor differ-
ence (g2 —g?) can be two or three orders of magni-
tude larger in other rare-earth garnets [e.g., dysprosi-
um gallium garnet (see Wolf ef al. in Ref. 15)] so
that the g-value mechanism may produce some large
effects in other systems.

B. Staggered-interaction mechanism

Here we consider some of the consequences arising
from the pattern of staggered interactions which we
noted in Sec. II. These consequences are not im-
mediately obvious since it turns out that there are no
effects if we use a mean-field type of approximation.
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Also, as we shall see, in a low-temperature series ex-
pansion there are no effects until we consider terms
involving the simultaneous excitation of three neigh-
boring spins. This is not entirely unexpected, since
we know from symmetry that the lowest-order term
in the free energy related to the staggered-field ef-
fects is proportional to H3, so that it is not unreason-
able to look for excitations involving three spins.
This may explain why the effect has not been noted
before.

Let us first examine the construction of a low-
temperature—low-field series expansion for the mag-
netization from a qualitative point of view. Starting
from either the 4™ or the 4~ ground state and con-
sidering the energy of excitations in which one spin is
flipped, it is easy to show that these will occur with
equal probability from either ground state. Excita-
tions involving two spins will also occur with equal
probability in each of the two antiferromagnetic
states. However, if we consider excitations of three
or more spins, then the two antiferromagnetic states
are no longer equivalent. In particular, we see that
for one state 47 it is possible to have an excitation in
which a cluster of three spins which are all nearest
neighbors of each other (S, S;, and S in Fig. 2) are
flipped to become parallel to the field. On the other
hand, such an excitation is not possible from the oth-
er ground state 47, since in this state all of these
clusters are already parallel to the field. The two an-
tiferromagnetic states will therefore have different
magnetizations. They will also have different free
energies and hence only one of them will be stable.
However, the other state will probably be metastable,
since in order to pass from one state to the other it is
necessary to flip nearly every spin. If the field is re-
versed, the other antiferromagnetic state will become
stable, and hence we have the basis for the observed
hysteresis.

These ideas can be made quantitative by enumerat-
ing all of the relevant excitations and constructing
series expansions for the magnetizations of the two
sublattices M +. The calculation is complicated some-
what by the presence of dipolar interactions and the
associated demagnetizing effects. To deal with these,
we allow the fields acting on the two sublattices to be
unequal and include the effects of third- and more-
distant-neighbor interactions by the introduction of
two mean fields H +, which can be calculated from
the known interactions. Improvements on this ap-
proach are clearly possible, but, as we will see, the
approximation suffices to give good quantitative
agreement with the available observations.

Details of the calculation are given in Appendix B,
and the results are shown as the broken lines in Fig.
3. It can be seen that the agreement with the experi-
mental magnetization measurements of Dillon er al.’
is good, both with respect to the magnitude and tem-
perature dependence of the effect. The agreement is
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FIG. 3. Comparison of the experimental results of Dillon
et al. (Ref. 9) for (a) the magnetizations of the two antifer-
romagnetic states M, and (b) the difference in the magneti-
zations AM, with the theoretical predictions based on the
staggered-interaction mechanism.

especially satisfactory considering that the theory
contains no adjustable parameters. The small residual
discrepancies can almost certainly be ascribed to the
truncation of the series and the mean-field approxi-
mation for the more distant neighbors. We conclude,
therefore, that the staggered-interaction mechanism
is principally responsible for the low-field effects ob-
served by Dillon et al.*®

C. Other mechanisms
1. Non-Ising interactions

The terms V, and V3 in Eq. (7) represent interac-
tions which will couple different states of the unper-
turbed-Ising-model Hamiltonian, and which in some
sense may therefore act similarly to the off-diagonal
Zeeman terms in V. To obtain an estimate of their
effect at low temperatures, we shall first consider the
change in ground-state energy, as in Sec. III A.

Since we know from symmetry considerations that
the leading term which we seek will be proportional
to H3, we can start by examining qualitatively what
kind of perturbation term will in fact lead to such a
field dependence. In second order, the contribution
to the ground-state perturbation by one of the terms
in ¥, or V3 will be of order (J*#)%/(—E;), where E;
is the energy of the appropriate excited state. It is
evident that the only field dependence will come
from the variation of the E;, which for Ising-model
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states will be of the form A; — muH, where A, is the
zero-field energy gap, »; is an integer corresponding
to the magnetic moment of the excited state, and
w=2gus/2~/3. To obtain a contribution in H> one
must expand the denominator, and the leading

term of interest will therefore have the form
(J*B)2(wH)3/A}. This is clearly very small. The A;
are typically of the order of A, the energy to reverse
one spin which as discussed above is 7.5kz. The in-
dividual J*8 on the other hand, are smaller than 3%
of the Ising K ’s and hence less than 0.03kg. The ra-
tio of one of these terms to the corresponding g-
tensor contribution [Eq. (8)] will therefore be of or-
der

(J*F)%g?  (0.03)2(18%) _
AN g2—-gl)  (7.5)%(0.25)

where we have ignored all matrix element factors of
order unity. Using our best estimate for the various
parameters, we see that the contribution from the
non-Ising terms will indeed be very much smaller
than that of the g-tensor mechanism, which itself was
much too small to account for the observations in
DAG.

Higher-order perturbation terms will generally be
even smaller since they will contain extra factors J*A,
and even though some of the energy denominators
could be less than A, it seems unlikely that the
higher-order terms would dominate the second-order
contribution which we have considered. It would
seem therefore that it is not worth calculating the
non-Ising contributions in any more detail at this
time and that we can safely ignore them in account-
ing for the observations in DAG.

However, as in the case of the g-tensor mecha-
nism, it is useful to note that the effect of the non-
Ising terms might well be important in other systems
for which the J*# parameters could be much larger.
Also, of course in relation to the g-tensor mechanism
one might consider the possibility that (g2 — g?)
might be even smaller than in DAG, so that the rela-
tive importance of the non-Ising terms might be
greater, but the absolute magnitude of observable ef-
fects would still be very small.

0.02 , an

2. Van Vleck susceptibility

This was one of the two mechanisms mentioned by
Blume et al.,® and it is one whose effect can be
derived readily. As we have seen in Sec. II, the Van
Vleck susceptibility will be different for ions at the a
and b sites, and in the presence of a field along
[111], the induced moments will be different. For
both sites, the component along [001] will be
a,H/~/3, but along [110] the moment for the a site
shown in Fig. 2 will be (%)‘/2axH, while for the b

site it will be (%)1/20:,,1{. The field will thus produce

an induced staggered magnetization with amplitude
(%)'/z(ax —a,)H along [110]. For other aand b
sites similar moments will be induced along the [101]
and [011] directions.

We note that all these directions are perpendicular
to the local z axes, and these induced moments will
therefore not contribute to the order parameter
characterizing the antiferromagnetism in DAG. This
is really not surprising, since this induced moment is
linearly proportional to H, whereas we know from the
symmetry arguments’ that the DAG order parameter
M; (7 in the notation of Ref. 7), is only coupled to
H? and higher powers of H.

There are, of course, many other order parameters
in a system as complex as DAG. These have recent-
ly been enumerated in detail Mukamel and Blume, ?!
who have shown that in DAG there are altogether 18
order parameters which will couple to an applied
field. We can identify the induced staggered magnet-
ization resulting from the Van Vleck susceptibility
with a combination of two of these other order
parameters?? M3, and M, both of which are coupled
linearly to H.

To obtain a contribution to the antiferromagnetic
order parameter M; from the Zeeman effect, we "
would have to consider interaction terms involving
H*, and these will generally be extermely small. In
DAG their effect would certainly be very hard to ob-
serve, but in other systems with low-lying crystal-
field levels they could become significant. Also, we
should note that the higher-order Zeeman terms will
be independent of temperature, so that their effect
could become dominant at high temperatures where,
as we shall see, all other mechanisms vanish as
T — . However, for all the experiments reported
so far, we may safely neglect the Van Vleck suscepti-
bility and higher-order Zeeman effects.

D. Competition between different mechanisms

The mechanisms which we have considered in
Secs. III A—III C differ not only in magnitude but
also in their dependence on temperature. This gives
rise to the possibility of some interesting competition
effects which we shall consider here. None of these
effects has been observed as yet, and, even if they
occur, it may be quite difficult to observe them in
DAG. However, it seems quite likely that they will
be observable in other systems, and it is therefore
useful to consider some of the qualitative effects
which may be expected.

Table III summarizes the temperature dependence
of the four mechanisms which may contribute to
staggered-field effects. (For completeness, we also
give the high-temperature behavior as derived in Sec.
IV.) Associated with each mechanism is a sign which



2016 N. GIORDANO AND W. P. WOLF 21

TABLE III. Temperature dependence of the different
induced-staggered-field mechanisms.

Mechanism T=0 Low T High T
g-value mechanism finite slow 73
Staggered interactions 0 rapid 776
Non-Ising interactions finite slow 76

constant  constant

Higher-order Zeeman effect  finite

corresponds to either the A1 or A~ state being stabi-
lized. In the absence of more detailed information
about the parameters in the microscopic Hamiltonian
[Eq. (7], it is not possible to determine these signs
in general, but it is certainly quite likely that some of
the mechanisms will have signs different from the
rest. Since all the mechanisms have different tem-
perature dependences, the total effect, i.e., the sign
of the induced staggered field, can change one or
more times as the temperature is increased. With
four active mechanisms, quite complicated variations
with temperature are clearly possible.

In DAG, two of the mechanisms are probably
much weaker than the other two, as we have seen,
and at low temperatures the principal competition will
be between the g value and staggered interaction
mechanisms. We can therefore consider two main
cases.

Case 1. If g > g,, the two mechanisms will favor

the same antiferromagnetic state (4% for H > 0; see
J

Fig. 1) and no qualitatively new effects would be ex-
pected.

Case 2. On the other hand, if it should happen
that g, < g,, the two mechanisms will favor different
antiferromagnetic states, and competition may be ex-
pected. In this case, the ordered state at sufficiently
low temperatures will be- determined by the g-value
mechanism, since this remains finite as 7 —0 while
the staggered interaction mechanism goes to zero as
T —0 K. However, as the temperature is raised, the
effect of the staggered interaction mechanism will in-
crease rapidly [Eq. (B3)] while that of the g-value
mechanism varies only slowly [Eq. (10)] and one
may expect to find a point where the two effects just
cancel. If the cancellation occurs at a temperature
below the Neéel point (which as we will see shortly will
be the case in DAG if g, < g,) it will lead to a first-
order phase transition, corresponding to a discontinu-
ous change from the state 4 ¥ to the state 4 ¥ as the
temperature is increased.

These ideas can be made quantitative in the case of
DAG. Using the expressions previously obtained for
the free-energy contributions from the two mecha-
nisms {Egs. (9) and (B2)], we can find the locus of
points at which the two just cancel. Anticipating the
fact that the temperatures will turn out to be quite
low (~1 K) where both sublattices are close to sat-
uration, we can simplify the previous expressions by
putting M+/M0=% and M_/M0=—%, and setting
C =exp(—2p.H0/kB T), D =exp[()\1 - }\2)//(3 T], with
A and B as defined in Appendix B. We obtain

F=—ksTInZ = Ep— NkgT[5A2B*D(C +C™) + 3 A’B*D?(C? + C™) + 4*B'DX(C? + C2) — L 4*B*DX(C? + C?)

+ £ APBIDICT + S A*BIDICY + T AP BIDAC + ABD3C + 2 4*B2DC'] , (12

where we have dropped those terms which are in-
dependent of H as they will not contribute to the ef-
fect of interest and we have also omitted the small
temperature-dependent terms in Eq. (9).

The difference in the free energies of the two anti-
ferromagnetic states is just AF=F(H) — F(—H),
which from Eq. (12) is given by

AF =—Nuje, (g2 —g}) H3 /633 A?
— ¢ NAPBRD Iy TI(C = C?) +3(C - CD]
(13)

where we have now also dropped the terms in 4%,
since these will be small at the low temperatures of
interest (at T=1.2 K, 4 ~0.1). Setting AF =0 fi-
nally gives the locus of the phase boundary between
the 4% and A4~ states.

For low fields, C can be expanded in powers of H,

f
and we find that the leading terms in AF are propor-
tional to HJ, as we would expect:

N uig; NA3B!D3 4
AF=———“( 2 _ 2)H3______________ 3 Z3H3
632 5T (ksT)2_ 93 138
__ Nudet | gi—gl  8g!
63 A2 3(kgD)?
—12K, —48K, +3\, =30,
X exp
kg T

(14)

The temperature 7, at which AF =0 in the limit
H —0 is found-by setting the coefficient of H* to
zero, and substituting for the various parameters we
obtain 7, =<1.15 K, where the upper limit corre-
sponds to the maximum value of |g2—g?| =0.25.

To find the field dependence of the phase boun-
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dary, we set AF =0 in Eq. (13) and solve for T as a
function of H. The results, again assuming

|g? —g?2|=0.25 are shown in Fig. 4. The uncertainty
due to the finite number of terms in the series was
estimated by recalculating the location of the phase
boundary including the terms proportional to A*
which were previously dropped, and comparing the
results of the two approximations. The difference
was found to be about the thickness of the line in
Fig. 4, and it seems safe to conclude that other
higher-order terms would not change the location of
the phase boundary significantly.

Figure 4 also shows the first-order phase boun-
daries studied in previous work,! where we have ex-
tended the conventional phase diagram to include
both positive and negative fields to emphasize the
unusual topology. We see that there are, in addition
to the previously recognized critical points ( Ty, T,
and T.), also two triple points (TP and TP') where
three phases coexist [(P*, A, A7) and (P, 4™,
A7)] and a point (T,) where two lines of first-order
transitions cross.

In Fig. 4 we also indicate schematically the second

o e ——— —— ——

Tc Tc

H; (kOe)

FIG. 4. Phase diagram for DAG for the case g, < 8y
described in the text. The A% and 4~ phases are at low
temperatures and nonzero fields separated by a first-order
phase boundary across which the order parameter changes
discontinuously. The other heavy lines separating the Pt
and 4% phases are the first-order transitions studied exten-
sively in earlier work (Ref. 1=3). The dashed line passing
through 7, indicates schematically the second change of sign
of the order parameter which would be expected at higher
temperatures. Note that the phase diagram for temperatures
below T} is drawn to scale for DAG assuming
g2 —gy2 =-—0.25.

change in sign of M; which is expected at higher tem-
peratures, where the g-value mechanism will again
determine the ordering. It is more difficult to give a
quantitative estimate for the value of T, the tem-
perature at which the two competing mechanisms will
become equal again, but it is clear that the g-value
mechanism will ultimately dominate, since it depends
on temperature only as 77>, whereas the staggered
interaction mechanism varies as 7% (see Sec. IV).
Depending on the relative strengths of the two
mechanism, T, could fall either above or below Ty.
For T, < Ty, the locus of points corresponding to the
change of sign of M, will again be a first-order transi-
tion, while for T, > Ty it simply represents points at
which the induced antiferromagnetic order is zero.

In general, T, (as well as T) could also lie near Ty,
and this might result in some unusual features in the
thermodynamic behavior and the corresponding
phase diagram.

It would clearly be of interest to determine which
of these possible cases applies to DAG. Unfortunate-
ly, it is very difficult to predict the sign of (g2 —gyz),
so that there is really no way of deciding a priori
whether the two mechanisms will compete at all. An
experimental study of the phase diagram itself is
probably also quite difficult since there are indica-
tions? that the relaxation between the antiferromag-
netic phases is very slow at low temperatures, with
time constants of the order of hours for 7 < 1.3 K.
We would expect the relaxation time to become even
longer at lower temperatures and this would make it -
extremely difficult to locate the (4%, 47) phase
boundary directly. It may, however, be possible to
determine the presence or absence of the (4%, 47)
phase boundary indirectly by making use of the ad-
joining first order (4, P) phase boundaries, across
which equilibrium is established much more rapid-
ly.>%2 Further work is clearly needed on these and
other possible effects resulting from competing
induced-staggered-field mechanisms.

IV. HIGH-TEMPERATURE EFFECTS

Before we can discuss "high"-temperature effects
meaningfully, we must note two scales against which
we might measure the size of kg 7. One is set by the
strength of the spin-spin interactions, which are of
the order K,, while the other is set by the Zeeman
interactions, which are of order wH. Since the field
is readily varied, one can therefore consider two dif-
ferent limiting "high-temperature" regimes defined by

kg T >> uH K, (15a)
and

keT, uH >> K, . (15b)
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The first of these, clearly lends itself to the usual
kind of high-temperature series expansion of the par-
tition function in terms of 8=1/kz T, with coeffi-
cients which are powers of uH and the K,. In the
second, one treats the field exactly in terms of a
single-spin picture, with the interactions K, added as
a perturbation.?*

Since there are no experimental high-temperature
results at this time, we shall not carry out any de-
tailed calculations, but it is useful to consider qualita-
tively the kinds of terms which will be important.

For the staggered-interaction mechanism, which
depends on multiple-spin correlations, we know that
we need at least three factors involving the spin-spin
interactions, while the group theory indicates that the
lowest-order term must be cubic in /. We may ex-
pect, therefore, that the leading term in any series
expansion for, say, the order parameter will be of the
form

M /My~ (K,) (uH )3/ (kg TS . (16)

For the g-value mechanism, on the other hand, the
leading term would be expected to be independent of
the K, and simply proportional to H>,

M/ My~ (uH )3/ (kg T)? , an

with a coefficient which depends on the difference
between g, and g,.

Comparing Egs. (17) and (18) we see at once that
the g-value mechanism will always dominate over the
staggered interaction mechanism at high tempera-
tures, just as it did at very low temperatures.

To estimate the magnitude of the field-induced or-
der parameter at high temperatures, it is simplest to
consider the regime represented by Eq. (15b), which
applies to the case of relatively high fields. For this,
one treats the field exactly, neglecting the spin-spin
interactions as a first approximation, reducing the
problem to a trivial single-spin calculation. Since this
corresponds in effect to considering only the g-value
mechansim, the result will also apply at lower fields
for sufficiently high temperatures.

For an anisotropic spin S =% in a field H, the
magnetization along the local z axis of the g tensor is
given by

geILBH gzz Hz
M, =g, ug|tanh 2z ,
> etp [tan 2,7 || o2 H (18)
where g, is given through the relation
geH = (&2 H7 + g/ H} + & H})'? . (19)

For the case of HII[111] and g, # g,, the effective g
values for the a and b sites are different, as given by
Eq. (3), and hence there will be a difference in the

two sublattice magnetizations. The order parameter

M is equal to this difference

Ms = EMzi - EMzi (20)
i=q i=b
and hence,
1 1 ga,u«BH g22 Hz
Ms=7N(7pB)[g,, tanh —ZkBT g_azw
gbl"BH g22 Hz
- tanh — 21
g"[a" 2sT ||e2 H .
Substituting H, = H/~/3, this reduces to
Nugg! | 1 gusH| 1 gompH
JYAREAL. 3 RN (Ll L R BPPR N Kidul Lt
T8 o M 2T | e 2k T
22)

This expression can be evaluated for all Hand T
using the known g values. One can also expand the
tanh’s to find the leading terms, and after a little
rearranging this gives

M, =—Nubgl (gl —g?) H*/1443(kgT)® . (23)

As expected from our earlier discussion this is pro-
portional to H* and 1/7? and it is also proportional to
the difference (g2 —g?2). The negative sign in Eq.
(23) shows that a field in the [111] direction will in-
duce the antiferromagnetic state 4% if (g2 —g?) >0,
as was the case for the g-value mechanism at low
temperatures [see Eq. (8)]. Substituting typical
values H =5 kOe and T =4 K, and taking
(gl—g?) =0.25, this gives

M /My=-2x10"° , (24)

where Mj is the saturation value for the staggered
magnetization

Myo=3Npsg: - 5)

For larger values of H one must use the complete ex-
pression given in Eq. (22) which leads to a limiting

value
-1/2
2 2
H—% ,
&

(26)

2gx2

g’

~1/2

1+

lim [ {1
H—o MSO 2

and taking g, =0.5, g, =0, and g, =18, this gives
(Ms/Mso)max=_3.9 X 10_4 , (27)

still a very small value.
These results show that high-temperature effects
will be very hard to observe in DAG, and it is clearly
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not worthwhile, at this stage, to consider the small
change which would result from the inclusion of the
neglected interaction terms. In other systems, with
less extreme g-value anisotropy, the field-induced
staggered magnetization could be very much larger,
and we shall discuss some of these in Sec. VI.

We have so far discussed the high-temperature ef-
fects of only the g value and staggered-interaction
mechanisms, since these appear to be dominant in
DAG under normal circumstances. It may be worth
pointing out, however, that effects such as the non-
Ising interactions and higher-order Zeeman terms
mentioned in Sec. III C could well become important
under extreme conditions, since their field and tem-
perature dependences will generally be different from
those of the other effects. In practice, it seems quite
unlikely that one could observe any induced order
arising from such effects directly in DAG, but it
might turn out that the sign of the order parameter
corresponding to such an effect at very high tempera-
tures might, in a given experiment, be important in
determining the sign of the order at lower tempera-
tures. In other systems both the higher-order Zee-
man terms and the non-Ising interactions could well
contribute directly to observable induced-staggered-
field effects, but we shall not pursue this possibility
here.

V. INTERMEDIATE TEMPERATURES

At temperatures which are neither very high nor
low compared to Ty or wH, one has the usual diffi-
culties with statistical approximations. It is tedious to
extend the exact series expansions, while simple ap-
proximations such as mean-field theory can miss sig-
nificant features of a problem. In particular, one
must be careful not to ignore the effect of multiple-
spin correlations, which result from the staggered-
interaction mechanism in the present case. To obtain
quantitative results at intermediate temperatures, we
have therefore used a cluster approximation, chosen
to ensure the inclusion of at least three-spin correla-
tions.

Our calculations were based on the two five-spin
clusters, shown in Fig. 2. Since we expect the dom-
inant effects to come from the staggered-interaction
mechanism, we considered only the leading terms in
the Hamiltonian, as given by Eq. (7b), which have
the advantage of a simple Ising form whose eigen-
states can be written down by inspection. For the
spins within each cluster, all of the interactions were
treated exactly, while the interactions with spins out-
side the cluster were treated approximately using
molecular fields. The field acting on the /th spin was
taken to be

l{i=H0+)\1i(M+/M0)+}\2,'(M-/M()) » (28)

where M, and M_ are the magnetizations of the two
sublattices determined self-consistently, and A,; and
\,; are proportionality constants calculated by sum-
ming the interactions between the /th spin and its
various neighbors, using the interaction constants
given in Table I. Because of the inevitable errors in-
herent in any such cluster calculation, it was not
deemed worthwhile to include the effects of the
long-range dipolar interactions, and it was therefore
not necessary to allow for the shape dependence, as
in the earlier series expansion [Eq. (B4)].

A straightforward summation of the terms in the
partition function leads to two coupled equations for
M, and M_ as a function of field and temperature,
and these were solved numerically using a computer.

To test the accuracy of the approximation, we first
estimated the Néel temperature. This was found to
be 2.99 K in very reasonable agreement with the ex-
perimental value of 2.54 K. The model also repro-
duced correctly the first-order nature of the anti-
ferromagnetic-paramagnetic phase transition at low
temperatures (below about 1.5 K), as indicated by
the expected Van der Waals loops in M and M; as a
function of field.

The model was then used to calculate the field
dependence of the order parameter M, at several
temperatures, and in Fig. 5 we compare the experi-
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FIG. 5. Results for M; as a function of H; for DAG with
H;I[111]. (a) Experimental results of Blume er al. (Ref. 6);

(b) results of the cluster calculation for the same value of
T/Ty.
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mental results® at 1.855 K with the variation calculat-
ed for the same value of 7/Ty.% It can be seen that
several features of the experimental curve are well
reproduced. Specifically, we may note (i) the value
of M; at the inflection, (ii) the width in field over
which the pseudotransition occurs, and (iii) the mag-
nitude of the "tail" of M; in the high-field region.

In view of the simplicity of the model and the fact
that it contains no adjustable parameters, we can re-
gard the agreement between the calculation and ex-
periment to be quite reasonable. Qualitatively similar
results were found at other temperatures, and we can
conclude that the staggered interaction mechanism
can account for the effects observed in the neutron
scattering experiments of Blume et al.® at tempera-
tures between 1.7 and 2.5 K.

No detailed calculations were made using any of
the other mechanisms, as represented by Eqgs.
(7c)—(7e), but there is little reason to believe that
they would be significantly more effective in this re-
gion than at higher and lower temperatures. In the
case of the g-value mechanism, this is confirmed by
mean-field calculations carried out by Foglio and
Blume, !° who found that this mechanism is indeed
far too weak to account for the observed neutron
scattering results. In principle, it would not be too
hard to include additional terms in the cluster calcula-
tion and for systems in which other mechanisms are
important this might be a good approximation not
only for intermediate temperatures, but also for
higher and lower temperatures.

V1. INDUCED STAGGERED FIELDS
IN OTHER SYSTEMS

So far, we have concentrated primarily on one sys-
tem, DAG, both because there have been a number
of experimental observations of induced-staggered-
field effects in DAG and because the microscopic
structure and interactions in DAG are known rather
precisely. However, it is clear from the symmetry ar-
guments given by Alben et al.” that there must be
many other systems in which such effects could be
observed, and it is useful to consider what microscop-
ic mechanisms might be important in some of these.

Apart from details such a lattice structure or the
values of the various parameters, the Hamiltonian
shown in Eq. (7) will apply to most other systems
characterized by S’ =% effective spins. The presence

of specific terms in the Hamiltonian is, of course,
dominated by symmetry considerations and, in partic-
ular cases, certain terms may be absent. In general,
however, we may anticipate contributions to observ-
able induced-staggered-field effects from all of the
mechanisms which we have considered in this paper,
the relative importance of each depending on the
values of the individual parameters in the Hamiltoni-

an. In most systems the Ising-like terms [Eq. (7b)]
will not be as dominant as they are in DAG, and we
may therefore expect effects due to transverse g
values [Eq. (7¢)] and anisotropic non-Ising interac-
tions [Eqgs. (7d) and (7e)] to be more important. In
the absence of detailed information it is not possible
to make any general predictions, but it seems safe to
anticipate quite complex situations. Since each of the
induced-staggered-field mechanisms is associated with
its own sign and temperature dependence, a wide
variety of competing situations can be expected, and
it would be of interest to look for some of these.

Among the systems which might show some of
these effects are several of the rare-earth aluminum
and gallium garnets. All of these are isostructural
with DAG, and therefore of the appropriate sym-
metry to allow induced staggered fields. Electron-
spin-resonance experiments have shown a wide
variety of g-value anisotropies for the Kramers ions
Nd3*, Dy**, Er**, and Yb** in these garnets (see
Wolf er al. in Ref. 15), and for at least the first three
of these we would therefore expect large induced
staggered fields from the g-value mechanism.

Thus, for example, for Dy** in yttrium gallium gar-
net [which should closely approximate to pure
dysprosium gallium garnet (DGG)], we have (see
Wolf et al. in Ref. 15 and see Ref. 26) g, =11.07,

g =1.07, and g, =7.85 and, substituting in Eq. (26),
we find at high temperatures

S

lim =0.267 , (29)

H—o0

s0

a value almost 700 times larger than that for DAG
[Eq. 27)] and one which should be readily observ-
able. Unfortunately, very little is known at this time
about the other interactions in DGG, and it is there-
fore not possible to make any detailed predictions
concerning the total effects which one might expect.
However, it would seem quite likely that both the
staggered-interactions mechanism and the non-Ising
interactions will make significant contributions and it
is possible that some of these effects will compete. A
detailed study of this system, as well as other rare-
earth gallium and aluminum garnets, would certainly
be of interest.?’ ‘
Another class of materials which have been
predicted to show induced-staggered-field effects on
the basis of symmetry,’ are the transition-metal
fluorides MnF,, CoF,, and FeF,. For MnF, the ef-
fects may be expected to be extremely small, since
Mn?* is an S-state ion and both the g value and ex-
change interactions will therefore be highly isotropic,
and similar for the two inequivalent ions in the unit
cell. For CoF,, on the other hand, we might expect
significant contributions from both the g-value
mechanism [Eq. (7c)] and non-Ising interactions
[Egs. (7d) and (7e)]. Unfortunately, there does not



21 INDUCED STAGGERED MAGNETIC FIELDS IN . . . 2021

appear to be enough information about the micro-
scopic interactions in CoF, to make detailed predic-
tions, but we can estimate the contribution from the
g-value effect using results of electron-spin-resonance
experiments on Co?* in MgF,.2® These experiments
give g,=6.03, g,=2.30, and g, =4.24, and, taking

A ~2kpgTy ~T76kg and H =20 kOe, we find from
Eq. (10) that at 4.2 K,

(AM/M,) ~9.7x1073 . 30)

This is comparable with the effects calculated for
DAG with a field eight times smaller (see Table II),
but since the ordering temperature of CoF, ( Ty =38
K), is more than a factor 15 higher, it should be pos-
sible to use higher fields without inducing a phase
transition. Comparable contriubtions may also be ex-
pected from anisotropic exchange interactions which
will almost certainly reflect the low symmetry of the g
values.

The symmetry of the rutile structure also allows a
different kind of mechanism which has recently been
studied by Radhakrishna er a/.?? Under the action of
an appropriately oriented uniaxial stress, it is possible
to distort the crystal in such a way that a term linear
in an applied field can couple to the staggered mag-
netization, much as it does in a weak ferromagnet.°
To interpret such a mechanism in terms of the micro-
scopic spin Hamiltonian, one would need to estimate
the strain dependence of the various interaction pa-
rameters, and this is beyond the scope of the present
paper. However, we may note here that experiments
on CoF, by Radhakrishna et al.?? did show measur-
able induced-staggered-field effects, and it seems
clear that further study of this system would be of in-
terest.

For FeF, the situation is complicated by the fact
that the S =2 ground state of the Fe?* ions is split by
the crystal field and spin-orbit coupling by about 30
cm~!,3! which is comparable with the exchange in-
teractions which lead to ordering at Ty ~— 80 K.3?

The effective spin Hamiltonian will therefore include
terms such as B§S? and B} (S2—S2) which will re-
flect the point symmetry at the Fe?* sites. In particu-
lar, the difference between the two inequivalent sites
will result in a change of sign of the term in B? and
this will lead to a difference in the moments at the
two sites when a field is applied and hence to an in-
duced staggered field. Since the g values and the
coefficient B7 are all known, it is possible to estimate
the size of the effect. A perturbation calculation
similar to that performed for the g-value effect is
straightforward, but since no experimental results are
available we will simply estimate the order of magni-
tude of the effect. The perturbation has the form

Vs=B3 3 [(5)2—(SH?1-B3 3 [(SH*—(SH?] .
i=a i=b
31

Since we know from symmetry arguments’ that the
effect on the energy will be of order H°, we will look
for terms in a perturbation expansion of this order.
Terms of this type can arise in two ways: (i) from the
perturbation Vs in second order: This term will be of
the form

AE = | (0| ¥s|2x) |/ (Eq— Ey) . 32)

Since Eg— Ex =2A —4uH and the matrix element is
of order B%, the resulting term of order H° is ob-
tained by expanding the denominatior of Eq. (32)
and is given approximately by

AE =4(B})u3H?/A* o (33)

(ii) From a third-order perturbation expansion in-
volving Vs and V, [Eq. (7c)]. This term is of order

- (0] Vs|2x) (2x| Vi]1x) (1x|V,|0)

AE
(Eo—sz)(Eo—E‘lx)

. (34)

Using the fact that the matrix element of V) is of or-
der geupH and that Eg— E, = A —2uH, we can ex-
pand the denominators to obtain the H* term. It is
of order

AE =2B} udginH/A® . (35)

The contributions of Egs. (33) and (35) to the differ-
ence in the magnetizations of the two antiferromag-
netic states are thus of order

AM __ 6B} ugH*
M, A}

Big}

gl +0 ; (36)

where we have written My=Nu ~ N ugg,. For
FeF, 3" B} =1 cm™, g,=9.0, g, =g,=2.0, and
taking A =2k Ty we find for H =20 kOe that the
first term in Eq. (40) is 2 x 1075 while the second is
6 x107%. This is very small and probably negligible
compared to the g-value effect, which itself will be
quite small in this system. Contributions from the
other mechanisms which we have considered will
likewise be very small or zero (there are no staggered
interactions in the rutile lattice), and it would appear
that staggered-field effects may be difficult to observe
in FeF,. -On the other hand, the high 7y and large
anisotropy would make it possible to apply very large
fields without inducing a phase transition and this
could offset the smaller coefficients. Further study
of this system would certainly be of interest.

It would seem clear that there is no shortage of mi-
croscopic mechanisms which can lead to induced

" staggered fields, although some effects may be very

weak. As always, the first guide to potentially in-
teresting systems must be the appropriate symmetry,
and in this connection it is encouraging to note that
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of the 59 compensated antiferromagnetic point
groups, 38 allow coupling between the order parame-
ter and applied fields in third or higher order.” Thus,
a substantial number of known antiferromagnets
should exhibit induced-staggered-field effects, with
correspondingly wide varieties of strengths and tem-
perature dependences.

VII. CONCLUSION

In this paper we have considered a number of mi-
croscopic mechanisms which can contribute to
induced-staggered-field effects. It is clear that there
are several different contributions which can be im-
portant under different conditions and competition
between different mechanisms is possible. Such
competition can lead to relatively complex phase di-
agrams, in which the antiferromagnetic order parame-
ter (staggered magnetization) changes sign one or
more times as a function of temperature and field.
Such phase diagrams may be of some interest in
themselves, and they may also afford interesting op-
portunities for studying the dynamics of order-order
transformations. In any case, one may expect a wide
variety of observable induced-staggered-field effects
in systems in which they are allowed by symmetry.’

Our detailed analysis for the particular case of
dysprosium aluminum garnet has provided a quanti-
tative explanation for the induced-staggered-field ef-
fects previously observed in optical>® and neutron
scattering experiments® and explained in qualitative
terms by Blume ef al.® We find that the dominant
mechanism in the field and temperature region of in-
terest arises from an unusual competition between fer-
romagnetic and antiferromagnetic Ising-like interac-
tions. This suggests the possibility of further theoret-
ical studies on induced-staggered-field effects in other
Ising models with structures simpler than those of
DAG, but with similar staggered interactions. One
such model is the two-dimensional Kagomé lattice
which we have studied previously (see Giordano and
Wolf in Ref. 17 and see Ref. 18), but there are clear-
ly other possibilities which may be of interest.
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APPENDIX A: CALCULATION OF THE
g-VALUE EFFECT

Here we calculate the g-value effect in DAG at low
temperatures and low fields. First, we will determine
the effect of the perturbation ¥, [Eq. (7c)] on the
ground state of the Hamiltonian 3¢, [Eq. (7b)]. As
discussed in the text, this yields the temperature-
independent part of the g-value effect.

We will denote the ground state of the unperturbed
Hamiltonian 3C; by |0). 3¢, is just a simple Ising
Hamiltonian, and |0) is the product of the eigen-
states of the operators S7, with the eigenvalue of the
S7 given by the spin direction in the antiferromagnet-
ic ground state illustrated in Fig. 1. We will denote
the excited states of JC; in which one a- or one b-type
spin is flipped from its ground-state value by |1x;)
and |1y;), respectively. Each of these states is
(%N)-fold degenerate. The (unperturbed) energies

of these states £, and E,, are given by

Ex=Ey+A-2uH ,
Eyy=E¢+A+2uH (AD
where Ej is the unperturbed ground-state energy, A
is the H =0 energy gap discussed in the text,
w=pupg /23, and H is the magnitude of the field ap-
plied along the [111] direction. Note that for # >0
our calculation applies to the antiferromagnetic
ground state in which the a spins are antiparallel to
the field, which is the 47 state.

The shift in the ground-state energy to second or-
der in V, is

sy 3 O a2

i=a Eq—E), imb

0| ¥ |1y,) |2
+ 2 ‘( ‘ ll yl)l
EO—EIy
Inserting Eqs. (A1) and (7¢) into Eq. (A2) gives
& + &
A—=2uH A+2uH

AEy=-=NuH? . (A3)
where N is the total number of spins. Expanding the
denominators in Eq. (A3) gives Eq. (8) in the text.

Next we calculate the temperture dependence of
the g-value effect at low temperatures. To do this we
need to compute the effect of V', on the lowest-lying
excited states of H;, |1x) and |1y ). This in turn re-
quires that we consider the states with two a spins
flipped from the ground-state configuration, IZx,,-),
two b spins flipped, |2y,-,-), and a and one b spin
flipped, |1x;, 1y;). The energies of these states are
given approximately by

E2x=E0+2A—4lLH s
E2y =E0 +2A +4,U.H » (A4)
Elx,ly =E0+2A .
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Equation (A4) is only approximate because we have
neglected the effects of correlations — that is, if the
two spins which are flipped are near neighbors, then
the H =0 excitation energy will not be twice the en-
ergy required to flip one isolated spin, since the two
spins interact. We note however, that in DAG (A4)
is in error by only 10% (at # =0) when the spins are
nearest neighbors, and by much less if they are more
widely separated. This level of accuracy is more than
adequate for our purposes, since, in the range of
temperatures and fields with which we are concerned,
the temperature-dependent part of the g-value effect
will turn out to be much smaller than the tempera-
ture-independent part.

To second order, the effect of V| on the energy of
[1x) is given by

% 2
AElx=I<1XI’ l‘0>|
Elx—EO

+ 2 l(lxil Villx, Uj>|2
Jj=b Elx—'Elx.ly

|<1Xi| V1|2x,-,)|2
2 E\,—E,) ’ (A3)

J=a

Inserting Egs. (A1), (A4), and (7c) into (AS) gives
after a little rearranging

1 2, 1 gX2 gyz 2g2 ( )
AE = ~udHHY| - LN + o b A6
Er=5n 2 A—2uH T A+2uH]|| T A—2uH V
Comparing Eq. (A6) with Eq. (A3) we see that the finally
term in square brackets is equal to the shift of the
ground-state energy, so that the change in (E\x — Eg) F=—ksTInZ
d to th turbati is just 1
ue to the perturbation is jus —Ey— L NkyT
' 1
AE]X=T#,%HZ[gX2/(A_2[J.H)] . (A7) x[exp(—Ax/kBT) +exp(—Ay/kBT)] R (All)

The total energy difference is then A'Ey, + A —2uH
or

Ac=A—2uH +5udH g/ (A—2uH)] (A8a)
~ A~ pupg H/N3 + (g2udH*/38) (1 + upg. H/3A)
(A8b)

where we have substituted u=g,us/2V/3. A similar
calculation for the state |1y ) gives

Ay=A+2uH +5pdH g7/ (A +2uH)] (A9a)
~A+gupH /3 + (g ubH*/3A) (1 — upg, H/~3A)
(A9b)
The ;;artition function is then
Z =exp(—E,/kgDI[1 + %Nexp(—Ax/kB T)
+3Nexp(=A,/kgT) + -+ 1,
(A10)

where E, = Ey+ AE, is the energy of the ground state
to second order [Eq. (A3)], and the terms that have
been dropped correspond to higher-lying excited
states such as |2x ), which can be neglected at low
temperatures compared to the terms corresponding to
|1x) and [1y). From Eq. (A10) the free energy is

which is the expression given in Eq. (9).

APPENDIX B: CALCULATION OF THE
STAGGERED-INTERACTION EFFECT

Here we calculate the leading terms in the low-
temperature series expansion for the two sublattice
magnetizations M + for DAG, using only the Ising-
like terms given in Eq. (7b). Since the interaction
parameters K;; are both positive and negative, this
gives an estimate of the effect of the staggered-
interaction mechanism discussed qualitatively in Sec.
III B.

Starting from the ground state A%, various excita-
tions involving one, two, and three spin reversals
were considered for inclusion in the series. These
are shown diagramatically in Table IV which also
gives the corresponding excitation energies and de-
generacies. A number of other excitations involving
reversals of three spins shown in Table V were also
considered, but were not included in the calculation
since these make only very small contributions to the
series. [The terms which were omitted (Table V)
were each less than 1% of the largest term in the
temperature and field range of interest.]

Given the energies and degeneracies of the
excitations, the partition function Z can be written by
inspection. We define 4 =exp(—4K,/ksT),

B =exp(—4K,/kgT), and C+=(=2uH +/ksT),
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TABLE 1IV. Excitations corresponding to reversals of one,
two, and three spins from the 4% ground state. ® and ©
denote reversals of b- and a-type spins, respectively. The
solid and dashed lines indicate that the spins are first or
second neighbors, respectively. If there is no connecting
line, the spins are more distant neighbors. Note that only
those spin excitations which were included in the calculation
of induced-staggered-field effects are shown here. The
three-spin excitations which were not used in the series ex-
pansion are given in Table V.

Excitation Energy Degeneracy
® 8K, +16K, +2uH, N
e 8K, +16Ky—2uH_ -
®—@ 12K, +32K, +4uH, N
®—O 12K, +32K,+2uH,~2uH_ N
O—0O 12K, +32K,—4uH_ N
®—-@ 16K, +28K,+4uH, N
®-—-0 16K, +28K, +2uH, —2uH_ 2N
©---0 16K, +28K,—4uH_ N
@ @ 16K, +32K,+4uH, TNGN=T)
® O 16K, +32K,+2uH,~2uH_  TN(ZN-6)
© O 16K, +32K,—4uH_ TNGN=T)
@/3\@ 12K, +48K, —6uH_ N
@ ;- 1
& Yo 16K +48K; +6ut, AN
g 12K, +48K, +auH 2t AN

@/ea\@ 16K, +48K, +4uH  —2uH_ N
Q
o Y@ 16K +48K,+2uH . —4uH_ 2N

@/-@\@ 16K, +48K, +2uH  —4uH_ =N

J

TABLE V. Three-spin excitations from the 4* ground
state which were not included in the series expansion [Eq.
(11)]. See Table IV for an explanation of the notation.

S)

&-e © e o
o.
e —0 @

s @—® ©

o e—o @

0 e—0 o

,'®\

& -0 oe—o o
O—@---@ e—o o
O—@--0 -0 ©
o—o--—-0 --® ©
o—o6---0 ®--0 o
o—6--—-0 ®--0 ©
o—0---0 o---0 @
® @ @ o---0 ©
® ® o
® o o

where u = pupg,/2v3 and H + is the field (molecular
fields included) on the sublattices parallel and an-
tiparallel to the [111] direction. Including the 17 ex-
citations shown in Table V then gives

Z =expl = (Nu/2ks T) (H_— H) 11 + 3 NA2B*(C+CZ') + (S N)ABY(CE +C2?) + NA*B(CE +C22)

+NA*BSC,CZ! +2NA*B'CL.C2" +(SN) (SN —6)4*BEC,.CT"

+ (3N (FN =1 A*BHC} +C2) +(+ N A*BC + (S N)4*B2C

+($N)APBCICT! + NA*BRCICT +2NA*BC.C? + (SN A*B2C.C2]

(B

where N is again the total number of spins. From Eq. (B1) we can derive the free energy

F=—ksTInZ =3 Nu(H_—H.)—NkgT [3 A?B*(C+CZ' )+ T 4B (C3 + C2)+ A'B7(CI + C22 )+ 4°B*C,CZ!

+24*B'C,.CZ' —34*B4C.CZ' — T A*BY(C +C2?)

++ABIC + 2 4BCY + 5 4°B2CIC T

+AB2CICI + 4B C,C2 . (B2)
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As usual, the terms proportional to N2, N3, etc., cancel in the expansion of the logarithm, leaving F proportional
to N. The corresponding magnetizations of the two sublattices in the direction of the applied field are given by

9F

M P
MY A

+6A44B8C.C-! +744B3C2

=Nu(3 —A?B*C,—24°B*C} —44*B7C} —24°B*C.CZ!

—44%B7C.C2

—34*B12C3} —-243B12Cic!

—44*BR2CiC! —54%B12C2Cy) (B3a)
M_=N,L(—§ +AB*CZ' +2A4°B3C2 +44°B'C2 +24°B*C,CZ! +44*B’C.CZ! —64°B*C CZ!
—TA*BYC2 + APB2CS + A’BRCIC! +24*B2CICT +1044B12C,C2) . (B3b)

The mean fields H + may be written

Hy=Hy+N(M_/My) +\(M,/My) ,  (Bda)

H_=H0+}\1(M+/M0)+)\2(M_/M0) » (B4b)

where H is the applied field, A, and X, are the inter-
sublattice and intrasublattice coupling constants, re-
spectively, and M, is the saturations magnetization
Npu. The constants A; and A, are simply lattice sums
which can be calculated from the g tensor, lattice
spacings, and the value of K3, the third-nearest-
neighbor-interaction parameter. Since the sum of
magnetic-dipole interactions is shape dependent we
must specify a particular sample shape for the param-

eters A\; and A,. We shall here choose a long needle
with zero demagnetizing factor, since the experimen-
tal results had previously been corrected to this
shape. The values obtained for this case are**

AP =4640 Oe, AF=1310 Oe , (B5)

where we had added the superscript o to empahsize
that the values apply to a long needle sample.
Combining Egs. (B3a) and (B3b) with Eqgs. (B4a)
and (B4b) gives two coupled equations in M, and
M_ which can be solved numerically to yield
M =M, +M_ as a function of field and temperature.
The results are shown in Fig. 3, together with the ex-
perimental results of Dillon ez al.’
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