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Local magnetizations in impure two-dimensional antiferromagnets
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The local magnetizations near dilute substitutional impurities in the quadratic-layer antifer-

romagnet K2MnF4 are studied both experimentally and theoretically. The impurities considered

are the nonmagnetic Zn and Mg, as well as Ni. The magnetizations are probed through the po-
sitions of the impurity-associated satellites in the nuclear magnetic resonance of the out-of-layer
and in-layer ' F nuclei adjacent to the magnetic ions. It is discussed in which way the effects of
lattice deformations can be eliminated in order to obtain the variations of the local magnetiza-

tions with temperature. The theoretical treatment is based on Green's-function techniques.
The decoupling employed is within the local spin-deviation operators and accounts for correla-
tion between nearest neighbors. It reduces the renormalized spin-wave Hamiltonian to an effec-
tive quadratic form, rendering decoupling of Green's functions unnecessary. The spectral distri-

butions of the excitations are calculated including local modes. The theory is subsequently ap-

plied to the 13-site cluster consisting of the impurity and the first three shells of Mn around it.
Good agreement is found. The magnetization is significantly modified in the first shell. The
further shells are only weakly affected, however somewhat stronger than in comparable three-
dimensional systems. For nonmagnetic impurities the thermal spin deviation in the first shell is

about 3 larger than that of the host; in the Ni-doped system the additional deviations are within

1/o. The zero-point deviation of the Ni is 0.11 units of spin, as compared to 0.17 in the host, A

further experimental result is a uniform shift, increasing with concentration, of the sublattice
magnetization at large distance from the impurity. It must be related to the finite density of
states near the zone center in two-dimensional systems. Finally, some data are presented on the
local susceptibilities.

I ~ INTRODUCTION

The local effect on the magnetization associated
with the replacement of a limited number of spins in
ordered magnetic systems by nonmagnetic ions or
ones with other magnetic properties has been a long-
standing problem in magnetism. Nonetheless, for
Heisenberg antiferromagnets, studies dealing with the
problem in detail amount to only a few. The reason
for this probably is that the local magnetization at or
near the impurity is not easily accessible to direct
determination. The most detailed experimental infor-
mation has, in fact, been provided by nuclear mag-
netic resonance (NMR), with which, under favorable
circumstances, resonances associated with the first.
few shells about the impurity may be discerned from
the host.

Theoretical treatments were first developed for im-
purities in ferromagnets, ' and subsequently for anti-
ferromagnets. As the interaction between the im-
purities is expected to be small, even at experimen-
tally useful concentrations, the theoretical description
may conveniently be reduced to considering a single

impurity, located in the origin of an otherwise perfect
lattice. The problem is usually idealized by assuming
that the exchange interactions beyond the first neigh-

bors of the impurity are not affected. The perturba-
tion of the pure system, which can be of substantial
size at the impurity site itself, generally falls off
within a few shells. The impurity problem may in

principle be treated to all orders by use of Green's-
function techniques. However, some kind of decou-
pling must be introduced to make the analysis tract-
able, and, as we will clearly see in this paper, the
choice of the decoupling is extremely consequential
in obtaining agreement with experimental findings.
An important aspect further is the spectral density of
the excitations, which is drastically altered near the
impurity by modes of various sharpness. Under cer-
tain conditions part of the spectral density is

transferred to very sharp localized modes outside the
spin-wave band of the host. Such modes have
indeed been identified above the band by Raman
scattering.

The introduction of a nonmagnetic impurity
amounts to cutting the exchange interactions between
the impurity and the ions in the first shell. Accord-
ingly, for a well-known host, there are no parameters
with which to adjust theory to experiment. The
Green's-function calculations of Walker et al. ' have
nevertheless been quite successful when compared
with NMR results by Butler et al. on Zn impurities
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in the rutile-structure MnF2 (MnF2 is a Heisenberg
antiferromagnet, but has the drawback that three
Mn + ions contribute to the hyperfine fields at ' F,
making separate determination of Mn magnetizations
difficult). A successful fit was also achieved for Fe-
doped MnF2, but not for Ni. The general conclusion
of these studies is that the effect of an impurity on
the magnetizations of its neighbors is essentially sig-
nificant on the first shell only, and even there the
modifications are minute ( —1%). We will see that
in two-dimensional (2-D) systems this conclusion will

stand up to a great extent. More concentrated sys-
tems have also been studied. Since the results have
some bearing on the impurity problem, we mention
theoretical treatments in the regime of high concen-
tration of impurities by the technique of
configurational-averaged Green's-functions. '

In the present paper, we will deal with the local
magnetization in the vicinity of an impurity in a 2-D
system. The host chosen is the quadratic-layer struc-
ture K2MnF4, which is known to be a nearly genuine
2-D Heisenberg antiferromagnet. ' The crystal
structure is such that powerful NMR probes are
available in the form of the ' F nuclei adjacent to the
Mn. These nuclei resonate in strong transferred hy-

perfine fields and permit direct measurement of the
individual magnetizations at the various shells.
Another important feature of the quadratic-layer
structure is its simplicity. A single exchange parame-
ter and a weak anisotropy, the latter of which is not
very important to the problem, define the system
from the magnetic point of view; the Brillouin zone
is also quadratic. Obviously, this simplicity is advan-
tageous in arriving at numerical results. The irnpuri-
ties considered are the nonmagnetic Zn and Mg, as
well as Ni (S = I). The former have modes within
the spin-wave continuum, the latter above because
the ¹iMn interaction is stronger than the exchange
of the host. As already mentioned, the decoupling
procedure used to solve the equations of motion of
the Green's functions has important consequences on
the energy renormalization and the spectral density,
and thereby on the calculated magnetizations at the
various shells. One specific objective of this study is
to see the effects of the corrrelations between nearest
neighbors, which were ignored in the treatment of
Walker et al.

The paper is organized as follows. In Sec. II, we

give details about the experimental techniques used,
discuss the effects of small lattice deformations on
the positions of the lines, and indicate how these ef-
fects can be eliminated. In Sec. III, a Green's-function
treatment is developed. The decoupling procedure is
employed locally. It includes the correlation between
nearest neighbors, and reduces the impurity problem
to a manageable form, even when including shells of
neighbors beyond the first. The 2-D character, as re-
flected in the numericaHy evaluated Green's func-

tions of the pure system, as well as the impurity-
associated Green's functions are discussed in Sec. IV.
In Sec. V, we outline the identification of the various
NMR lines, and extract the experimental temperature
dependence of the local magnetizations relative to the
host. Subsequently, the magnetizations of the first
three shells about the impurity as calculated with
Green's functions are compared with experiment.
Section V also contains some data on the local sus-
ceptibility. It further discusses a concentration-
dependent shift of the magnetization far away from
the impurity, which has not been observed in 3-D
systems, and apparently is characteristic for two di-
mensions.

II. EXPERIMENTAL

The magnetizations of the various Mn + about the
impurity were measured by tracking the NMR of the
adjacent '9F nuclei (Fig. I). These nuclei resonate in

strong transferred hyperfine fields originating from
the magnetic ions, with additional dipolar contribu-
tions. In K2MnF4 with the magnetic field directed
along the tetragonal axis, there are three distinct
classes of fluor positions, with corresponding fre-
quencies. The NMR frequencies of the out-of-layer
'9F' nuclei, ft and fI, reflect the individual magneti-
zations residing on the "up" and "down" Mn + ions,
respectively. At zero temperature and zero external
field, fl = fI =150 MHz. ' The '9F" nuclei, located
in the layer, resonate with frequency f" in the net
transferred hyperfine field of two antiferromagneti-
cally coupled Mn neighbors and a smaller dipolar
field resulting from a summation over the lattice.
The f" frequency thus reflects the unbalance
between the two neighbors. In zero field, f" of
course vanishes in pure K2MnF4.

Experimentally, the NMR was performed at fixed
frequency in a variable external field ranging from 0
to 14 kG. This is far more simple than varying the
frequency in a zero-field experiment, where one must
ensure that transmitter, receiver, and tuned reso-
nance circuit track accurately. When parallel to the
c axis, the external field is simply additive, apart
from negligible corrections, to the hyperfine field
with the sign dependent on the particular ' F. At
105.300+0.001 MHz, the frequency mostly used for
the out-of-layer '9F, the '9F~ resonances at 4.2 K are
detected at external fields of about 11 kG. As a typi-
cal example, the '

F~ NMR spectrum in a Zn-doped
crystal at 4.2 K is given in Fig. 2. In addition to the
main resonance associated with Mn'+ ions at large
distances from the impurity as well as dipolar-shifted
resonances of ' F' in neighboring layers, the spec-
trum contains a number of weaker lines originating-
from '

F~ nuclei close to the impurity. The positions
of the latter contain the information on the magneti-
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zations near the impurity. When detecting the in-
layer ' F", the spectrometer was set at 40.000+0.001
MHz, yielding resonance in external fields of about
10 kG over the whole temperature range up to 45 K.
Here the magnetizations at neighboring Mn'+ largely
cancel, even in the vicinity of the impurity. There-
fore, the resonance fields are close to that of a free
'9F. The information on the magnetizations about
the impurity is again contained in a number of weak-
er satellite resonances, but with the notable differ-
ence that the spectra are symmetric about the main
resonance, at least at low temperatures.

FIG. 1. Fart of the K2MnF4 lattice containing a substitu-

tional impurity, with labeling of the Mn and F sites.
Lower part of the figure shows the cluster of 13 lattice sites
on which the Green's-function calculations were done. The
impurity, the second and third shell are on the up sublattice,
the first shell is on the down sublattice.

Precise values for the hyperfine interactions in

pure ordered K2MnF4 have earlier been obtained
from a spin-wave analysis of NMR data. The result
for the in-layer hyperfine interaction constant is
~A "~ =51+1 MHz per unit of spin. Reworking the
analysis of Ref. 8 with 2.105 A for the distance Mn-
F', we find for the out-of-layer hyperfine interaction
constant (A'( =48.3+1.0 MHz per unit of spin. At
this point it should, however, be emphasized that
these constants are extremely sensitive to variations
of interatomic distances. Replacing a Mn ion by an
impurity with a different ionic radius may cause a lo-
cal change in the Mn-F separations of a few hun-
dredths of an angstrom, resulting in a change of a
few percent in the hyperfine interaction constants.
We will consider these effects in more detail in
Sec. II B.

A. Experimental details

Single crystals of K2MnF4 were grown from the
melt with a horizontal zone-melting technique and
had a typical size of 40 mm . For pure crystals of
KqMnF4, the starting materials are zone-refined KF
and KMnF3. To obtain good single crystals without
strain, elimination of temperature fluctuations in the
zone appeared to be essential. At 4.2 K the dimen-
sions of the tetragonal unit cell are a =4.151 A and
c =13.242 A. '0 In growing doped crystals, we re-
placed up. to 2.5 at. % of the KMnF3 by KXF3, with X
= Zn, Mg, or Ni, depending on the dope desired.
The dope concentration of the crystals was measured
by the method of atomic absorption at various posi-
tions along the platinum boat; concentrations of oth-
er impurities were typically less than 50 ppm. The
crystals cleave parallel to the a-b plane, which permits
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determination of the c axis within a few tenths of a
degree. This was verified by observing Laue diffrac-
tion patterns.

Temperature stabilization below 4.2 K was per-
formed by servo-controlled pumping of the liquid He
in which the sample was immersed, above 4.2 K by
controlled heating of a continuous He gas flow. A

second servo-controlled heater close to the sample
holder further reduced fluctuations of the tempera-
ture. The residual short-term temperature stability

was better than 0.01 K, the long-term stability better
than 0.05 K. Temperatures were measured with a
carbon-glass resistor, which is insensitive to magnetic
fields, and a germanium resistor, both carefully cali-
brated against standard platinum and germanium
resistors with an estimated inaccuracy of 20 mK
below 4.2 K, increasing to 50 mK at 20 K. To check
the reproducibility of the carbon-glass resistor, it was
recalibrated with respect to the germanium resistor
in situ at regular intervals of time, but any drift ap-
peared to be minor. In the following analysis (Sec. II
B) the inaccuracy in temperature, which was the ma-

jor source of the experimental uncertainties, has been
propagated additively to the error in the resonance
fields. As already said, fields up to 14 kG parallel to
the c axis have been used. The alignment was better
than 1' of arc, and the field. homogeneity was 0.1 6
over a sphere of 2 cm diameter. With a sweep range
of 1 k6, the sweep-tracking accuracy amounts to a
few Gauss.

The NMR was mostly observed with two-pulse
spin-echo techniques. Additionally, a number of data
were taken in the continuous mode, permitting
higher frequencies and correspondingly lower fields
in our experimental arrangement. With spin echo,
short coherent pulses from a crystal-stabilized stand-
ard oscillator were fed into an amplifier gated syn-
chronously with the pulses and followed by a high-

power amplifier stage. The detection of the NMR
signal was done with a tunable VHF receiver with

fast recovery after overload. The transmitter as well

as the receiver were coupled to the coil wound
around the sample. The receiver was isolated from
the transmitter and protected against severe overload
by suitable matching circuits, consisting of diodes and
—A. lines. The coil, in series with a variable capacitor,

was tuned to the oscillator frequency. By letting the
spin-echo signal following the second pulse interfere
with the standard oscillator in a double-balanced
mixer, a dc envelope of the spin-echo signal was ob-
tained, given the fixed phase between standard oscil-
lator and spin echo. After integration and sampling
of the dc envelope, the spin-echo signal was stored in
a multichannel analyzer with the x axis coupled to
the magnetic field. Repetitive scanning in combina-
tion with averaging techniques was necessary to dis-
tinguish the weak impurity-related resonances from
the noise. The typical signal-to-noise ratio of the

main resonance after a single pass through the line
was 60:1 at 4.2 K. The ratio however rapidly de-
creases with temperature partly due to the rapid de-
crease of the relaxation times T~ and T2. In pure
K2MnF4 the longitudinal relaxation time T~ at 4.2 K
is of the order of 2 s." No systematic study of the
relaxation time T~ has been carried out. From the
saturation characteristics it seems however that the
relaxation times in the doped crystals are not drasti-
cally different, excepting the ' F' adjacent to a non-
magnetic impurity, which relaxes more slowly by at
least two orders of magnitude. The ' F" associated
with the impurity and its nearest Mn neighbors ap-
pears to have slightly shorter relaxation times.

In pure K2MnF4, inhomogeneous line broadening
is negligible. As a result the free-induction decay fol-
lowing a —,m pulse is slow, of the order of T2

(-50@,s at 4.2 K), which prohibits the use of two-

pulse spin-echo. In the impure systems, on the con-
trary, inhomogeneous broadening causes the free-
induction to decay within a few p,s. Therefore, the
second pulse after a delay time of say 10@.s re-
focusses the spins to a sharp spin echo. Because T2

processes rapidly becor'ne more effective with increas-
ing temperature, it is imperative for observing NMR
at higher temperatures that the pulse sequence is

compressed in time. At 4.2 K, typical durations used
for the first pulse, the delay, and the second pulse
were 3, 7, and 3p,s, respectively. For pure K2MnF4
we measured a linewidth of 10 G at 4.2 K, which

provides an upper limit for the instrumental width.
At liquid-He temperatures, we found an NMR
linewidth of 13 G for 0.5-at. % Ni dope in K2MnF4
(from cw measurements), 65 6 for 2-at. % Ni, and
80 6 for 3-at. % Ni. For Zn-doped KqMnF4 the
linewidth at liquid He is 32 6 for a concentration of
0.4-at. %, and 65 6 for 0.8-at. %, while for the other
nonmagnetic impurity, Mg, we measured 130 6 for
2.2-at. %. It is noted that the width as well as its pro-
portionality with concentration are in agreement with

the calculated dipolar broadening by the electronic
spins based on Van Vleck's method of moments. As
examples, the calculation gives 65 6 for 2-at. % Ni in

K2MnF4, and 123 6 for 2.2-at. /o Mg.

B. Analysis of resonance fields

As we have seen, an impurity produces a number
of satellite resonances in the ' F NMR spectra of
K2MnF4. The distances of these resonances relative
to the main resonance are in fact a minute fraction of
the hyperfine interaction itself ( —1 MHz out of 150
MHz). The variations of the magnetizations at the
various shells of Mn sites about the impurity (Fig. I)
are similarly small. In a detailed analysis of the dis-

placements of the resonance fields leading to deter-
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mination of the magnetizations, we may therefore
not ignore that the impurity introduces local defor-
mations of the lattice, which may complicate matters

by altering the transferred and dipolar hyperfine in-

teraction constants. Additionally, transferred hyper-
fine interactions of ' F with second-neighbor magnet-
ic ions (e.g. , of '

F&» with the impurity, or '
Ft'pt&

with Mnts~, for labeling of the sites see Fig. 1),
known to be of the order of. 1% of the primary hyper-

fine interaction, may be substantially modified when
the impurity site is involved, and therefore produce
effects of magnitude not very much smaller than the
magnetic variations.

As a case in point, let us consider the out-of-layer
'

F~I~ adjacent to the Mn nearest to the impurity.
For a single impurity with spin (Sp ), placed in an in-

finite lattice at position 0, its NMR frequency f(t&
changes by the amount

5f,' =(2'+D,'t +W'+5DE, ) ((S'„)+ (5Sf )) —(A'+Dt't ) (S'„)

+(8'+D,'p +58'+5DIp) (Sp) —(8'+Dt'p) (S' )

TABLE I. Dipolar fields at various positions, labeled ac-
cording to Fig. 1, due to a unit spin (g = 2) at the impurity
site.

Position of Dipolar field Position of Dipolar field
F (kG/unit of spin) ' F ' (kG/unit of spin)

0
1

5

9
13
a'
a"

+3.98
—0.07
—0.05
—0.02
—0.02
+0.13
+0.04

01
15
19

513
913
aa
bb

—2.07
—0.19
—0.08
—0.04
—0.03
+0.10
+0.04

where the variations due to the substitution are
denoted by the prefix 5; (S* ) is the sublattice mag-
netization at sites far away from an impurity (for ex-
treme dilution equal to that of the pure lattice), and
accordingly (5S1 ) its variation at position 1; A' is the
transferred hyperfine constant; DID and DII are the
dipolar hyperfine constants for '

F~~~ due to the mo-
ments at positions 0 and 1, respectively (values of di-

polar interaction for various lattice sites are given in
Table I); and 8' is the second-neighbor hyperfine in-

teraction constant for the '9F' sites. In Eq. (1),
smaller effects, such as due to variation of the mag-
netization at site 5, are ignored. Similar expressions
may of course be written down for the other ' F' po-
sitions and the various ' F", the latter however with

contributions from two oppositely aligned first Mn
neighbors.

The effects of lattice deformations make the situa-
tion quite difficult to handle, the more so because de-
tailed knowledge on the deformations is not available.
In fact, some information on local deformations may
be gathered from our data. Further, the results of
EPR and NMR under high pressure in the undiluted

magnetic systems as well as in systems with magnetic
impurities in nonmagnetic hosts have some bearing
on our problem. We will review these first in some
detail for a judgment on the magnitude of the effects,
and then return to Eq. (1).

We first discuss the hyperfine constants A' and A".
An impurity generally has an electronic configuration
and ionic radius different from the magnetic ion of
the host. The lattice constants of K2XF4 with X
= Mn, Zn, Mg, and Ni are tabulated in Table II,
along with the X-F' and X-F" separations and effec-
tive ionic radii of the ions X +. In comparing the a
and c axes with the ionic radii, we see that there is no
simple relation between the lattice constants and the
radii. The hyperfine interaction is however strongly
dependent on the X-F distance. Pressure-dependent
NMR yields a dependence of (2.5 +0.5) & 102 MHz
A ' in MnF2, ' i.e., a 0.02 A dilation of Mn-F al-

ready results in a 10% change of the hyperfine in-
teraction. From the difference between A' and A" in

pure K2MnF4 even a variation according to (3.3 +0.9)
O

x 10' MHz A ' was derived. ' Further, data are
available on the transferred hyperfine interaction in
related Mn-doped diamagnetic systems (K2XF4'.Mn
with X = Zn, Mg, and KXF3'.Mn with X = Mg, Cd)
and in KMnF3. ' ' Comparing the isotropic part of
the transferred hyperfine interaction in the diluted
systems with those in the pure Mn ones (Fig. 3), we
note that in the former the distance Mn-F is ap-
parently shifted from the distance X-F of the host to-
wards Mn-F in the corresponding Mn compounds,
i.e., deformations in the first. shell of a few 0.01 A.
In further shells, the variations will be substantially
smaller by roughly a factor of 4 per shell. ' Similar
deformations are expected to occur about the impuri-

ty in doped K2MnF4, with corresponding variations in
the hyperfine structure.

In addition to. the direct hyperfine interaction with
the adjacent Mn +, the hyperfine field at the F nuclei
has contributions from second-neighbor Mn ions.
Orbital overlap between neighboring fluorines and



1968 J. A. VAN LUIJK, A. F: M. ARTS, AND H. W. DE WIJN 21

TABLE II. Lattice parameters of the compounds K2LF4 at the temperatures indicated, and ionic
radii (IR) of the ions X +.

T

(K)

a(=a)
(A) (A')

X-F'

(A)

X-F»

(A)

IR'

(A)

Mgb

Znb

Mnb

Mn'
Nid

Ni'

300
300
300

4,2
300

80

3.9704 (8)
4.0548 (8)
4.171(3)
4.151(3)
4.006
3.994

13.176(2)
13.096(3)
13.259(16)
13.242(10)
13.076(4)
».04(1)

2.005 (14)
2.014(16)
2, 111(15)
2.102(14)

1.9852 (4)
2.0274(4)
2.086(1)
2.076(1)

0.72
0.74
0.83

0.69

'R. D. Shannon, Acta Crystallogr. Sect. A 32, 751 {1976).
bA. H. M. Schrama, Physica (Utrecht) 68, 279 (1973).
'Reference 10,
D. Balz and K. Pleith, Z. Electrochem. 59, 545 (1955).

'Reference 6.

transfer of unpaired spins from the second-neighbor
Mn to the Mn site adjacent to the F seem to be the
major origins of the interactions. ' For the spin
orientation and geometry corresponding to F' in

K2MnF4, ENDOR experiments'0 "yielded a hyperfine
constant B'+Dtto = —0.067 MHzl(spin unit) in Mn-
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FIG. 3. Isotropic hyperfine interactions A, in the pure
systems K2MnF4 and KMnF3, and various related Mn-doped
diamagnetic systems KXF3(X = Mg, Cd) and K2XF4(X
=Mg, Zn) vs X-F distance in the host lattice. For the
K2XF4 systems the in-layer values are given. The dashed
line represents the variation of A, with X-F as measured by

pressure-dependent NMR (Ref. 12).

doped KMgF3 and B'+D&0 =+0.39+0.03
MHz/(spin unit) in Mn-doped KZnF3. Apparently,
B' quite strongly depends on the host lattice, and the
results in doped KMgF3 and KZnF3 are therefore not
at once applicable to K2MnF4. In our systems, man-
ifestation of the second-neighbor interactions is how-
ever found at the ' F' adjacent to Zn in K2MnF4. Ig-
noring in first instance the difference in the lattice
constant a between K2MnF4 and KZnF3, i.e., adopt-
ing B in KZnF3, and accounting for the dipolar field
summed over the K2MnF4 lattice except for the im-
purity (230 6), we estimate the hyperfine field at this
'9F' to be 1400+110G for (S,) =2.33. Turning to
Fig. 4, where we present data on 0.4- and 0.8-at. %
Zn-doped K2MnF4 in the region of the nearly-free "F
resonances (mostly '9F" resonances), we indeed ob-
serve lines near + 1400 G, more precisely +1185 6
at T =4.2 K. Apparently, the calculation based on
KZnF3'. Mn is in good agreement with the experi-
ment, the more so if we note that B' will be reduced
slightly in K2MnF4 relative to KZnF3 because of its
4% larger lattice parameter. Another argument that
confirms the correctness of the identification is found
in the long relaxation time T~ expected for ' F' asso-
ciated with a nonmagnetic impurity. In fact, T~

turned out to be at least two orders of magnitude
longer than. for a ' F' adjacent to a Mn ion. Further
discussion of these resonances is deferred to Sec. V.
In a similar way, the resonance of ' F' adjacent to Mg
substituted in K2MnF4 is calculated at + 391 G; these
lines have however escaped observation probably be-
cause of their closeness to other stronger resonances.
The data on 2.2-at. % Mg-doped K2MriF4, analogous
to Fig. 4, are presented in Fig. 5.

Direct evidence for local deformation may actually
be obtained by comparing the resonance frequency of
the '9Ft'Ot& intermediate between the impurity and its
first Mn neighbors in Zn-doped K2MnF4 relative to
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its Mg-doped counterpart. From the magnetic point
of view these substances are of course identical. At
zero temperature these frequencies are 103.52 + 0.03
MHz and 94.95 + 0.08 MHz, respectively, in vanish-
ing field (the temperature dependence is discussed in

Sec. V). 'Part of the difference of 8.57 MHz is ex-
plained by the difference in the second-neighbor con-
tributions from Mn + at sites 3 and 4. Adopting the
8"'s of the diamagnetic systems, similarly to above,
we obtain for the second-neighbor hyperfine field ori-
ginating from these Mn ions, carrying (S, ) =2.33,
520 6 (0.89 MHz/spin unit) and 220 G (0.38
MHz/spin unit), respectively, yielding a difference of
1.2 MHz. Second-neighbor hyperfine interactions
from the other Mn (sites 5, etc.) are not known, but
must be very nearly the same for Zn and Mg-doped
KqMnF4. The balance, 7,4 MHz, is consequently to
be attributed to effects of lattice deformation on the
first-neighbor hyperfine interaction between '

Ft'ot&

and Mnt t~. As the lattice parameter a increases in
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going from K2MgF4 to K2MnF4, it is anticipated that
in the bond Mg-Ft'Otl-Mnttt in Mg-doped K2MgF4
Ftt'Ott will be displaced away from Mn towards Mg,
with a corresponding decrement of the transferred
hyperfine interaction relative to the pure system.
Similarly, but to a smaller extent, the Mntt&-Ft'att hy-

perfine interaction in Zn-doped K2MnF4 will be re-
duced. This is indeed reflected in the lower reso-
nance frequency of "Ft'Ott in the Mg-doped crystal re-
lative to the Zn-doped one. The magnitude of this
effect, 7.4 MHz out of —100 MHz, corresponds to a
difference of 0.015 A in the Mntt&-Ftt'Ot& separations
between the Zn- and Mg-doped crystals. This is
about half the difference between the Mg-F" and
Zn-F" separations in pure K2MgF4 and K2ZnF4,
respectively.

The case of a Ni impurity in K2MnF4 is in many
respects very similar. Noting that the lattice parame-

0
ter a of K2NiF4 is 0.17 A smaller than in K2MnF4, we
expect considerable shifts of the Ni-Ft'Ot& and Mntt&-
F't'at& transferred hyperfine interactions relative to the
corresponding pure systems. However, the analysis
of the '9Ft'ott resonance is somewhat more complex
than in the case of nonmagnetic impurities because
the impurity magnetization adds to the number of
unknowns, as do both the direct and second-neighbor
hyperfine constants involving the Ni'+ ion. Quite
direct information on the temperature dependence of
the magnetization of the Ni has been deduced from
the resonance of '

F~o~ adjacent to the impurity itself.
Presentation and discussion of these data and those

+0.6

0.4—
A

a.

Cl

LLJ

LL

U
Z~ -0.4—
0
(I)
LLI

0

17)

13

on t9Ft'ot is deferred to Sec. V, following the calcula-
tion of the temperature dependence of the local mag-
netizations in Sec. IV. The data on '9F" associated
with the first shells of Mn are given in Fig. 6.

Let us recall at this point that the positions of the
weak ' F satellite resonances are a measure of local
shifts of the magnetizations, although contaminated
with variations of the hyperfine parameters [cf. Eq.
(1)]. Here, the in-layer ' F", experiencing oppositely
aligned transferred hyperfine fields from two Mn'+
neighbors, primarily resonate in the external field
(Figs. 4—6), as distinct from the out-of-layer '9F', for
which the hyperfine field predominates the external
field. The out-of-layer data for Zn-, Mg- and Ni-
doped K2MnF4 are presented in Figs. 7—9, respec-
tively. As there are equal numbers of impurities on
the up and down sublattices, the ' F" resonances will
in first instance be symmetric, both in position and
amplitude, with respect to the main in-layer reso-
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FIG. 6. Same as Fig. 4, but for 2.5-at. % ¹idoped
K~M nF4.
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FIG. 7. Resonance positions of out-of-layer F' relative
to the host resonance in 0.4-at. % Zn-doped K2MnF4. La-
bels refer to the 9F positions according to Fig. 1. Identifi-
cation of resonances labeled 5 and 9 may be subject to inter-
change (see Sec. V A}. Data are taken at low external fields
and subsequently interpolated to zero field to eliminate
spurious effects of local variation of the susceptibility. The
dashed line indicates the '

F~&~ position when measured at a
fixed frequency of 105.300 MHz at external fields ranging
from 8 to 11 kG, depending on temperature.
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FIG. 8. Resonance positions of out-of-layer F in 2.2-

at. % Mg-doped K2MnF4. As compared to Fig. 7, the

linewidth is substantially larger, reducing both resolution
and accuracy. Data are taken at 105.300 MHz in external
fields between 8 and 11 kG.

nance, which arises from ' F" at considerable dis-
tances from the impurity. However, in a field the
"F"resonances are experimentally found to become
asymmetrically located towards higher temperatures
(cf. Figs. 4 —6). The shifts amount to —100 6 at 40
K. The temperature dependence of the effect clearly
suggests it to be due to the parallel susceptibility X~~ in
conjunction with, as we will see shortly, variation of
A". The strongest effects will of course occur for
' F" associated with first Mn + neighbors of the im-

purity. For the discussion, it is advantageous to
break down the impurity-induced deformations at the
' F" sites into two independent components, an
asymmetric and a symmetric one. In an asymmetric
distortion, the ' F" is shifted from the midpoint
between the two Mn neighbors resulting in an imbal-
ance of the two hyperfine fields. Alternatively, the
local magnetizations at the Mn neighbors may have
become unequal by virtue of the impurity. By rev-
ersing the spins, it is easy to see that an asymmetric
distortion will not disturb the symmetry between the
' F" resonances associated with up and down impuri-
ty sites. The second type of distortion is a symmetric
decrease (increase) of the separations between '9F"
and its first Mn neighbors. Consider the situation in
which there is a net hyperfine field at the '9F" in-

—0.3—

10 15
- TEMPFRATURF (K)

I

20

FIG. 9. Resonance positions of out-of-layer ' F' in 0.5-

at. % ¹idoped K2MnF4. Data of the '
F~~~ resonances are

reduced to zero field, as in Fig. 7. The group of resonances
in the upper part of the figure is not related to isolated im-

purities, but suggests the occurrence of Ni clusters. These
resonances prevent the '

F~5~ and '
F~9~ resonances from

being identified. For the dashed line, see caption to Fig. 7.

duced by an external field. The distortion then
results, via variation of the hyperfine interaction con-
stants, in an increment (decrement) of the net hyper-
fine field relative to the far away ' F". This effect is

clearly proportional to X~~ and independent of the
direction of the impurity spin. It shifts a ' F" reso-
nance and the one corresponding to the reversed im-

purity by equal amounts and to the same side, mak-

ing the NMR spectrum asymmetric. Obviously, these
shifts do not contain information of interest on the
impurity-induced changes of the magnetizations. For
further discussion, we will therefore symmetrize the
temperature dependences of the in-layer resonance
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fields relative to the main resonance. In this context,
we finally remark that in a field asyrrimetry of the
NMR spectrum may also occur, when the local sus-
ceptibilities near the impurity are different from that
of the host. These effects may again be eliminated

by symmetrization.

In order to arrive at shifts of the ' F resonances
solely due to impurity-associated changes of the mag-

netizations, we have to take out the effects associated
with lattice deformations, both hyperfine and dipolar.
We further wish to remove the spurious shifts ori-

ginating from second-neighbor hyperfine interactions.
As pointed out above, both of these effects are not
known quantitatively. By necessity, we therefore
have to resort to some kind of heuristic procedure.
The underlying idea is to first calculate the line posi-
tions at zero temperature using theoretical local mag-

netizations and the hyperfine interaction parameters
of the pure system, and subsequently attribute the
departure of the positions so calculated from the ex-
perimental zero-temperature line positions to the un-

desired effects. The procedure is admittedly slightly

hybrid in the sense that it is based on the reliability
of the Green's-function results, more specifically on
the results at low temperatures, Apart from the
achievements of Green's functions in calculating the

magnetization of the pure system up to say —, TN, jus-

tification is ultimately found in the excellent agree-
ment arrived at for the temperature dependences of
the local magnetizations (see Sec. V). In this con-
text, we in particular mention the local magnetiza-
tions of the first Mn neighbors of Ni and Zn impuri-

ties in K2MnF4, as well as the magnetization of the
Ni impurity itself.

The out-of-layer ' F' could be observed for the first
three shells of Mn + about the impurity. Returning
to our example of '9F|t) [cf. Eq. (I)], according to
the procedure outlined above the analysis of the shift

5f}proceeds as follows. We first subtract
(A'+Dtt ) (5Sf (0) ), as calculated for zero tempera-
ture, from the low-temperature shift 5ft (0). We
note from Eq. (I) that the remainder follows the tem-

perature dependences of the various local magnetiza-
tions. To a good approximation, however, the
remainder may simply be taken to vary according to
(S* ), the sublattice magnetization of the host lat-

tice. The error made here is indeed quite small,
since the departures of (So) and (Sf ) from (S* )
do not exceed 3% up to, say 20 K. The remainder
scaled with (S* ( T) ) is then deducted from 5ftt ( T)
to yield (A'+ Dttt ) (5Sf ( T) ), and finally the experi-
mental result for (5Sf ( T) ). Similarly, we deduce
(5S5(T)) for the second shell, etc. The latter quan-
tities, or rather their variatjon with temperature

hS, ( T) = (5S;(T) ) —(5S (0) )

clearly allow direct comparison with theoretical results
on the temperature dependence of the local magneti-
zations. For the in-layer ' F" the procedure is entire-

ly analogous, except for the symmetrization discussed
above and the involvement of two Mn'+ neighbors
(labeled i and j) rather than a single neighbor having
direct hyperfine interaction. Accordingly, 5f;,"(T) is

reduced to 5S;(T) —ASJ(T)
As to the magnetization at the Ni impurity itself,

the direct- and second-neighbor hyperfine interac-
tions of '

F~o) are not known to sufficient accuracy to
allow a precise absolute determination of (So ( T) ).
In contrast to the various shells of Mn neighbors,
ho~ever, we are here not interested in minute

changes of the NMR frequencies relative to the host.
When the minor effects of the first shell of Mn + due
to second-neighbor hyperfine interaction are taken to
scale with the impurity magnetization, ,fo is a direct
measure of the temperature dependence of (So ( T) ).
For '9Ftt'ot) adjacent to a nonmagnetic impurity the
situation is quite similar. Here, we find ESt( T)
/(St (0) ), virtually equal to ASt(T)/(S' (0) ),
directly from the decrement of fott with temperature
relative to fottt at zero temperature. Evidently, this al-

ternative determination of ESt( T), which is indepen
dent of the result of the analysis of the ftt resonance,
provides a useful check on our analysis. Finally, the
resonance of '

F~o~ adjacent to Zn is processed in a
similar way to obtain ESt(T), after symmetrization
of the data and accounting for the dipolar field. The
latter determination of ASt( T) has of course a large
error because of the smallness of second-neighbor
hyperfine interaction.

III. THEORY

In this section we develop a Green's-function for-
malism appropriate for calculating magnetizations in
2-0 antiferromagnets, both the pure systems and sys-
tems in which a single magnetic ion is replaced by an
impurity. Generally, the equations of motion of
Green's functions contain Green's functions of
higher order. Solution of these equations is intract-
abl'e, unless some sort of random-phase approxima-
tion (RPA) is applied2 3 to break the higher-order
Green's functions down to lower-order ones. As the
impurity problem is of local nature, we will employ a
procedure in which products of the operators of the
local spin deviations are decoupled. With local
decoupling, the Hamiltonian up to order I/2S, i.e.,
the part containing up to four-operator terms in the
spin deviations, will appear to reduce to a simple
two-operator form, which makes the equations of
motion solvable without decoupling of the Green's'
functions.
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A. Pure systems

Before discussing the impurity problem, we first
apply local decoupling to the case of the pure system,
and verify that the results up to order 1/2S are in ac-
cordance with the usual Oguchi eriergy renormaliza-
tion. " For a two-sublattice antiferromagnet ordered
along the c axis the Hamiltonian may be written as

JQPUpg i Ji $ Si 8 gPB A X i gPB A X ~

(I,m) I

to normal modes n-„and P-„. For the renormalization
corrections, "Eqs. (7) and (8) are subsequently ap-
plied to Eq. (6) followed by decoupling in k space.
Since both the transformations, Eqs. (7) and (8), are
linear, however, the decoupling may be done directly
in Eq. (6), i.e., the decoupling is applied to the local
spin deviations prior to the transformations. The
statement is proved by writing out the general form
of the decoupling of a four-operator term,

abed ab (cd ) + ac (bd ) + ad (bc )
(3) +bc(ad) +bd(ac) +cd(ab) (9)

~here the staggered field H~ represents the anisotro-
py. For K2MnF4, J = —8.41+0.06 K, while
n =gpaH„/z[J[S =0.0038 at T=0, with z the
number of nearest neighbors. The summation in-

volving the exchange interaction J is restricted to
nearest-neighbor pairs SI and S, situated on the up
and down sublattices, respectively. After the
Holstein-Primakoff transformation ai aiaib =2ai ai(a, b ) +2aib (ai ai)t t (10)

for local spin deviations, applying Eqs. (7) and (8),
and finally decoupling of the left-hand side, The
operator combinations aib, aiai, and b b do not
contribute because they are off-diagonal after the
transformations. For the first term in3Ci, e.g. , we
may accordingly set

Si+ = [2Si(1 —ai ai/2Si) ]'/zai

S+ = b t [2S ( I —b b /2 S ) ] '/'

Si ai [2Si( I —ai ai/2Si) ]'

S =[2S (I —b b /2S„)]1/zb

SI' = SI - ai ai, S' = —S + b b

(4)

Introducing 5 = (ai ai) = (b b ) for the number of
spin deviations on the up or down sublattice, and de-
fining p, = (aib ) to describe the correlation between
neighboring spins (note that in the pure systems
(ai a, ), etc. are independent of the location), we find
the effectiue two-operator Hamiltonian in local spin
deviations

we distinguish, up to order I/2S, two- and four-
operator terms in the Hamiltonian (for later use in
the impurity case we have attached site labels to the
spins; in the pure system Si =S =S). The two-
operator part, 3'.0, reads

Xa= iJiS X [(I+n)(ai ai+b b„)+aib~+ai bt]
(I,m)

(5)

X,„„,=iJiSR I [(I+n/R) (ai ai+b~b~)
(I,m)

+aib +ai b~]

in which the renormalization is contained in

R =I —(5+p)/S
As Eq. (5), Eq. (11) may be diagonalized with

Eqs. (7) and (8), yielding the dispersion relation

(12)

The four-operator part, i, is given by
E-„=z

i Ji SR [(I + n/R)'- y'-„]'/' (13)

X (ai aiaib +aib„b~b~+ b ai ai ai4S (I m)

+b b b ai +4ai aib„b ) . (6)

The standard way to proceed from Eq. (5) is to in-

troduce sets of spin waves on the up and down sub-
lattices,

with
(14)

Here, y-„=z ' /ac'"'a is a geometrical factor, with

5 denoting a nearest-neighbor displacement in the
quadratic layer. The Bogoliubov coefficients are
however slightly modified compared to diagonaliza-
tion of Eq. (5) to become.-„=[-,' (G-„+I)]'", .-„=[-,' (G-„-I)]'",

a-„=/t/ '/' Xa,e
I

t/z X b t e' " ' 'm—
(7)

G-„=(I+n/R)/[(I+ n/R) —y-„]' (15)

and to diagonalize the result by the Bogoliubov
transformation

n-=u-a-+u b P-=-u--a-+u-b-
k k k k k' k k k k k (8)

In the calculations 5, p„and R are needed in terms
of spin waves. With

n „=(n-„n-„) =-(P-„P-„)=[exp(Ek/kaT) —I] '
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we have

6 = N ' X [ ( u -'„+v'„)-n „+-u'-„]
k

(16)

p, = W-' Xy k ( 2u—k v k ) ( n-„+ )—,
1

2
k

8. Impure systems

We consider a quadratic-layer antiferromagnet with

an impurity located on, say, the up sublattice. Ex-
treme dilution is implied so that the impurities have
no interactions with each other. The effective two-

magnon Hamiltonian of the pure system, Eq. (11), is
then augmented with a local perturbation. That is,

which substituted in Eq. (12) give R. With Eqs. (16)
and (17) it is straightfor'ward to show that up to order
1/2S Eq. (13) is indeed identical to Oguchi's first-
order renormalized dispersion. '

taking the origin at the impurity,

+ =pure + V

1'=(IJol X So'S o gopaHwoso)

—(IJI Xs s-, -gt BHAS'), (19)
8

where the constant Jo describes the exchange interac-
tion between the impurity spin 80 and its z nearest-
neighbor spins S ~; go and H&0 are the local g factor
and anisotropy at the impurity site, respectively. Fur-
ther modifications of the system than those included
in Eq. (19), notably in the exchange parameters
between the first and second shells of neighbors, are
ignored. Applying on the spin operators in Eq. (19)
the Holstein-Primakoff transformation, Eq. (4), and
evaluating the result up to order 1/2S, we obtain
terms containing two and four local spin-deviation
operators. After decoupling of the latter according to
Eq. (10), we find for the perturbation the effectively
renormalized two-operator form

V = rapao+o. gb o ho +—g(aob p +aob o )t
zlJlsR

with

I Jol I Jo I &aob o )v= —n —u+
, I

JI(s,s)'t' s
IJol &hobo)

IJls s,

((IJ Isp —IJls) —[IJ l(s /s)' '&a b-, ) —IJlt ] —(IJ I&a a ) —IJls)}
zlJlsR

I[lJ,l(s,s)' ' —Js] ——,
' [IJpl(s/so)'"&at'tao) —

I Jl~] ——,
'

[IJol(so/s)' '&b-', b-, ) —
I
Jle]

(22)

( I Jol &aob o ) (23)

Here, ap=gpu, aHgp/zIJIS. With R, LL, and tt, of the

pure host lattice it is easily verified that Vvanishes in

the pure system.
In order to calculate the thermal averages of the

S&, situated at the various positions j about the im-

purity, we make use of the retarded Green's functions
defined by

G»(t) = —i O(t) &[A (t),8(0)]) (24)

where O(t) is the unit step function, A and»«
local spin-deviation operators, given in Heisenberg

notation, and the angular brackets denote the ther-

modynamic ensemble average of the expectation
value of the operator within; the square brackets in-

dicate a commutator. As Green's-functions techniques
are extensively discussed in the literature, we confine

I

ourselves to briefly indicating the notations used.
The time Fourier transform is defined by

p+oo

G„B(E)= J~ G„B(t)e+' 'dt,

and its equation of motion reads

(25)

EGAB(E). &[~ @)+ GfAscj, B(~)

Evaluating the time integral Eq. (25) involving 8(t),
we have

I

GAB(&) = J (e'B —1)rgb�(&'), . (27)E—E'+ i0+

in which the spectral weight function tg» (E) is de-
fined by

tg»«) =—Xe '
'&yl&l )& l~ly)g(E, -E.-E),

A, P

(2g)
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with Z the partition function, P the inverse tempera-
ture, and a and y representing exact eigenstates of
the system. Integrating Cs„(E) over the energy
would directly give (BA ), but (BA ) is more con-
veniently recovered from the imaginary part of the
Green's function,

ImG&s(E)
BA

e~~—1
(29)

Equation (29) may be evaluated without detailed
knowledge of the exact eigenfunctions. It is noted
that Eq. (29) holds provided Cs~(E) is real, which is
the case when using the Holstein-Primakoff formal-
ism. There are no contributions to Imps(E) other
than from the poles of G„s(E). On the other hand,
if Dyson-Maleev had been used, Ss„(E)would gen-
erally have given undesired contributions to
ImGAs(E). Integrating the imaginary part of the
Green(a function, Eq. (27), and using the relation
a„s(E)= e~~Cs„(E), we have

ImGgs(E)dE = ([A,B])1

m ~

which may provide a useful check on the numerical
evaluation of ImG~s(E), as we will see below.

Generally Gt~sd a(E) occurring in the equation of
motion, Eq. (26), contains Green's functions of
higher order, which require some kind of decoupling
to lower-order Green's functions. However, in our
scheme decoupling has already been done in the
Hamiltonian resulting in effective quadratic forms [cf.
Eqs. (11) and (20)]. Then, G~ s(E) and Gt~sd s(E)
are of the same order in the local-spin-deviation
operators, rendering decoupling of the Green's func-
tions unnecessary. For a set of Green's functions
that couple with each other, we take a~ or b as the
first operator in G~s(E) in combination with their
conjugates a~ or b as second operator. For con-
venience, we henceforth label Green's functions ac-
cording to the lattice sites of the operators, i.e, , G~~,

G~, G ~, and G . We further introduce dimension-
less energies e = E/z l J lSR, and dimensionless
Green's functions

r,,(.) = z
I
J lsRg, G,„-(E), (31)

=g,s,, +S,, rr„+—X r., (32)
Z m{0)

where the site labels i and jmay refer to both up and
down sublattice sites; g, = 1 or —1 for j on the up or
down sublattice, respectively (g& is introduced antici-
patorily to arrive at a simple matrix form of the equa-
tion of motion). Working out the commutators of a~

and b with the Hamiltonian, the equations of mo-
tion of the Green's functions with the first operator
at an up site l read

(.—I — /R)r„——g r.,1

m(0

Here, nearest-neighbor positions of l at the other
sublattice are denoted by m(i). Similarly, for the
first operator at.a down site

I,, = X I'-„exp [ i k ( r;—r, ) ]
k

be expressed in the functions

U(e, p) = —hm $1 el k'P

& s-0+ -„(e +is ) z —(1 +n/R) ' + y&

(34)

1V(e, p) = —lim $N, o-„+(a+i )s' —(I + n/R )'+ y~~

(36)

with p = r; —r, . From the 2N x 2N matrix I 0, parti-
tioned by sublattices, the first (z +1) x (z + I) part
is then formally represented by

(a+I +n/R) U(e, 0)r0= —V(e, —5)h
V(e, 8) LL

(e —1 —n/R) U(e, p) 5',

(37)
where 5 and 5' are 1 & 4 and 4 x 4 matrices, respec-
tively, with all elements unity. The functions Uand
V have poles for e = (1+n/R)' —y-„, i.e., the spin-
wave dispersion of the two-dimensional antiferromag-
net [cf. Eq. (13)]. The numerical evaluation of U
and V, which are of elementary importance in the im-
purity problem, will be discussed in Sec. IV.

By analogy with Walker et al. ' we write the equa-
tions of motion Eqs. (32) and (33) in the matrix form
(Generally I denotes an identity matrix of appropriate
dimension)

MI =I+ VI

Here, M, a 2N x 2N matrix of which the first
(z + 1) x (z + I) part is represented by

le —1 —n/R

1

4

I

4

(e+ I + /R n) I (39)

describes the pure crystal; the perturbation Vis re-
stricted to the interaction of the impurity with its
nearest neighbors, and accordingly represented by the
(z +1) && (z + I ) matrix

() /z) 4
—( k/z) 6 —nl (40)

Substituting in Eq. (38) the solution for the pure iat-

(~+ I +n/R) r, +—X r„
l(m)

A.= —g&,, —X g, , nr., + —r„.(33)
I(m), Z

For the pure crystals, the solutions I 0j of the
Green's functions can, after Fourier transformation by
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r =(I-r'v)-'r' . (41)

In our calculations (Sec. IV B) we will include the
first three shells of Mn neighbors about the impurity.
The labeling of the 13 Mn sites involved is given in

Fig. 1. This requires extending the matrix I as
given in Eq. (37) to 13 x 13 elements, which is

tice, I = M ', we have r = r'+ r' Vr, which may be
rewritten to the formal solution

straightforward and will not be reproduced here; ex-
tension of the perturbation matrix V simply amounts
to adding zeros. Analytic inversion of the matrix
I—1 V, now also having dimension 13 x 13, is a ma-

jor calculational task. Making use of the symmetry
properties of the magnetic structure (group D41,) to
transform the matrix to block-diagonal form, "we
find four s modes, six p modes, which are two-fold
degenerate, and three d modes. The transformation
matrix is

(42)

with a =
2 and b =

2
J2. The inversion of the 13 x 13 matrix I-I 0 V is now reduced to inversion of the1 1

s, p, and d submatrices occurring at the diagonal of the matrix I —( S 'I'o S) ( S ' VS). It appears that the d

submatrix can be partitioned further into a single element and a 2 x 2 matrix. Accordingly, the determinant of
the matrix I—I V is written

D(a) =D,Dr Dg)Dg2 (43)

Explicit expressions of the submatrices, function of the energy e, are

D, = I +4(r(e —I —a/R —r) + h (A. +2) —[r + (e —I —n/R) [4(r(e —I —u/R —r)

+ ) () +2) ]](~+I + ~/R) U(00),

D~ = I + cr(e —I —a/R) [U(00) —U(11) ]

Dg) =1

Dd, = I + (r(e —I —u/R) [ U(00) + U(11) —2 U(10) ]

Here, we have introduced an alternative notation for U(e, p) and V(e, p) by omitting the energy argument e

and expressing p in vectors v and w spanning the quadratic magneric unit cell, i.e., U(lm) = U(e, l v + mw) with

I and m integer or half integer. From evaluation of Eq. (41) the Green's functions necessary to calculate the mag-

netization at the impurity and the three shells of Mn are then found to be
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I oo
= [4o + [I —4o.(» —I —n/R) ](»+1+n/R) U(00)]/D,

r„=—r„=(1+)) V( —,
' —', )/D, ,

I „=(» —1 —n/R —r) V( —)/—D, +(» —I —n/R) [ U(00) —U(11)]/2D

+ (» —I —n/R) [ U(00) + U(11) —2 U(10) ]/4Dgp

I'g5 =(»+ I +n/R) U(00) + [(»+1+n/R) U(10)]2

x [2&(» —I —n/R) +r+4(r(» —I —n/R r)(—» —1 —n/R)]/D, + cr[ V(
2 z )—V(

2 2
)) /D~

r„=(»+1+n/R) U(00) + [(»+1+n/R) U(11)]'

x [2X(» —I —n/R) + r +4(r(» —1 —n/R —r) (» —I —n/R) ]/D, + (r[ V( ——)—V( ——) ] /2D~

+ o.[ V( —,
'

—,
'

) —2 V( —', —,
'

) + V( —,
'

—,
'

) ]'/4D„,

(45)

It is noted that in the expressions for I q5 and I"99 the
perturbation is additive to the pure system, which is
contained in the first terms.

Equations (45) are the final Green's-function
results from which the local magnetizations at the
impurity (site 0) and first three shells (at representa-
tive sites I, 5, and 9) can be calculated by use of the
equivalent of Eq. (29), which reads

(BA &
= ——

~ (J(s„(( Iml „(( (46)

with g, referring to operator 8. In the calculations,
the expectation values occurring in the perturbation

parameters v, 0-, and X, as we11 as those in the renor-
malization R, are to be taken care of by iterating the
numerical process until self-consistency is reached.

C. Other theories

In the literature, other Green's-function ap-

proaches have been reported on the problem of the

local magnetization about a substitutional impurity in

an antiferromagnet. A -very profound treatment has

been published by Walker et al. ,
2 based on the

Green's functions of local spin operators S+ and S .
In the subsequent quantitative analysis the emphasis

was on a 3-D system, notably the body-centered anti-

ferromagnet MnF2, with overall good results. The
RPA chosen by them has however the shortcoming,
which they themselves point out, of not taking into

account the angle that the impurity makes with its

neighbors. It is of interest to discuss this in some de-

tail in relation to the decoupling scheme used here.
Walker et al. adopt a decoupling scheme within the
Green's functions, in which the approximations are

of the form

S'S+~(Sz&S+

(S —a( a() b„(S—(a( a( & ) b —(a( b & a( (4g)

which, after transformation back to spin operators,
contains the term (S( S+)S(+, not present in Eq. (47)
and involving the phase between the nearest neigh-

bors I and m. Apart from the technicalities associat-

ed with decoupling in the Hamiltonian instead of the
Green's functions, we may therefore say that our

treatment goes beyond that of Walker et aI. in that

correlations in the transverse components of neigh-

boring spins are taken into account.
The decoupling used clearly also bears on the way

the spin-wave energy is r'enormalized by dynamical

interactions. Quite generally, renormalization is

dependent on temperature, and so are its effects on

thermodynamic properties such as the magnetization.

In our treatment, renormalization is given by the fac-

tor [cf. Eq. (12)]

R =I —((«'a(&+ (a,b &)/S, (49)

which, as discussed in connection with Eq. (13), is in-

distinguishable from renormalization in the conven-
tional Oguchi renormalized spin-wave theory. Simi-

larly to the latter, the present approach gives excel-
lent fits to NMR data on the sublattice magnetization

up to —
2 T~. In the formalism of Walker et aI. the1

energy is renormalized according to the magnetiza-

tion, corresponding to a renormalization factor

R'=1 —(a(ta(&/S (50)

With respect to Eq. (49), this again amounts to dele-

tion of the nearest-neighbor phase relationship. Be-

cause R '
gives too strong a renormalization, the ther-

In our approach based on local magnon operators
decoupling is done in the four-magnon part of the
Hamiltonian and decoupling of the Green's functions
is unnecessary. For the sake of comparison only, we

however apply our decoupling to SI'S+ after transfor-

mation to magnon variables. This yields in first order
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mal excitation of spin waves will be overestimated.
As a result the decoupling by Walker et al. predicts
too rapid a decrease of the local magnetizations (as
weil as the magnetization in pure systems). It must
ho~ever be observed that the effeW of omitting the
phase relationship is less serious in 3-D antiferromag-
nets, than it is in the 2-D ones. This will be em-
phasized in Sec.V below, ~here we have reworked
the formalism of Walker et at. for the quadratic layer.
Numerical results for the pure system and the first
three shells of Mn + ions in impure systems will be
compared with our results.

Still another theory has been published by Waterai
and Kawasaki. ' These authors restricted themselves
to modifications of the magnetizations on the impuri-

ty and the first shell of neighbors. Their treatment is
based on Dyson-Maleev spin waves. The decoupling
employed is local and includes the correlations
between nearest-neighbors, as in the present paper,
but with the noteworthy difference that it is applied
to higher-order Green's functions to linearize the
equations of motion, instead of the Hamiltonian.
After correction for the nonphysical aspects due to
the use of Dyson-Maleev spin waves, the differences

with our treatment are however of order higher than
I/2S. Consequently, Waterai and Kawasaki's treat-
ment adapted to the square lattice and extended to
three shells of neighbors would bring forth local mag-
netizations that are indistinguishable from our
results. To check our calculations, we evaluated ' the
expressions given by Waterai and Kawasaki for the
magnetization at the impurity and the first shell in a
separate computation, yielding identical results.

IV. NUMERICAL EVALUATION

A. Green's functions of pure system

The evaluation of the elementary Green's func-
tions U and V in a 2-D quadratic antiferromagnet
closely follows the treatment given by Walker, Cetlin,
and Hone26 for the 3-D bcc structure. Hence, we will.
only give a concise treatment of the characteristic
features.

Replacing in Eq. (35) the summation by an integral
we have

I
I, J d@ J d~ exp(ip Q)
sm+ ~ (a+is)' —(I +n/R)'+cos' —@t cos —$2

(sl)

where we have substituted y-„=cos ( —, k„a)1

x cos ( —,k„a), with a the distance between neigh-

bors in a sublattice; for convenience Pt ——k„a and

P2 ——k~a. It is not necessary to separately calculate
V(a, p ), as V may be extracted from the U's with
the relation

F(x, p) = Jf e '"'Q(s, p)ds (57)

band are

U(e, p) = iF(x, p)/x —(O~e~ I+n/R), (55)

U(e, p) =iF'(x, p)/x ( —1 —u/R ~ a~0), (56)
with

V(., p)= —QU(. , p+S) .
Z

Another relation between U and V is

[a' —(I +u/R)'] U(e, p)

(s2) & +a t +m

Q(s, p) =(2w) J dqht J d$2e'''~ cos(sy-„)

(58)
For- energies above the spin-wave band we similarly
have, with y = [e —(I + n/R) ]'I

=g(p) ——X V(e, p + X) . (53)
Z

U(a, p) = —H(y, p) (je~ ~1+u/R) (s9)
Eliminating V from Eqs. (52) and (53) we have

[e' —(I +n/R)'] U(e, p )

=6(p) —z g X U(p+ 8+X )

Both Eqs. (53) and (54) are useful to check the
results. With the definition x = [(I + n/R ) —a']'I',
the expressions for U in and below the spin-wave Q(s, p) =ilI+~l+l~ ~IJll+ I(' s)jli ~l( s)—(61)

H(y, p) =„e'*Q(s, p)ds

Our task now is to calculate Q(s, p) by expanding
cos (sy-„) and integrating over $t and P2. With
I and m defined by p =(I,m) in units of a J2, we
find
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Here, the J's denote Bessel functions of integer or-
der. This result is considerably simpler than the cor-
responding result for a 3-D system, which involves
an infinite summation over products of four Bessel
functions. Substantially outside the spin-wave band
(y )2), the function U(e, p) can be evaluated
directly without use of Q(s, p) by expanding the in-

tegrand in Eq. (51) in powers of I/y2, yielding

U(e, p)

g(p)+ (-I)" I (2g!)
y „y'"+' 2 " ( n+I)!( n I)!(—n+m)! (n —m)!

(62)
with the lower limit of the summation set at max
(I,m), or unity if I = m =0. Equation (62) may serve
as a check on the calculation using Q(s, p).

The Green's functions of the pure system, or rather
the functions F(x, p ) and H(y, p), have been calcu-
lated for p= (0, 0), (1,0), (I, 1), (2, 0), (2, 1),
and (2,2), from which all Green's functions occur-
ring in the I matrix of dimension 13 x 13 have been
determined. As Q(s, p) is a real function, the real
and imaginary parts of F may easily be separated [cf.
Eq. (57)]. The integrands of both ReF and ImF are
products of oscillating functions, which are slowly
damping out with s, as may be observed from the
asymptotic expansion of Q(s, p),

Q (s, p ) = ( I) II+ml[1 + ( I) II ml sin s l .-(63)2
7FS

Since numerically Q"(s, p) is more convenient to in-
tegrate than Q(s, p), the integrals have been divided
into two parts. Below so, chosen at a zero point of
Q(s, p), the exact Eq. (61) was used, while in the
remainder above sa Eq. (63) was substituted. For the
accuracy required (10 4) the use of the asymptotic
expansion was allowed for s() & 1000. In the interval
0 to so, first all zeros of the integrand were deter-
mined, and the integral was subsequently calculated
by summation over the contributions between subse-
quent zeros. The asymptotic part of the integration
can be written as

(Re F) r ~= ( I)I™l,cosxs
ds

4 so S

+ I ""sin [(I—x)s]
d

~ Jso s

note that for x close to unity Q(s, p) becomes such a

slowly oscillating function that so had to be taken at
least 3000.

In the computer evaluation, the higher-order
Bessel functions are determined recurrently from
Jo and J1. For small arguments this method is the
more inaccurate the higher the order. Near s =0 the
use of the recurrent relation was therefore carefully
restricted to its region of validity within certain limits.
Equation (54), employed to test the numerical accu-
racy of the final results, appeared to hold within at
least 10 4. The function F(x, p) is calculated at in-

tervals in x of 0.025, decreasing to 10 4 for x =0 and
x =1. The real part of F(x, p) is presented in Fig.
10 for the p relevant to our 13-site cluster. It is
noteworthy that at x = I F(x, p ) drops stepwise from
unity to zero, which is due to the property

limRe F(x, p) —lim Re F(x, p ) =I
xt1 x!1

(65)

produces yet another test on the numerical process.
As to the functions H(y, p), their evaluation is

t~

4 0—
I

and the fact that ReF(x, p), which is related to the
imaginary part of U(e, p) and thereby to the density
of states, vanishes beyond x =1. Equation (65) pro-
vides an important check on our computations. Simi-
larly, the imaginary part of F(x, p) is presented in

Fig. 11. Here, a point of note is the behavior for
small X. In fact,

ljmIm F(», p) =—( —1)ll™l
x~o

I t" sin [(1+x)s]d
~ Jso s

(64)

with a similar expression for the imaginary part. This
may be converted to a fastly converging summation
over an in turn fastly converging Euler series made
up from the contributions between subsequent zeros
of the respective integrands in Eq. (64). In this way
an accuracy of 10 ' is readily attained. We finally

I

0.0 0.2
I I

0.4 0.6
X

0.8

FIG. 10. Real part of the function F(x, p) for various p
in the three-shell cluster versus x = f (1+a/R) —e ] ~ with
e within or below the spin-wave band.
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I

0.6
I

0.8 1.0

FIG. 11. Same as Fig. 10, but the imaginary part.

very similar to F(x, p) except that the integral Eq.
(60) converges fastly due to occurrence of e ~'. They
were calculated in the region y =0 to 25, at intervals
increasing from 0.002 to unity. The results are given
in Fig. 12. For large values of y, H(yp, ) is almost
entirely determined by the value of g (s, p) near
s =0. By use of the fact that at s =0 a11 Bessel func-
tions go to zero, except Jo, which becomes I, we may
for large y approximate Q (s, p ) by 5( p ) to find
H(y, p) = 5( p )/y. This approximative result may
also be recovered from the first term of the direct ex-
pansion of U(e, p) for large y in Eq. (62).

From F(x, p) and H(y, p), the Green's functions
U(x, p) for the pure system are finally obtained by
use of Eqs. (55), (56), and (59), while V(x, p) is
derived from the various U(x, p+ 8) with Eq. (52).
In turn, for the pure system, the imaginary parts of
the Green's functions I'boa(a) for an up-sublattice site
and 1"tt(e) for an adjacent down-sublattice site equal
U(x, p) with p =(0,0) multiplied by e+1+u/R
and e —1 —a/R, respectively. They are displayed in

Fig, 13. The equivalence of the up and down sub1at-

1.5

1.0—

10O

0.5—

0—

10

-05— 0.0 0.4 0.6 0.8

-1.0

FIG. 12. Function H(y, p ) for various p vs
(1 + cr/R ) j,with ~ above the spin-wave band.

FIG. 13~ Imaginary parts of Green's functions of the pure
quadratic lattice I

&
vs the energy. Labels denote ij. The

spin-wave band, (2a/R + u /R ) ~ & ~ 1 + o,/R, is indi-

cated by arrows; o'/R =0.0037 at T =0 appropriate to
KzMnF4. I oo refers to a spin-up site, I II to a spin-down

site; I OOI expresses the correlation between up and down

sites. As to the signs, Iml, ; (e) & 0 and Iml o& (e) & 0 for
e & 0. The part of the figure for negative ~ has been ornit-

ted; ImI'oo( —~) =—ImI'I I (e), ImI I I (—e) =.
—Iml oo(6),

Im I OI (—e) = —Im I'()I ( 6) .
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tices in the pure system is expressed by ImI 00(e)
=—ImI |i(—e). Also displayed in Fig. 13 is the ima-

ginary part of the pure-system's Green's function
I'Oi(e), which involves the correlations between
nearest neighbors and is directly found from V(x, p)
with p = ( —, , 2

). The imaginary parts of I'oOt(e) for

positive and negative energies are identical except for
the signs. Consequently, the integral of ImI'Ot(e)
over the energy vanishes, as it should according to
the sum rule Eq. (30) since the commutator between
the local spin deviation operators ap and bi is zero.

To conclude the evaluation of the pure-system's
Green's functions, it is of interest to note a striking
difference between the present result for Iml'000(e) in
the 2-D square lattice and that in a typical 3-D sys-
tem, such as bcc. In two dimensions at the bottom
of the band, i.e. , e=+(2n/R +n /R')'i, Impel oo(e)i
is close to unity, or more precisely, a+ 1 + n/R. In
3-D systems, by contrast, calculations reveal that
lmiI 00(e) i sharply decreases to zero when approach-
ing the band bottom. The physical interpretation is
clearly found in the density of states D(e)de, of
which ImI'00(e) essentially is a representation. In
three dimensions, D(e)de goes to zero proportional
to k for small k, whereas in two dimensions D(e) de
is a constant near the zone center.

B. Impurity-associated Green's functions

I ( ) l. dI (e) '

p+ d6
6p + IS) (67)

The magnetizations in the first three shells about
the impurity are recovered from the local density of
states, as represented by the imaginary parts of the
corresponding Green's functions [cf. Eq. (45)), by

carrying out the integral over the energy in Eq. (46).
For the pure systems, of course, contributions to the
integral only arise from energies within the spin-wave
band, i.e. ,

(2n/R +a /R')' ( iti ( I a+/R

Apart from changes of the Green's functions within
the band, the impurity may give additional contribu-
tions to the integral from poles in the Green's func-
tions, i.e., zeros in D(e), or rather its real part, oc-
curring in the denominator when inverting the matrix
I —I'0 V. These poles may lie within (nonmagnetic
impurities) as well as outside the spin-wave band, the
latter case corresponding to local modes (for Ni im-
purities above the band). They are of s, p, or d char-
acter, depending on the part of D(e) having a zero.
Note that outside the spin-wave band D(e) is real.

To determine the number of states of a pole at
e = e~ outside the band, [I'(e) [ ' is expanded to first
order about e~ to find

Integrating over e, the pole contribution to the ima-

ginary part of the Green's function may be expressed
in the first derivative of its inverse,

which is easily evaluated numerically. Within the
spin-wave band, the imaginary part of D(e) is gen-
erally of such a magnitude that substantial damping
of the pole occurs. In this case, the contribution to
the density of states is of course already included in
the evaluation of the Green's function within the band.
In the calculations, completeness of the density of
states with inclusion of contributions from the poles
has been tested by use of the sum rule Eq. (30), or
rather its equivalent for the I' s,

(6&)

with j referring to operator B, yielding zero for I pi,
and unity for I pp, I ii, I 55, and 199. The sum rule
indeed proved to be an important test on pitfalls in
the considerable computational task. Any departure
of more than 10 4 was taken to indicate trouble. In
particular, the sum rule is a sensitive test on the local
modes. The zeros of D(e) as well as dI (e) '/de
have been determined to an accuracy of 10 with an
eight-point interpolation of the Green's functions near

For the required accuracy, the energies at which
the functions H(y, p) have been evaluated
(Sec. IVA), generally were sufficiently dense. At
some points, however, a new calculation of the
H(y, p) with more refined energy intervals about the
pole was necessary to ascertain sufficient accuracy of
the results.

The computation of the magnetizations has been
done in an iterative way. ' First, the parameters
b„, p„, and R of the pure system were determined
iteratively. Subsequently, for the impure system the
positions of the poles were iterated simultaneously
with the expectation values (aoao), (bl bl), and
(aobl), occurring in the perturbation parameters
7, cr, and A.. Both iteration processes were per-
formed in three cycles, although in the third cycle the
parameters did not change beyond the required accu-
racy of 10 . Finally, we have calculated the
s, p, and d pole contributions to the density of states,
if any, and obtained (aoap), (bib& ), (asa5), and
(a9a9) by integrating over the imaginary part of the
Green's functions I pp, I », 155, and 1"99 respectively, by
use of Eq. (46).

Absolute values of the imaginary part of the Green's
functions for our 2-D system containing a nonmag-
netic impurity in the origin, are presented in Fig. 14
for the first three shells about the impurity. The
Green's functions I pi and I pp are not presented, be-
cause they are zero in the absence of magnetic in-
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FIG. 14. Imaginary parts of the Green's functions for the first three shells about a nonmagnetic impurity in a quadratic lattice
versus the energy. Signs are as in Fig. I3. Note the strong effects of the poles at ~= —0.675 and —0.705 {vertical arrows), asso-
ciated with p and d symmetry, respectively. By the absence of magnetic interactions involving the impurity, I oo and I"OI are zero.

- teractions of the impurity. For negative energies, the
Green's functions are strongly shaped by poles, lying at
e = —0.675, and —0.705, and originating from the p
and d parts of D(e). Because these poles lie within
the spin-wave band, the associated extrema are, gen-
erally shifted and broadened by the imaginary part of
D(a). I'tt, describing the magnetization at the first
neighbor of the impurity, still shows clearly distin-
guishable resonances with minor shifts only. A
rough estimate of the pole positions may be obtained
from molecular-field-type considerations. In this
concept, the energy is that required for a single flip
of a spin in the exchange field of its nearest neigh-
bors. For a pure system we thus find an energy of
4~ J~S, but for a nearest neighbor of a nonmagnetic
impurity we have 3~ J~S, the number of magnetic
neighbors being reduced to three, i.e., e= —0.75 for
the pole position, close to the result of the Green's-
function calculation. Note that the energy is negative
because the spin flip occurs at the nearest neighbor
of the impurity, which lies on a down sublattice site.
As to the temperature dependence of the magnetiza-
tion (St ), we anticipate from inspection of Fig. 14
relative to Fig. 13 a more rapid fall than in the pure
system due to the increased density of states at low

energies. For the further shells of neighbors. the ef-
fects are clearly less pronounced. %e return to this
quantitatively in Sec. VB.

For the case of a Ni impurity, we present the
Green's functions I oo, I ol, I II, I'55, and I"» in Fig. 15,
adopting Jo/J =3.0 for the Ni-Mn exchange interac-
tion as will be discussed in Sec. VB, and using
ao=0.011 ( T =0) for the anisotropy at the Ni site,
resulting from AFMR experiments in KqNiF4, but
corrected for the change in dipolar anisotropy. Ad-
mittedly, in this choice lattice deformations are ig-
nored, but the value is believed to be nearly correct.
Moreover, the anisotropy appears to have only minor
effects on the results. The poles of the Green's func-
tions are now located above the spin-wave band. The
local s mode, residing mainly on the impurity itself,
occurs at e =2.87. Again the molecular-field ap-
proach, which predicts e = Jo/J =3.0, is in fair agree-
ment with Green's functions. Comparing the density
of states at the Ni impurity with that in the pure sys-
tem (cf. Fig. 13), we note the strong effects of the

pole at a =2.87. In fact, 87% of „~im I'oo(e) ~de is

transferred to this local s mode, which by virtue of its
high energy will hardly be populated. Consequently,
the Ni magnetization will drop only slowly with tem-
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are accurately known (Table I). Consequently, these
resonances are generally very close to the calculated
dipolar positions at both sides of the main resonance,
as the Mn spin at site a may be parallel or antiparallel
to the impurity. Other effects, such as lattice defor-
mations and spurious hyperfine paths contribute only
minutely, and weakly disturb the symmetry about the
main resonance. The in-layer resonances aa and ab
are seen in Figs. 4—6, the out-of-layer a' and a" in

Figs. 7—9. Additional confirmation is found in the
temperature dependence of these shifts relative to the
host, which closely follows the sublattice magnetiza-
tion of the pure system.

As we already discussed in Sec. II 8, the ' F nuclei
adjoining Mn sites in the same layer as the impurity
are subject to substantial shifts by lattice deforma-
tions, which are not known a priori. The resonance
positions at zero temperature are therefore not a reli-

able starting point for identification. However, the
tsF adjoining the Mn at site 1, i.e. , tsFt», tsF&('ts&, and
'sF&('ts&, may straightforwardly be identified from the
temperature dependence of the shift because the
magnetization at Mn~~~ varies more strongly than that
of the host. Using this criterion, the assignment to
'

F~~~ in Figs. 7—9 is indeed easily made. In Sec. V B
the identification is further supported by comparison
with the Green's-function calculations. As to the in-

layer tsF" (Figs. 4 —6), two strongly temperature-
dependent resonances are observed, clearly associated
with tsF&('ts& and tsFt('ts&, both adjoining the first Mn
neighbor. As site 15 occurs twice as often as site 19,
identification is further done on the basis of intensity.
From inspection of Figs. 7—9, it is seen that the tem-
perature dependences of the resonance shifts of ' F'
in further shells are very similar. Identification is

therefore made upon the grounds of intensity and the
assumption that the effects of lattice deformations
fall off with the distance from the impurity. As '

F~q~

and '
F~9~ have equal occurrence, the latter assump-

tion is, by necessity, the criterion for their assign-
ment. We finally note, that identification of the ' F
directly associated with the impurity, i.e.,

'
F~o~ and

'
F't't&t&, is quite simple as they are well isolated from

the main resonance and its satellites.
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B. Green's-function results

1. Nonmagnetic impurities

In Figs. 16 and 17 we present the experimental and
calculated ASt(T), ESs( T), and ESs(T), representa-
tive for the temperature-dependent parts of the local

spin shifts in the first three shells of Mn ions about a

nonmagnetic impurity. It is observed from the fig-
ures that, relative to the pure system, all three
Green's-function approaches predict a more rapid de-

crease with temperature of the local sublattice mag-

netizations. Obviously, any reasonable treatment, in-

FIG. 16. Temperature-dependent part of local spin shifts,
AS;(T) rcf. Eq. (2)], in the first three shells about the non-

magnetic impurities Zn (0,4 and 0.8at. %) and Mg (2.2at. %).
Experimental points are extracted from the weak satellites in

the out-of-layer ' F' spectra, reworked according to Sec. II B.
Additional data on ES&( T) are from the tsFt't&t& and tsFtt»
resonances, the latter only for Zn and with a large error
(3 x 10 ). Solid curves represent results of Green's func-

tion calculations on a 13-site cluster including nearest-
neighbor correlations. Results of calculations with the corre-
lations explicitly set to zero (p = (at&bt) =0) as well as

those with a 2-D adaptation of Walker et at. (Ref.2) are indi-

cated as dashed and dotted curves, respectively.
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and 0.8-at. % Zn-doped crystals and those in the 2.2-
at. % Mg-doped specimen are coincident with each
other despite the differences in concentrations and
lattice deformations. This further supports the
correctness of the heuristic procedure of Sec. II,
designed to eliminate the effects of the impurity-
induced changes in the primary and second-neighbor
hyperfine interactions,

%hen comparing the Green's-function results with
the data, it emerges that the present formalism gives
excellent results up to say 20 K, or —T~, at a point

1

where ASt(T) has dropped by 0.07 spin units. Recall
that ASt( T) is additive to the pure system, in which
the magnetization has fallen by 0.21 units at this
temperature, i.e., the magnetization on the first shell
has dropped faster by —

—,. It is also at about this

temperature that spin-wave theory of 2-D systems is
known to fail because of the onset of fluctuations as-
sociated with critical behavior, It is further seen, in
particular from their departure from the ASt(T) data,
that the other. approaches, which neglect the correla-
tions ttt, and (aabt), overestimate the fall of the AS s.
They deviate from the experimental findings beyond
say 8 K, corresponding to a drop of ASt(T) by—
0.01 spin units. Properly accounting for the correla-
tion apparently extends the upper limit of the fit by a
factor of 2 in temperature, or even more dramatically
by a factor of 6 when expressed in spin units. %e
also note in this context that with inclusion of the
correlations the initial drop of the local magnetiza-
tions should indeed be slower, since the more refined
the decoupling the higher the excitation energies.
The small differences between the calculations with
p, = (aobt ) =0 and those foHowing Walker er al. are
primarily due to the quasiboson technique used by
the latter authors, to which we return below.

FIG. 17. Same as Fig. 16, but for ASI(T) —&S;(~)
(i =5, 9), as recovered from the in-layer tsFt't;l satellites.

eluding the molecular-field approach, is expected to
follow such a behavior. It is of more interest there-
fore to compare experiment and theory quantitatively.

On the experimental side, the spin shift at the first
shell, ASt( T), has independently been determined
from the NMR at two different ' F positions, viz. ,
'

F/t& and tsF(att. Additional information on ASt(T)
is entered in Fig. 16 from the '

F~o~ resonance in the
Zn-doped crystals, but with substantially reduced ac-
curacy because of the smallness of second-neighbor
hyperfine interaction (see Sec. II B). Experimental
data on ASs(T) and ASs( T) are extracted from the
corresponding ' F' resonances only. In Fig. 17 we
present their behavior relative to ASt( T) as taken
from the 15 and 19 ' F" resonances. A particular
point of note is that the experimental data in the 0.4-

2. Ni impurity

The experimental data, analogous to Figs. 16 and
17, are presented in Figs. 18 and 19. As to the calcu-
lations, they are somewhat more complicated than for
nonmagnetic impurities because of the occurrence of
magnetization at the Ni impurity itself. No precise
information is available on the anisotropy at the im-
purity site ao and the exchange interaction between
the impurity and the Mn in the first shell Jo. As al-
ready remarked, no has only minor effects on the
results. The simplistic relation

~ Ja~ =(JN J)'i', which
is often used for an estimate of Ja, yields Ja/J =3.48
with JN; = —102.1+0.8 K for pure K2NiF4. ' The ex-
change interaction JOSO S~ between the Ni impurity
(S = I) and its first Mn neighbor (S =

2
) thus is not

much different from the Mn-Mn exchange in con-
trast to nonmagnetic impurities, for which J0=0. As
is reflected in the measured ASt( T) (cf. Figs. 16 and
18), the perturbation of the system is in fact smaller
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FIG. 18. Temperature-dependent part of local spin shif'ts

in 0.5-at. % Ni-doped K2MnF4. Data points are derived
f'rom f'I. Note that (SSt(0)) =0.011 [cf. Eq. (1)I exceeds
AS&(T), i.e. , (St(T)) is larger than (S ) at any T Solid.
curves are Green's-function results on a 13-site cluster for
Jo/J =3.00, with uo =0.011 at T =0. Thinner solid curves
indicate the. variation with the Mn-Ni exchange Jo. For
dashed and dotted curves, see caption to Fig. 16. Reso-
nances from further shells could not be identified; results of
calculations are given in the inset.
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by about an order of magnitude relative to the non-
magnetic impurities. In the Green's-function calcula-
tions the Ni-Mn exchange Jo is a parameter to be fit-
ted to the experimental data. In Figs. 18 and 19 the
effects of a variation in the exchange are indicated by
plotting the results for ia/1 =2.75, 3.00, and 3.25.
With the experimental errors and other uncertainties
taken into consideration, we arrive at Ja/J =3.0 +0.1.
With this value, the ' Fttl data (Fig. 18) are correctly
described up to ——, T~, beyond which the resonance
was lost. The ' Ft'»1 and ' FI'tst data (Fig. 19) are
described successfully over the entire range of tem-
peratures in which they were observed, i.e., up to 36

FIG. 19. Same as Fig. 18, but for AS~(T) —AS;(&)
(i =5, 9), as recovered from the tsFt('t;& satellites. Concen-
tration of Ni is 2.5at. %.

and 32 K, respectively. Note that the Jo found is
—15% lower than the geometric mean.

At the Ni site, we find from the calculations
(Sa ) =0.894 (Table III) at T = 0 K, or a local zero-
point spin reduction of 0.106. This is considerably
smaller than the spin-wave value of 0.171 for the
square lattice, with the value of o. appropriate for
pure KtMnF4. (A simple second-order perturbation
calculation with the Neel state as ground state yields
0.158; this is relegated to the Appendix). Taking the
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FIG. 20. Temperature-dependent part of the Ni magneti-
zation in 0.5-at. % Ni-doped K2MnF4. Data points are
derived from '

F~o) NMR, corrected to zero field. For
curves, see caption to Fig. 16.

hyperfine interaction between Ni and '
F(Q) to be

equal to that in pure K2NiF4, our results then predict
the zero-temperature zero-field NMR to occur at
168.8 MHz, increased from 155.4 MHz in pure
K2NiF4. With continuous NMR at 1.2 K the reso-
nance was actually detected at 165.650 + 0.020 MHz.
The agreement is perhaps somewhat fortuitous in
view of the uncertainties in direct- and second-
neighbor hyperfine couplings by lattice deformations,
but it anyway confirms the fact that the zero-point
spin reduction is reduced at the Ni site.

The '
F~Q) resonance, although very weak, could be

tracked up to 19 K. This permits a very direct mea-
surement of the temperature dependence of the mag-
netization residing at the impurity itself. The data
points normalized to T =0 are given in Fig. 20, which
also contains the corresponding Green's-function
results. Note that there are no adjustable parameters,
once JQ is fixed. Yet, the result of the present
Green's-function approach is again in excellent agree-
ment with the data. It is further seen in Fig. 20 that,
quite similarly to what we have found for the first
few shells about the nonmagnetic impurities, the om-
ission of nearest-neighbor correlations results in an
overestimation of the fall of the magnetizations.

The temperature dependence of the Ni magnetiza-
tion is intermediate between those in the pure sys-
tems K2MnF4 and K2NiFq. The slower drop with

temperature of the Ni magnetization relative to the
host is a direct consequence of the high density of
states in the localized s mode, lying far above the
spin-wave band (a=2.87, cf. Fig. 15). The density
of states within the band has similarly been lowered,
which in turn reduces the number of thermally excit-
ed magnons (it also diminishes the zero-point spin
reduction, commented on above, to which essentially
the entire zone contributes). In Raman spectra of
4.7-at. % ¹idoped K2MnF4 Lehmann et al. found a
line at 194.4 1.0 cm, which clearly is to be identi-
fied with the s mode. In our calculations, we found
for the energy of the s mode 1'79 cm ', with an error
of —6 cm ' prop~gated from the uncertainty in JQ.
The origin of the disparity is not understood, but it is
not unlikely that it has to do with the relatively high
concentration used in their experiment, or the oc-
currence of clusters, for which Ni ions in K2MnF4
seem to have a certain preference.

As to the magnetization at the first shell, the calcu-
lations show that at any temperature (Sf (T) ) is
larger than the magnetization of the pure system
(S* ( T) ). One might loosely say that by virtue of
the ¹iMn exchange the first shell is "dragged" by the
Ni rather than the host. If we consider (Sf (T) ) in
detail (cf. Fig. 18 and Table III), we see that at 1 K
the increment relative to the host amounts to 0.011
units of spin (Jo/J =3.0), decreasing to 0.009 units at
13 K. Returning to the Green's functions, we note
that this corresponds to the increase, relative to the
pure system, of 1m~I'~t~ (Fig. 15) at low energies in
the negative energy domain, which permits a larger
number of long-wavelength excitations. Above 13 K,
the region of higher energies becomes of importance,
where 1m~I ~~ ~

has been reduced substantially, partly
by transfer of spectral density to the local modes.
Then, the magnetization of the Ni + ion diverges rap-
idly from the host upon increasing the temperature,
as is observed in the bending over of ASt( T) towards
higher values (Fig. 18). Calculations of AS5( T) and
AS9( T) indicate these to increase without an initial
drop.

The magnetizations at shells further out than the
first could unfortunately not be measured. In the
spectra (Fig. 9), some seven lines have been detect-
ed, a11 having positions that vary with temperature at
least three times as strongly as calculated for the
second shell. The origin of these resonances is not
known as yet, but their stronger shifts with tempera-
ture suggest them to be due to Ni pairs. The only
resonance that possibly, but not definitively, could be
assigned to the second shell is the one lying at 65 G
at T =0 K, increasing to 100 G at 15 K.

A point of particular interest is that towards higher
temperatures the formalism of Walker et al. starts to
deviate from our formalism with iM,

= (aobt) =0. In
fact„ it more closely follows both the experiment and
our calculations with p and (aobt) included. In par-
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TABLE III. Zero-temperature magnetizations in pure K2MnF4 and on the 13-site cluster in the
impure K2MnF4, as calculated with Green's functions according to Sec. III with inclusion of
nearest-neighbor correlations, the results of similar calculations but with the correlations explicitly
set to zero (p, = (apbt) =0), as well as the results of a 2 Da-daptation of the formalism of Walker
et al.

Model (S )pure (Sp )

Present formalism

I = (&pbt) =o
Walker et al.

2.3292
2.3305
2.3303

Nonmagnetic impurity
—2.3392 2.3121
-2.3404 2.3134
—2.3401 2.3133

2.3153
2.3166
2.3164

Present formalism
p, = (apbt) ='0

Walker et al.

2.3292
2.3305
2.3303

0.8940
0.8955
0.8970

Ni impurity (Jp/J =3.00)
—2.3402 2.3281
-2

~ 3411 2,3291
-2.3405 2.3288

2.3296
2.3309
2.3303

ticular this has been observed for the Ni-doped sys-
tem (Figs. 18—20), but as already remarked also ap-
plies to the nonmagnetic systems (Figs. 16 and 17).
The deviations are clearly associated with the quasi-
boson technique utilized by Walker et al. , since their
decoupling is equivalent with ours when p, = (apbt)
=0. To verify this, we incorporate the quasiboson
concept in our formalism in a retrospective way. By
analogy with Walker et al. , we define a quasiboson of
energy Y by (ea"—1) ' = S —(S*), with (S*) calculat-
ed in the approximation p, = (apbt) =0, and subse-
quently calculate a new value for the magnetization
by use of the Brillouin function

(S') = (S+—,
' ) coth [(S+—,)P Y] ——'coth( —,

'
P Y)

(69)

predicts fpttt (0) = 16.9 MHz. Experiment, extrapolat-
ed to zero temperature, yielded 35.9+0.1 MHz. The
discrepancy clearly cannot be accounted for by uncer-
tainties in the Green's-function results, but must be
due to lattice deformations. Note that in the corre-
sponding pure system the ¹iF"and Mn-F" distances

36—

The results of Eq. (69) are indeed coincident with
those according to Walker et aI. , except at high tem-
peratures ( T )30 K) because we have not used the
quasiboson mechanism iteratively. Apparently, in the
formalism of Walker et al. the usage of quasibosons
largely compensates the effects of the simpler decou-
pling scheme.

In Fig. 21 the resonance frequency of the ' F" in-
termediate between the Ni impurity and a first-
neighbor Mn is displayed versus temperature. It re-
flects the magnetizations at both these sites with
weights proportional to the respective hyperfine in-

teraction constants. That is,

fpt ( T) =
~ AM„(St ( T) ) + AtIl; (Sp ( T) ) ~, (70)

0 32

U
Z
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Q
QJ 30

26—

0 'lO 20
TEMPERATURE (K)

30

where for convenience the nearest-neighbor dipolar
interactions are included in the A' s. From the corre-
sponding pure systems, we have AM„=42.7 and
ANtt; =92.9 MHz/(unit of spin), which combined with
the Green's-function results for the magnetizations

FIG. 21. Resonance frequency of tsFtt'pt& intermediate
between Ni and first-shell Mn in 2,5-at. % ¹idoped K2MnF4
vs temperature. Data are corrected to zero field. Solid
curve represents the fit of Green's-function results with the
hyperfine interactions as adjustable parameters.
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0
are quite distinct, 2.003 and 2.086 A, respectively, at
T =300 K. In fact some information on the defor-
mations may be extracted from fotI (T). Using the
calculated temperature dependences, (So ( T) ) and

(Sf ( T) ), we may fit the A's to our data. The A's so
obtained are AM„=40.5+1.0 MHz and
AN; =65.9+2.5 MHz (solid line in Fig. 21), but

strongly correlated; their ratio is 1.63 +0.0S. In the
doped system the Ni-Ftt'Ot~ hyperfine interaction has
apparently dropped by —30%, corresponding to a di-

0
lation of —0.06 A, while the increase of the

I ~
0

Mn&~&-Ft'0~~ distance amounts to —0.01 A.

C. Main resonance shift
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FIG. 22'. Shift of the main resonance relative to the pure
system vs temperature for 0,4-at. '/o Zn, 2.2-at. '/0 Mg, and
2.5-at. % Ni-doped K2MnF4. The inset shows the variation
of the shift vs the Ni concentration, indicating linear depen-
dence. The shift vanishes for extreme dilution.

In our analysis, the positions of the satellite reso-
nances are referred to that of the main resonance ori-
ginating from ' F far away. from the impurity. In first
instance, the main resonance is expected to coincide
with the ' F NMR of the pure lattice. The perturba-
tion by the impurity is of local character, and indeed
our calculations have shown that the perturbation
drops off rapidly, at least within the first three shells.
Remarkably therefore, a significant shift has been
found of the main resonance relative to the pure
host, even at zero temperature (Fig. 22). Within the
errors, the shift is linear with the impurity concentra-
tion for a 2.5-at. % Ni-doped sample amounting to
2.5 & 10 units of spin. Evidently, the shift is not
primarily related to lattice deformations. These
would have similar effects in Ni- and Mg-doped crys-
tals (both Ni2+ and Mg2+ have smaller ionic radii

than Mn2+), at variance with the findings. Addition-

ally, the effects of lattice deformations on hyperfine
interactions would have given shifts scaled with the
sublattice magnetization (cf. Sec. II B), which de-

creases with temperature. It is noteworthy, however,
that the temperature dependences of the main-

resonance shifts, including the sign, resemble those
of the corresponding local magnetizations in the first
few shells. This clearly points to a magnetic origin.

The perturbation of the pure host by the impurity,
Eq. (19), has been taken to include the

impurity —first-shell exchange and the alteration of
the anisotropy at the impurity. It further includes the
alterations of the local renormalizations up to the
first shell, but explicitly does not include modifica-
tions in the exchange between further neighbors and
renormalization at larger distances. The Green's-
function apparatus is however such that it accounts
for the fact that the magnetizations at further shells
are affected as well, and in fact we have done the cal-
culations for the first three shells. The shortcomings
in the perturbation are therefore not believed to
prevent alterations at substantial distance from being
found. Note also that renormalization effects would
disappear at T'=0. Clearly, in order to calculate the
main-resonance shift, more shells, say 10, should be
included. Preferably, a distribution of impurities
rather than a single one should be involved. This is
however prohibitively difficult to treat.

For the sake of a qualitative analysis, it is of in-
terest to consider which values of k contribute to the
main-resonance shift. In this context, we note that

in analogous 3-D systems, with MnF2 as primary ex-
ample, a shift of the host resonance has not been ob-
served. 4 Apparently, the effect must ultimately bear
on the 2-D character of the structure, i.e., be related
to the finite density of states for long-wave com-
ponents of the spin deviations. Let us therefore sin-

gle out in the Brillouin zone a central domain of k

corresponding to wavelengths larger than the mean
impurity-impurity separation. The area occupied by
this domain of course scales with the impurity con-
centration. For extreme dilution, it contracts to a

very small fraction of the zone about k =0. In the
remaining part of the zone, the perturbative action of
the impurities may then be described by isolated sin-
gle impurities, in the way treated in Sec. III, yielding
spin deviations about the impurity of very localized
nature superimposed on an unchanged host. In the
central domain, however, the perturbation may be re-
garded as being uniformly spread over the lattice.
Accordingly, the small- k part of the spin deviations
will be uniformly shifted from the value in the pure
system, with the shift linear in the impurity concen-
trations, and of course additive to the result originat-
ing from the large-k regime. Obviously, such a shift
can only attain an observable magnitude in 2-D sys-
tems, where there is a finite density of states near the
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TABLE IV. Exchange parameters and spin-wave energy gaps from fits of the host sublattice
magnetization to renormalized spin-wave theory, and spin-wave gaps measured by AFMR extrapo-
lated to zero temperature and field. The zero-temperature zero-field frequencies f '(0) are also
given.

Impurity f'(0)
(MHz)

Spin-wave fit
J'/k~
(~)

.„'~(0)/k,
(K)

AFMR

k~(»«a
(K.)

Pure system
0.4% Zn
2.2% Mg
2.5% Ni

150.477 + 0.003'
150.472 + 0.015
150.564 + 0.017
150.638 + 0.017

—8.41 + 0.06'
—8.30+0.05
—8.21 + 0.05
—8.39 + 0.05

7.54 + 0.07'
7.49+ 0.08
7.32 + 0.08
7.56 + 0.08

7.40 + 0.05'
7.27 + 0.05
6.83 + 0.05
7.31 + 0.05

'Reference 7,

zone center. Earlier, the idea of uniformly distribut-
ing the perturbation, but in the entire zone, has been
applied to random systems, such as Mn~ „Zn„F2, in
the so-called coherent-potential approximation.

Experimentally, we indeed find for both the Ni-

doped (O.S and 2.5 at. %) and the Zn-doped (0.4 and
0.8 at. %) samples a shift of the main resonance
which linearly increases with concentration. It should
be stressed, however, that the local spin deviations,
as expressed by the shift of the satellites relative to
the main resonance in the spectrum, appeared to be
independent of concentration. This conforms with the
above model noting that the central small-k domain
occupies only a small fraction of the Brillouin zone
( —1%). In our analysis, we have therefore mea-
sured the position of the satellite resonances relative
to the main resonance of the impure system itself
rather than the resonance of the pure system.

The temperature dependence of the main-
resonance frequency may be described in terms of a
spin-wave formalism for the pure system, provided
effective parameters are used for the exchange and
the spin-wave energy gap at zero temperature, denot-
ed by J' and uk~(0), respectively. This has been
done following the earlier analysis of pure K2MnF4, "

i.e., Oguchi renormalization and variation of the gap
according to the sublattice magnetization have been
included. This has resulted, as for pure K2MnF4, in
excellent fits up to —

2 TN, with the output values

given in Table IV. Further, we have directly deter-
mined the gap from AFMR experiments, which
essentially probe the k =0 mode. Results, extrapo-
lated to zero temperature and field are entered in
Table IV as Ek~(0). Upon inspection of fto&,
J, ek~(0), and 6k~(0) for the nonmagnetic impuri-
ties, it appears that the variations relative to pure
K2MnF4 are within the errors proportional to the con-
centration. The AFMR spin-wave gaps, of course

more realistic than the ones from the spin-wave fit,
are varying substantially. Referring to the analysis of
the main-resonance shift above, we note that the
strong effects of impurities on the AFMR are anoth-
er indication of the special character of the central
part of the Brillouin zone. The modification of the
k=0 gap is not properly contained in the treatment of
spin waves in Sec. III, but, as has been pointed out,
is not likely to affect the calculated results as far as
the local aspects are concerned.

D. Local susceptibilities

During the experiments some data have been col-
lected on the field dependence of the resonance posi-
tions relative to the host (see, e.g. , dashed and solid
curves marked 1 in Figs. 7 and 9). These data essen-
tially contain information on the susceptibility at the
various shells about the impurity. They are some-
what fragmentary, and calculations have not been
done. Yet, the data allow a number of interesting
features to be discerned.

First, the impurity-induced modifications of the lo-

cal susceptibilities appeared to be independent of the
direction of the field, or equivalently, on whether the
impurity is on the up or down sublattice. This is
demonstrated in Fig. 23 for a 0.4-at. % Zn-doped sys-
tem at 11.2 K, where the resonance positions, as be-
fore referred to the resonance of the ' F far away

from the impurity, are found to vary linearly with the
external field, ranging from —10 to +10 kG. Note
that a positive field is taken to correspond with the
low-frequency Zeeman component, i.e. , the down
sublattice (having the Mn magnetic moment opposite
to the field), and consequently a negative field with
the up sublattice. Although the result seems to be
quite obvious on the basis of molecular-field-type
treatments, it is in fact not. A clear example of the
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contrary is supplied by the susceptibilities of the up
and down sublattices of pure KqMnF4, which from
' F NMR have been found to differ by about an or-
der of magnitude below —15 K.s At 10.K and 10
ko, for example, the field-induced moments residing
on the up and down sublattices of K~MnF4 are
0.4 x 10 and 2.7 & 10 units of spin, respectively.

The second point is also best documented with the
results in the Zn-doped system. The impurity-
induced susceptibility of the first four shells about Zn
is given in Fig. 24, as derived from the slopes in Fig.
23 and a similar plot at 4.2 K. The figure also con-
tains results for Ni. Note that the susceptibility of
the pure system has to be added to the results in Fig.
24 to obtain the total local susceptibility near the im-
purity. With regard to the impurity-induced part of
the susceptibility, the quite remarkable finding is that
it is negative at the second and third shells. In other
terms, given a field along the first-shell magnetiza-
tion, on the introduction of an impurity the moments
on the first few shells all grow in absolute magnitude,
irrespective of whether they point upward or down-

-0.3 " 0
t

5 10 '1 5
TEMPERATURE (K)

20

FIG, 24. Local impurity-induced susceptibility, additive to
the susceptibility of the pure system, vs temperature in 0.4-
at. % Zn-doped (closed circles) and 0.5-at. % Ni-doped (open
circles) K~MnF4. Labels denote positions about the impurity.

ward (or all diminish in case the field is opposite to
the first shell). The changes differ of course for the
various shells, and the net moment points along the
field. This is quite contrary to anything anticipated
from molecular-field approaches, and clearly must be
associated with the nature of the excitations.

To understand the failure of the molecular-field ap-
proaches, it is instructive to compare some of their
results with experiment. In molecular field the local
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susceptibility at low temperatures is proportional to

e '/(e ' I—)', with

I'I= X (Ji )S lk T,
m(I)

the summation running over the nearest neighbors of
l. For T going to zero, the impurity-induced suscepti-
bility diverges, but for higher temperatures molecular
field appears to give a reasonable description for the
nearest neighbors of a nonmagnetic impurity in 3-D.
systems. In two dimensions with J = —8.41 K for
the pure system and T =10 K, the susceptibility of
the first shell about a Ni impurity mould be reduced

by —
3 relative to the pure system, ~hereas in fact it

is twice as large. (The pure system's susceptibility
averaged over up and down sublattices is 0.1S & 10 '
units of spin at 10 K, and 0.5 X10 ' units at 20 K and
10 kG.) In the Zn-doped samples the same model
predicts the susceptibility at the first shell to be in-

creased by a factor of about '7, while further neigh-
bors are virtually unaffected. Experiment gives that
the increment of the local susceptibility relative to the
pure system at the first four shells amounts to +2.5,
—1.3, —1.7, and +1.1, respectively, expressed in

terms of the pure system's averaged susceptibility.
Evidently, the local impurity-induced susceptibility
extends to quite a distance from the impurity, a fact
which molecular-field-type approaches do not account
for. It is obvious that an alternative and more so-
phisticated treatment based on molecular fields would
not improve matters.

VI. CONCLUDING REMARKS

The most salient fact emerging from the present
investigation is that also in 2-D systems such a strong
perturbation as the replacement of a Mn'+ ion by a

nonmagnetic impurity has effects of very localized

nature, apart from a concentration-dependent overall

shift. The dimensionality of the magnetic lattice,
having a profound influence on the number of long-

wave length excitations, is of course expected to play
a role. %hen comparing our 2-D results with those
in a 3-D bcc system, ' we indeed see that at the first
shell the effects are larger by about half an order of
magnitude. However, there certainly is no prolific
change when going from three to two dimensions.

A Green's-function treatment that includes nearest-
neighbor correlation was found to provide an excel-
lent description of the variation with temperature up

1
to —

2 T~, as was seen from comparison with experi-

mental data up to the third shell. Here, variation of
the anisotropy according to AFMR results was taken
into account. It should be emphasized that the
modifications relative to the host system at shells fur-
ther than the first are very small indeed. At the first

shell about Zn, the thermal decrement of the mag-
netization, at say 20 K, amounts to 0.07 units of spin
in addition to 0.21 already present in the unperturbed
host; at the second and third shell the drop is —0.01.
For Ni, having an exchange with Mn only 15'/o

higher than the primary exchange, the variation of
the magnetization at the first shell relative to the host
does not surpass 0.002 units of spin up to —, T&. The
Ni impurity spin itself drops by -0.07 at this point.
In contrast to the temperature dependence, the local
zero-point deviations could not be measured by NMR
because they are indistinguishable from the effects of
changes in the transferred hyperfine interactions as-
sociated with lattice deformations (measuring at the
'Mn nucleus instead of the ' F would not improve

matters because the 55Mn linewidth is quite large").
An exception to this is the zero-point reduction at
the Ni impurity, which clearly is substantially smaller
than that of the host. Considering the superb results
of Green's functions for the temperature variation,
however, there seems no reason to believe that the
corresponding results for the zero-point reduction
would be incorrect. These indicate (cf. Table III)
that for both Zn and Ni the reduction at the first
shell is diminished by -0.01 from the pure value of
0.17. Note that at the first shell about Zn the shifts
with temperature are substantially larger. The Ni it-

self has a reduction of only 0.11 because the density
of states is largely transferred to a local mode above
the band.

Another important result arrived at in comparing
calculations to the data, is the necessity to account
for the correlation between nearest neighbors. Ignor-
ing the correlation, we found that the fall of ihe local
magnetizations with temperature is overestimated, in

particular at the first shell about a nonmagnetic irn-

purity. Our results without correlation are very near-
ly the same as those obtained by suitable adaptation
of the Green's-function formalism by Walker et al. , ex

cept for higher temperatures where their use of the

quasiboson mechanism apparently starts to compen-

sate the neglect of the correlation. At this point,

however, the deviations are already large.
An interesting aspect further is the effect of an im-

purity on the magnetization at substantial distance,
which in first approximation is proportional to the
concentration. As such a shift has not been observed
in 3-D systems, it seems to be typical for two dimen-

sions. It is not contained in the present treatment,
which has been worked out up to the third shell only,
and must be related to excitations of long
wavelengths. Characteristic differences of two and

three dimensions are also reflected in the imaginary

parts of the Green's function of the pure system,
which in the former case converge to unity and in the

latter rapidly fail to zero, demonstrating the depen-
dence of the density of states on the dimensionality

of the system.
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change as the perturbation. We then have for the ra-
tio of the deviation at the impurity to that of the host

IlLp Sp (8S —1)
S [ (3J/J0+ 4)S +S0 —1]' (Al)

For a Ni impurity in K2MnF4, with J0/J =3.0, S = —,
and S0=1, we then find 50/5 =0.924, as compared
to 0.612 from the Green's-function calculations. In a

similar second-order perturbation calculation, we ob-
tain for the zero-point deviation at the first shell

APPENDIX: ZERO-POINT SPIN DEVIATION
BY PERTURBATION THEORY

3 (8S —1)' ~o

4 [7S+(J0/J)S0 —1]' 4&„
(A2)

A rough estimate of the local zero-point spin devi-
ations may be obtained from a simple second-order
perturbation calculation, in which the Neel state is

taken as the ground state, and the transverse ex-

For a Ni impurity this results in h~/b, =0.943, while
the Green's function calculation yields 0.936. For a

nonmagnetic impurity, we take in Eq. (A2) J0=0,
resulting in h~/5„=0. 994 for S = —, , to be compared

5

with the Green's-function value of 0.942.
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