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The phase diagrams of Ising antiferromagnets in a magnetic field H are investigated for vari-

ous values of the ratio R between nearest- and next-nearest-neighbor interaction. While mean-

field approximations and the existing real-space renormalization-group treatments yield phase di-

agrams which are sometimes even qualitatively incorrect, accurate results are obtained from

Monte Carlo calculations. For R & 0 only an antiferromagnetically ordered phase exists. Its

transition to the disordered phase is first order for temperatures below the tricritical point

(T, , H, ). For R 0 also T, 0. For R =0 we find very good agreement with the results of
Miiller-Hartmann and Zittartz. For R & 0 and H~ & H & H2 a new phase with anomalous high

ground-state degeneracy is found (two sublattices have only one-dimensional order). These

sublattices undergo order-disorder transitions at T =0, such that for T & 0 one is left with a

"superantiferromagneticn phase. At low temperatures in this phase a pronounced tendency is

observed to form a simpler (2 && 2) superstructure but with many antiphase domain boundaries.
1

For R
2

and H & ff& the regime of the antiferromagnetic phases goes to zero temperature,
1

while for R &
2

the superantiferromagnetic phase exists also for H & H&. The order-disorder

transition associated with this phase seems to have non-Ising critical exponents which vary as a

function of R and 0, Estimates for the exponents lead us to suggest that Suzuki's "weak univer-

sality" is valid. The behavior of the model at T =0 is related to known results on hard-core lat-

tice gases. It is shown that it is useful to interpret the transitions at T =0 as generalized perco-

lation transitions. Since the model may have applications to adsorbate phases in registered

structures at (100) surfaces of cubic crystals, the transcription of our results to temperature-

coverage phase diagrams and adsorption isotherms is discussed in detail, and possible experi-

mental applications are mentioned.

I. INTRODUCTION

The Ising square lattice with nearest-neighbor
(NN) coupling is one of the few exactly soluble
models which shows a phase transition. ' ' Adding
next-nearest-neighbor (NNN) interactions or a mag-
netic field (or both) to the model, in which case it is

no longer soluble, is not just an exercise of statistical
mechanics: on the one hand, several layered crystals
have been found which are quasi-two-dimensional
anisotropic antiferromagnets (like K2CoF4, Rb2CoF4,
etc.) which can be represented by Ising models at
least within a fair approximation. Since, as we shall
see, the existence of NNN interactions and the mag-
netic field may give rise to other phases with dif-
ferent critical behavior, multicritical points, etc. , the
investigation of this more complicated model could
be a valuable guideline for the analysis of corre-

sponding experiments. On the other hand, this sys-
tem can also be considered as a model for an ad-
sorbed monolayer on a cubic (100) surface (where
adsorbate atoms are only allowed to occupy "pre-
ferred sites" at the substrate surface). In fact, this
model has been suggested to explain some properties
of H on W (100) (Ref. 8) and Te on Cu (001),'9
and related models on other lattices are discussed in
connection with 0 on W (110),' ' with He on gra-
phite, ' "etc. And last but not least, this model is a

very suitable testing ground for various concepts on
order-parameter symmetry' ' as well as for approxi-
mate methods for calculating phase diagrams, e.g. ,
mean-field approximations ' and variants thereof,
real-space renormalization-group techniques, ap-
proximate interface free-energy calculations, 2'26

series expansions, many-fermion theory, etc.
In the present work we present a detailed numeri-
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cal investigation of this model, using standard Monte
Carlo methods. ' Since some aspects of the zero-
field case using this technique are described else-
where, ' we concentrate here on the case of nonzero
fields, ' discussing the resulting phase diagrams both
of the magnetic models and of the adsorbate layer
models. The outline of our paper is as follows: In
Sec. II, we define the model and the quantities which
are computed, summarize the transcription from the
Ising magnet to the adsorbed layer. We then investi-
gate the ground-state properties of the model, with
emphasis on percolationlike phenomena and the rela-
tion to hard-core lattice gases. " In Sec. III we shall
describe the treatment of the model using a four-
sublattice mean-field treatment. In Sec. IV we shall
present quite detailed Monte Carlo results for the
case of nearest-neighbor interaction only, while in
Sec. V we shall describe the phase diagrams and ther-
modynamic behavior obtained for nonzero (NNN)
interaction. In Sec. VI we shall consider the critical
and crossover behavior exhibited by this model.
Conclusions are presented in Sec. VII.

II. THE MODEL: DEFINITIONS, ANALOGIES,
AND GROUND-STATE PROPERTIES

A. Definitions and analogies

~here 0.;, cr&, o-k =+1, J~& and J»& are NN- and
NNN-exchange constants, respectively, H is a uni-

form magnetic field (measured in units of the mag-
netic moment per magnetic ion), and the sums run
over the indicated pairs of neighbors on the square
lattice. For the Monte Carlo calculation, a finite
L x L lattice with periodic boundary conditions is

used (usually we take L =40 except where otherwise
stated). Energy U, specific heat Cii, magnetization

M, and susceptibility Xr (all quantities normalized
per spin, where W = L2) are then obtained as

1

Ãkg T

r

$o;
I

t

(')'
Since we want to analyze the system with respect to
various orderings, we divide our lattice into four sub-
lattices: 1, 2, 3, 4 (appropriate for the description of

We consider the Hamiltonian of a two-dimensional
magnet

NN X ~r ~i JNNN X rrl srk —& X rrl
NN NNN I

MAF = [M( + M3 (M2 + M4) ]/4 (4)

The order parameter of the superantiferromagnetic
(SAF) structure, where rows of up spins and rows of
down spins parallel to the [10] or [01] direction on
the lattice alternate, has two components, '8 which we
write as r'

Mstgp = [Mt + M2 —(M3 + M4) ]/4

MsAF [Ml ™4(M2 ™3)]/4

As is convenient for simulations of other more-
component models (xy model, Heisenberg model,
etc.),' one may introduce a root-mean-square (rms)
order parameter also in this case,

MSAF [(MSAF ) + (MSAF ) ]

Clearly, with four sublattices there is still one more
structure possible where three spins of the unit cell
have the same direction, while one is pointing oppo-
site. '" The four components of this structure are

Mk' = (Mt+Mz+M3 —M4)/4,

Mt( = (M2+M3+M4 —Mt)/4

Mtv =(M3+M4+Mt —M2)/4

Mt'~ = (M4+ M( + M2 —M3)/4

and the corresponding root-mean-square order
parameter is

r

4
1 1/2

Mrms g (M(x) )2
1

Since M = —„(Mt + M2 + M3 + M4), the 2 /2 = 8

order-parameter coordinates possible with four sub-
lattices are thus exhausted (the factor 2 in the
denominator accounts for changing the sign of the
order parameters). However, since no general
theorem restricts the number of sublattices for or-
dered structures in our case, one should allow for
magnetic superstructures with larger elementary cells
as well, and analyze the spin configurations with
respect to that orderings. We did not do this but re-
stricted ourselves to frequent, careful, visual inspec-
tion of printed-out spin configurations, which never
gave any indication that any ordering with periodicity

an arbitrary superstructure with twice the lattice spac-
ing of the original lattice). In terms of the sublattice
magnetizations

sr, = —$(;), r=1.2. 3. 4
4

if%,

where the corners of a simple square are labeled
counter-clockwise to indicate the sublattices, we ob-
tain the order parameter of the antiferromagnetic
(AF) structure
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larger than (2 x 2) was present ar nonzero tempera
tures. Hence the superstructures with considerably
larger periodicity familiar from the adsorbate layer
studies on transition metals" presumably have to
be attributed to a longer range of interaction —which
would not be surprising because the indirect interac-
tion via both substrate conduction electron scatter-
ing3' and via elastic distortion of the substrate sur-
face are of long range.

Among the susceptibilities conjugate to our various
order parameters, we have only obtained the stag-
gered (antiferromagnetic) susceptibilities Xpp, X

X+=
T ((MsAF )')1

B

r

1 BF 2H p&

N4g T 88 T A~T A~T
(14)

the chemical potential. . As is well known, a treat-
ment of the Ising magnet in the canonic ensemble
corresponds to a treatment of the lattice gas in the
grand canonic ensemble. Equation (12) reduces to
Eq. (1), of course, if the background term 3C p which
is of no interest here is omitted, and J( r; —r, ) is
taken to be nonzero only if r; —r, equals a lattice
vector between NN or NNN.

The magnetization process M = M(H, T) of the Is-
ing magnet corresponds to the adsorption isotherm
p, = p, (8, T) of the (physisorbed) monolayer, since

t '2
XAF X o(+ X o j $ o'( X rr(

B i'll if3 i62 i%4

—(NMAF) (9)

where F is the free energy,

and

8= (I —M)/2

(15)

(16)

As is well known, the ordering susceptibilities can in

principle be measured from diffuse magnetic neutron
scattering intensities at those positions in reciprocal
space where in the ordered-phase Bragg peaks (with
intensity proportional to the square of the respective
order parameter) occur.

Next we discuss the relation to the adsorption prob-
lem. Assume that a binding energy e is won if an ad-
sorbate occupies one of the preferred sites on the
substrate surface which are assumed to form a square
lattice. With an occupation variable c, = (0, 1), for
each site the coverage 8 is

. Note that p, /ks T is proportional to the logarithm of
the adsorbate gas pressure if the gas is assumed to be
ideal. For pairwise interactions, the phase diagram in

the ( T, 8) plane is symmetric around 8, = —,, while the

adsorption isotherms are antisymmetric around the
point (8, = —, , p, = p,,). But the maximum coverage

even at T =0 is given by 8,„=1 only if p, , (0, while
otherwise only the part of the phase diagram for
which p, «0 can be realized. This lattice gas with
pairwise interaction is a poor model for real adsor-
bate systems at larger coverages due to many-'body

interactions and multilayer adsorption, however.

8=—X (c;)I
N

(10)

B. Ground-state properties
In terms of the adatom-adatom interaction $, the
Hamiltonian can be written as

(6+@)Xc(+Xp

where

J=$/4, H= —' e+p, +
z X@ 2

J

(12)

(13)

Note that this transcription is identical to the usual
lattice-gas Ising-magnet analogy ' apart from the fact
that the binding energy per site e has been added to

where p, is the chemical potential, W, is the number
of adsorbed atoms, and 0 describes other degrees of
freedom (vibrations etc.). With c;=

z
(1 —a;), we

transform to the equivalent Ising model of a magnet

%'e first consider the ground state in the magnetic
case. For J~~ )0 (ferromagnetic), R —= Jq~~/J~~ ) 0
the ground state is ferromagnetic for arbitrary fields.
For J~~ & 0, R ( 0 the ground state is superantifer-
romagnetic if 2J~~(1 +2R) ( H, which is pos—sible

only for R & —
2

. In this case, the superantifer-

romagnetic state is the ground state in zero field, and
at H, t

= —2J~~(I +2R) a transition to the ferromag-
netic state takes place.

For Jgg (0, R «0 the antiferromagnetic state is
stable if 4J» (—H. At H, 2

———4J~~ a transition to
the ferromagnetic state takes place. For Jgg (0,
R )0 the behavior is more difficult. The antifer-

.romagnetic state is stable for 4J~~(1 —R) ( H, pro-—
vided R ~T~. At H, 3= —4J„t4(1—R) a transition

takes place to a degenerate structure, where fer-
romagnetic rows alternate with antiferromagnetic
ones. The antiferromagnetic rows are not ordered
with respect to each other. If they were, due to a
third-neighbor attraction perhaps, the state would be
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(2 x 2). In the present case, the (2 x 2) structure is
degenerate with this more general (2 x I) structure.
The physically relevant structure to consider is the
most probable structure, '9 4' which is the latter. (Its
ground-state degeneracy is 4 x 2, because there are
—,L antiferromagnetic rows, and an additional factor 2

arises from interchanging the ferro- and antifer-
romagnetic sublattices, and another factor 2 arises
from interchanging x,y directions on the square lat-

tice.) The antiferromagnetic sublattice exhibits long-
range order in one dimension only, while the fer-
romagnetic sublattice has true two-dimensional long-
range order. This different dimensionality of the or-
dering at different sublattices gives rise to interesting
effects at nonzero temperatures. [We have described
this structure in detail because previous work 2 44 er-
roneously described this structure as the fully period-
ic four-sublattice structure of Eq. (7). In fact, if one
uses the usual method45 of constructing all possible
spin arrangement of (I x m) superlattice unit cells
for various values of I, m to find the lowest energy
state, one would have to use I =I =4 to just note
that there is a degeneracy higher by a factor of 2 than
expected. Also the methods ~here inequalities are
used proving that no lower-lying states exist are of
little help for the degeneracy problem. ] This degen-
erate, structure now is stable for H, 3 4 H 4 H 4
= —4JNN(1+R), while for H ) H, 4 again the fer-
romagnetic structure results.

In the case finally where JNN & 0 but R ~ —,the su-1

perantiferromagnetic structure is stable for H (H, ~
1= —4JNNR. For R = —,, of course, AF and SAF

structures are then degenerate (and H, 3
= H, 5 in this

case). For H & H, 5, one then obtains the same de-
generate structure as before, with transition to the
ferromagnetic state at the above H, 4.

C. Equivalent lattice-gas structures

The seemingly trivial transcription from Eq. (11) to
Eq. (12) has rather nontrivial consequences, since
now we use the coverage (corresponding to magneti-
zation) rather than the chemical potential (corre-
sponding to the field) as independent variable. Since
in the above case the magnetization is zero in the AF
and SAF structures, + 2, in the degenerate structure,

1

and +1 in the ferromagnetic structure, one has mag-
netization jumps at the various critical fields
H, 1, . . . , H, 5. However, for the lattice-gas problem
it makes sense to consider coverages 8 different from

1 1 3
0, 4, z, ~, 1 [corresponding to the above magneti-

zations, see'Eq. (16)] also in the ground state T =0.
We first consider the case of rather low coverages

and repulsive interactions between both nearest and
next-nearest neighbors. For 8 ~ 4, the ground-state1

energy is always zero and entropy determines the
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FIG. l. {a) Typical ground-state arrangement of the de-
1

generate structure at 8=
4

at a 40 x 40 square lattice with

periodic boundary conditions. Filled sites are shown by
black dots while empty sites are not shown. {b) Metastable
domain configuration reached by slowly cooling the system
from a disordered arrangement to zero temperature. Thin
full lines indicate antiphase domain boundaries, while bro-
ken lines indicate "broken bonds" which cost energy,

1structure. For 8= —,we have the degenerate struc-

ture [Fig. 1(a)] which corresponds to the degenerate
magnetic structure described above: empty rows al-
ternate with half-filled rows (in which filled and emp-

ty sites alternate). As 8 is decreased, the most prob-
able state is given by the same structure but with im-
perfect order: e.g. , a fraction (I-4to of the filled
sites in Fig. 1(a) is now also empty, one thus has
"clusters" of holes in the ordered structure. Inside
these holes finite clusters of the ordered structure
may occur, etc. Below the percolation threshold 01

the infinite network of the ordered structure breaks
up, and only finite clusters of the ordered structure
remain. Thus the lattice-gas phase can exist in the
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ground state for a finite regime of "densities" (i.e.,
coverages in the range 0 ~ 8 ~ 8t ). Since a two-
dimensional lattice for obvious geometrical reasons
cannot carry two percolating networks at the same
time, there is no regime of coverages where both an
infinite net of the degenerate structure and an infin-
ite net of lattice gas coexist, and we expect a second-
order transition from the lattice-gas phase to the de-
generate structure at H~. Clearly, this is a kind of
percolation problem which may be visualized as the
random filling of sites with larger objects which block
both nearest- and next-nearest-neighbor sites from
further occupation, and where an object belongs to a
"cluster" when at least one other object belonging to
that cluster is either a distance 2a or (Sa)'~' apart,
where a is the lattice spacing. This ambiguity in the
cluster definition reflects the degeneracy of the or-
dered structure within the ciusters [Fig. 1(a)). Fig-
ure 2 shows a series of typical configurations ob-
tained by this prescription and the resulting largest

cluster on the periodic 40 x 40 lattice is indicated. It
turns out that "percolation" occurs roughly at
8~ =0.135. This estimate for the percolation cover-
age is affected by the finite size of our lattice, of
course; for a 25 x 25 lattice, the corresponding esti-
rnate was 8~ =0.127, for 55 x SS at 8~ =0.140, and
for 95 x 95 at Ot'=0. 147. Extrapolating these value
to the thermodynamic limit, we obtain H~ =0.155 as
a tentative estimate. This value is in fact very close
to the estimate which would be obtained by only con-
sidering the sites of one particular realization of the
ordered structure [e.g. , Fig. l (a)) available for occupa-
tion: Then the percolation coverage would be
8~" =p,'~/4 =0.1475, where p,'~ =0.59 is the ordinary
site percolation threshold of the square lattice. '
Hence the percolation threshold in our case seems to
be only little affected by the degeneracy of the fully
ordered structure.

Now we note that these ground-state properties of
our system may be interpreted in an alternative way:
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FIG. 2. Typical ground-state arrangments of a 40 x 40 square lattice at 8=0.11 (a), 8=0.12 (b), 8=0.13 (c), and 8=0.14 (d).
The largest occurring cluster of the degenerate structure is indicated in each case.
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rather than keeping the interactions $NN, $NNN finite
and let the temperature T go to zero, one may keep T
finite and nonzero and one instead considers the lim-

it ~@NN~ ~, ~pNNN~ ~. The results are then in-

dependent of the magnitude of R as long as R &0.
The resulting system is interpreted as a hard-core lat-

tice gas. " While from Eq. (15) it is obvious that

p, ,/ksT ~ in that limit, it is clear that the adsorp-
tion isotherm p, (8, 7') is still well defined. As is well

known, "', p,/ksT is in this ease a function of
coverage only,

p, /ka 7' / (8)' (17)

i.e., the dependence on temperature is trivial, if one
treats the kinetic energy of the lattice gas by classical
and not by quantum statistics. It is then interesting
to ask whether the percolation transition at 8] corre-
sponds to any singularity of the equation of state, Eq.
(17): e.g. , for a thermodyamic second-order transi-

tion one would expect that the compressibility of the
lattice gas diverges, and hence

EG (48 1)4NNN
1 (19a)

EG = ——(48 —l)PNN, R ~—1 1

Although the energy now is no longer zero, the de-

BP, k ~df(8)
[ 08 r dH

It is not completely clear, however, if such a transi-
tion actually occurs for 0~.48 While a closed-form ap-
proximation" yielded a transition for 0~ =0.20, ma-

trix methods suggested a higher-order transition
for H~ =0.2375, while low- and high-density series
expansions'0 indicated no transition. These findings
contradict each other and none of the estimates for
8], agrees with our estimate. Hence more work is

necessary to resolve this problem. In view of this
uncertainty in the location of 8~, we did not attempt
to determine any critical exponents for this transition.
While in some of the early series-expansion studies
on hard-core lattice gases it was suggested that the
exponents are the same as that of the ordinary lattice

gas [i.e., nonordering susceptibility at H WO

~(Ht —8) ~log(Ht —8)
~

since u=0, order param-
eter ~(8 —Ht)' in two dimensionsl, we rather sug-

gest that the exponents belong to a class of percola-
tion problems [in the ordinary site-percolation prob-

e Pp
lem we would have order parameter ~(8 —Ht) ~, sus-

ceptiblity ~(Ht —8) ~ with" y~ =2.2, P~ =0.139, but
here the situation is different since it is the difference
in occupation of the sublattices which matters for the
order parameter].

For [9 & —and R )0 the ground-state energy of
our model is no longer zero, but rather is given by

(EG is the ground-state energy per particle)

generacy of the ground state is still very high. Sup-
pose we would start from a 2 & 2 structure with
0= —,sublattice I being filled: then in case of Eq.
(19a) the sites of sublattice 3 could be filled at ran-
dom with probability 48 —1, while in case of Eq.
(19b) the sites of either sublattice 2 or sublattice 4
are filled. One then asks for the concentration 82 at
which for the first time an infinite network of
c(2 x 2) structure [in case of Eq. (19a)] or 2 &1
structure [in case of Eq. (19b)] appears. Obviously,
this happens at the percolation threshold p,' of the
respective sublattice, and hence the resulting estimate
for 82 is 82 = —'+p,"/4 =—0.3975. This estimate is

not very accurate, of course, since starting from a
(2 x 2) structure [or starting from the structure of
Fig. l (a)] introduces a bias in the sampling of
ground-state configurations. In order to obtain an
unbiased estimate, we employed the following pro-
cedure: in the case of Eq. (19a), we filled the lattice
sites successively at random with the constraint that
no neighboring sites were occupied. Since the result-
ing structures have energies exceeding EG, in a
second step the energy. of the structure was mini-
mized by randomly repositioning particles from filled
sites if this lowered the energy. Simultaneous rear-
rangments of two particles were also considered.
These rearrangements were sufficient to come quite
close to EG for

enclose

to 82. Figure 3 shows a set of
typical arrangments obtained in this way. One ob-
serves ramified clusters, the typical size of which
strongly increases as 02 is reached. Our estimate for
the percolation concentration on a 40 & 40 lattice is
82 =0.365, while the tentative estimate for the perco-
lation concentration in the thermodynamic limit,
again based on extrapolating estimates for lattices of
various sizes, is 82 =0.38. While these data seem to
indicate that the order parameter of the c (2 x 2)
structure increases with 8 ~ 02 in a continuous way,
appropriate for a second-order transition, it is much
harder to ascertain that the order parameter of the
degenerate structure vanishes continuously for 8 82
from below. Thus it is conceivable that the transition
from the degenerate structure to the c (2 x 2) struc-
ture (or 2 x 1 structure, respectively) is of first order,
implying the existence of a mixed-phase regime of
coverages ip the vicinity of 82. Our data at nonzero
temperatures, however, are consistent with the con-
jecture that the transition stays second order
throughout to T =0.

Again this percolation transition can be interpreted
in terms of hard-core lattice gases, with a "soft core"
(finite next-nearest-neighbors repulsion energy)
added to the nearest-neighbor hard core, in the limit
T 0. But so far this model has been studied for
nonzero temperatures only. '4

A much simpler situation arises for R =0. Then
the ground state of the system is found by the re-
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8 =0) for all 0 & 8 & —, according to the lever rule. If
also $NN is attractive, rather, domains of high-density
lattice gas (8=1) and low-density lattice gas (8=0)
coexist.

striction that no nearest-neighbor pairs occur, but
otherwise the lattice may be filled at random. One
now asks for the percolation threshold 8' at which an
infinite net of the c(2 x 2) structure occurs. While
for a 40 x 40 lattice our estimate is 0' =0.36, the
tentative estimate obtained via extrapolation to the
infinite system is 8 =0.375. We hence find only in-
significant differences to the values for 82 obtained
above. Furthermore we note excellent agreement
with the coverage 8'=0.371 (Ref. 48) at which the
transition in the equivalent hard-core lattice gas with
nearest-neighbor exclusion occurs. Again we suggest
that the exponents describing this transition are those
of the percolation problem rather than those of the
ordinary Ising model.

No such percolationlike phenomena occur if some
interactions are attractive, of course. For example,
for It NN repulsive and R & 0 it is energetically favor-
able to form a domain of perfect c(2 x 2) structure
(coverage 8=

2
) coexisting with lattice gas (coverage

III. MEAN-FIELD TREATMENT

In order to consider models such as Eq. (I) (on
general lattices) using mean-field theory, we decom-
pose the lattice under consideration into v sublattices
(a) which are subject to fields (H ) which act on the
sites of the o,th sublattice only. The ordinary mag-

netic field is then given by

H= —XH1

V a-1
(20)

and other linear combinations of these fields consti-
tute the various possible "staggered fields". [In a

simple two-sublattice antiferromagnetic, v =2, and

FIG. 3. Typical ground-state arrangments of a 40 X40 square lattice with 0 & R (—at 8=0.320 (a), 8=0.340 (b), 8=0.360
1

(c), and H =0.375 (d). The largest occurring cluster of the i (2 & 2) structure is indicated in each case.
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~= g $H "({ })
a 1iEe

where
V

H'""( {o;})= H. + $ $ J„~,, i e n .
p~1 jEp

(21)

there is only one other linearly independent combina-
tion of H1, H2, namely, the ordinary staggered field

H+= T~ (Ht —H2). ] In order to introduce the mean-

field approximation, we separate the interaction term
into sublattice contributions and rewrite the Hamil-
tonian as

Usually the solutions of Eq. (29) will not be unique
(i.e., several ordered structures are possible). Using
then the solutions of Eq. (29) in Eq. (27), one can
find the structure for which F " is minimal, which
hence is the stable structure, while the other struc-
tures are metastable or unstable ones.

Due to the nonlinear character of Eq. (29), an ana-
lytic solution of this system of coupled equations in
general is not possible. Instead we used the numeri-
cal iteration procedure

m " =cos Pm " ' +sin d, tanh

We then replace H" by its average value,

H = H + X X J;, (o.i)
p-1j ~p

(23a)

V

X x E~ttmtt" + H~
kgT p1

A=1, ~ ~ . , v, n ~~2

H&g + X 'E(gpmit r

p~1
(23b)

where we have defined a sublattice magnetization

where Q is an arbitrary parameter (0 & d & —,vr),
1

which must be chosen so that Eq. (30) is actually
convergent, i.e., so that

mp= Oj

and an interaction parameter

(24)
ltm lm.'"' -m.'" "1=0, ~=I, . ~ (31)

n ~oo

hatt= $ Jii Cu, j&P
j(&i)

The mean-field Hamiltonian then becomes

(25)

V V

3C = $ $ Xa~pmp+H~ tr;
a life p 1

N
Eepmem pa1V p1

(26)

FM" = —kq Tln2

AT "
1g ln cosh — g e ttmtt + H

V a 1 kgT p 1
t

V V

+ $ $ t~pm~mtt
a~1 p 1

(27)

The sublattice magnetizations are related to the free
energy by

ma= v
T,e ~

y A ~1
p ~ ~ ~ t. v p (2g)

where the second term corrects for overcounting, as
usual. It is straightforward to show that the free en-

ergy is given by

The best choice of $ is related to the choice of an in-
itial condition {m ' } for the iteration, and this in
turn may depend upon the number and possible ar-
rangement of the sublattices. If one begins with a
saturated (anti-) ferromagnet, {mt'l =+I,
n=1, . . . , v}, it turns out that the choice $ = —7r,

1

which would give the quickest possible convergence,
very frequently leads to oscillatory rather than con-
vergent behavior (at least for some of the m 's). In
the case of the four-sublattice structure on the square
lattice [Eq. (7)] with R )0, the choice P =

4
Vr yield-

ed satisfactory results in most cases. It turned out
that nonconvergent behavior (i.e., oscillatory or erra-
tice "turbulent" behavior) occurred less frequently the
smaller Q is chosen and the higher temperatures are
investigated. Usually the convergence of Eq. (30) is

quite rapid (i.e. , all m are stable to five significant
digits after n ) 10' iterations), except if one is close
to a second-order phase transition, where much
larger n are required. This slowing down of the con-
vergence can be understood as critical slowing down
of the kinetic Ising model. In fact, interpreting n as a
time t and taking the limit d 0, Eq. (30) reduces to
a set of equations similar to that derived by Suzuki
and Kubo" for a ferromagnet, namely,

and from Eq. (27) we find, as expected,

V

m =tanh X e ttms+H
k&T p 1

A' 1 p ~ ~ ~ p v 0

(29)

dm

dt

'1
= —m. (t) —tanh X e.ttmtt(t) + H

kgT p1

u=1, . . . , v . (32)
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From the analysis of the nonequilibrium relaxation of
kinetic mean-field models, it follows that, in the
case where Eq. (29) has several solutions, one can
only reach stable and metastable points using Eq.
(32), but never unstable ones. In such a case of
multiple solutions, thermodynamic equilibrium usual-

ly requ'ires somewhere a first-order transition from
one branch of the solutions to another. Since in the
general case the hysteresis loops need not be an-
tisymmetric around the point of unstable equilibrium,
a Maxwell equal-area construction to locate the tran-
sition is in general not possible without the knowl-

edge of the unstable branch. But first-order phase
transitions can be located unambiguously by compar-
ing the free energies of the various branches, using
Eq. (27). In order that one actually locates the vari-

ous possible branches, one has to repeat the iteration
several times with different initial conditions. It is
convenient to use all structures which are stable
some~here in the phase diagram as initial conditions
everywhere. Although no guarantee can be given that
all ordered phases are thus detected and their range
of stability in the phase diagram located, we think
that the method developed here is flexible and practi-
cally useful.

%e applied this technique to the case JNN (0,
JNNN & 0, H ~0, which was previously studied by
Katsura and Fujimori ' by a less general method.
Figure 4 shows our results for the phase diagram in

the H, T plane for R = 4, —, , and 1. For small R the
1 1

phase transition from the paramagnetic phase is al-
ways into the antiferromagnetic phase [Fig. 4(a)]. If
the field is increased at low enough temperatures,
one finds a transition to the four-sublattice structure
of Eq. (7). At still higher fields there is a second
transition back to the antiferromagnetic phase, before
then finally the transition to the paramagnetic phase
occurs. At larger R the succession of phase transi-
tions changes: the stability regime of the four-
sublattice superstructure then extends up to the criti-
cal point of the antiferromagnetic phase in zero field,
and it transforms directly into the paramagnetic phase
at higher fields without going back to the antifer-
romagnetic phase. The transition from the four-
sublattice structure to the disordered phase seems to
be second order. But now the transition from the an-
tiferromagnetic phase to the four-sublattice structure
is of first order. For R = —, , the antiferromagnetic

phase becomes degenerate with the superantifer-
romagnetic one [Fig. 4(b)]. For R )—,the antifer-

romagnetic phase is no longer stable; at low magnetic
fields the superantiferromagnetic phase is stable [Fig.
4(c)], which then transforms into the four-sublattice
structure at higher fields. This transition is of first
order.

Most of these findings agree with those of Katsura
and Fujimori ', but they predict the transition from

R =1/4

z 3

0
1 2

keT/I JN~I

(b)
2nd

R =1/2

4-

AF,

I

G5 10

keT/[ JNql

15

(c)

4-

2-

0 I

2

"eT/] J

FIG. 4, Mean-field phase diagram of Ising antiferromag-
1 1nets in a field for R = JNNN/JNN= 4 (a), R =

2 (b), and

R =1 (c). Phases occurring are paramagnetic (P), antifer-
rornagnetic (AF), superantiferromagnetic (SAF) and the
four-sublattice superstructure (2 & 2). The order of the
various phase transitions- is indicated.
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the four-sublattice phase to the antiferrornagnetic
phase as the field is increased to be a first-order tran-
sition, while the transition from the antiferrornagnetic
phase to the four-sublattice phase is predicted to be
of second order as in our calculation. Since the
phase boundaries are calculated from the numerical
solution of Eq. (30) an extremely small jump of first
derivatives of the free energy there can never be
firmly excluded. Due to the same reason Figs. 4(c)
and 6(c) may be slightly inaccurate close to the mul-
ticritical point. Figure S sho~s the behavior of order
parameters and free energies for a few typical cases
to illustrate the type of data used for the judgement.
%e think that for R =

4
the transition can be at best

very weakly of first order and hence at least for all

practical purposes it is sufficient to describe it as
second-order transition. In the case of R = —,, how-

ever, the free-energy curves are quite distinctly inter-

secting, and hence pronounced magnetization jumps
occur: the transition from the AF or SAF phase to

the (2 x 2) structure clearly is of first order. In Ref.
21 this transition at 8 =

2
was described as second

order, which is excluded from the above symmetry
argument.

From Fig. S we can recognize another remarkable
feature: While the free energies of the various
phases typically are of order I' = k~ T, the free-energy
differences often are of order AJ' =10 ~k~ T, even
quite far apart from the transition. Since mean-field
approximations are expected to yield I'/ks T accurate
to about 10'/o only, it is clear that the predicted tran-
sition lines are very unreliable, and it is also doubtful
that the predictions for the order of the various tran-
sitions are correct. In Sec. V it will in fact be sho~n
that most of the mean-field predictions seriously are
in error.

Using our results and Eq. (16), it is easy to con-
struct the phase diagrams in the variables tempera-
ture and coverage appropriate to the adsorbed-layer
problem, Fig. 6, Due to the jumps of magnetization
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FIG. 5. (a) Mean-field results for R = 4, ks T/I JNNI =

t . Both the staggered magnetization M~F, an order-parameter com-
1

ponent of the (2 x 2) structure (M =
&

(M1 —M3)], and the free-energy differences between the various phases are plotted as

function of the field. (b) Mean-field results for /I = z, ka T/I JN~I =0.725. Free energies and magnetization of the various

phases are plotted vs magnetic field.
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(coverage) at first-order phase transitions, one ob-
tains then mixed-phase regions. Note that the
mean-field approximation does not yield any non-
trivial behavior of the ground states at T =0, of
course. in order to obtain any of the -percolation cov-
erages Hl, 82 different from zero or one-half, one

lattice gas

would have to go beyond mean-field theory.

Figure 7 then presents our results for the adsorp-
tion isotherms, which correspond to the magnetiza-
tion process of the respective Ising antiferromagnets.
While first-order transitions show up by a jump,
second-order transitions correspond to much ~eaker
singularities (in this approximation jumps of the
derivative of the adsorption isotherm may occur).
We defer a detailed discussion of these results to Sec.
V where they will be compared to the more accurate
Monte Carlo data.

2
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FIG. 6. Mean-field phase diagram of an adsorbed layer
with repulsive nearest- and next-nearest-neighbor interac-
tions for R = —,(a), R = —(b), and R =1 (c). Elementary

I 1

cells of the various occurring superstructures are indicated.
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FIG. 7. Adsorption isotherms 8=8(p„,T) calculated from
mean-field theory for the adsorbed layers shown in Fig. 6.
Arrows indicate the occurring second-order phase transitions.
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IV. RESULTS FOR R =0

(a) M Il

1.0- o

&i@

symbol H/kgT
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3.76
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2.0-

IR=OI symbol H/kBT

1.34
2.68
3.76
5.37

For the case of R =0 the problem is simply that of
a nearest-neighbor Ising model in a magnetic field.
We are particularly interested in this case since there
already exists a number of solutions obtained by
clearly approximate methods, ' ' ' as well as an
interface free-energy treatment which purports to
give the exact critical-field curve. ' %e took special
care to acquire extensive data in this case. Finite-size
effects were studied by examining 20 & 20, 40 & 40,

and 80 && 80 lattices with observation times t of
2000—4000 MCS (Monte Carlo steps) for each data
point. (In addition each point was repeated at least
once. ) The major part of the investigation was car-
ried out along paths of constant H/T. An approxi-
mate phase boundary was constructed from the locus
of points of maximum slope in the magnetization
results. (The error bars were much smaller than
those obtained in another Monte Carlo study ' car-
ried out along paths of constant H, ) The results
agree well with the "interface solution"; however, a
much more demanding comparison may be made by
invoking the universality principle and carrying out a
careful analysis of the Monte Carlo order-parameter
data assuming that P retains its H =0 value of —.
The variation of the order parameter versus tempera-
ture is shown in Fig. 8(a) for several different paths
of constant H/T. The differences between the sets
of data reflect the increase in critical amplitude which
occurs as the path steepens. Similarly the critical am-
plitude for the specific heat decreases as the path
steepens. As the data in Fig. 8(b) show, the
specific-heat peak narrows and for h = H/ks T =5.37
large values of specific heat are obtained only very
near T, . The resultant values for the points along
the critical-field curve are compared with the "inter-
face solution" in Fig. 9. Our estimated error bars are
smaller than the size of the symbols plotted. The
agreement with the "interface solution" is striking'.
Since this solution contains no constants or prefactors
which may be slightly "corrected", we believe that the
agreement with the Monte Carlo data is strong evi-
dence that the solution is exact. Series-expansion
results are also plotted in Fig. 9 for comparison.
The critical-field curves obtained from the series are
unreliable for H/I JNNI & 1. The results obtained
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FIG. 8. (a) Magnetization plotted vs T/T, (H) for various
values of H/Az T of the nearest-neighbor antiferromagnetic.

(b) Specific heat plotted vs T/T, (H) for various values of
H/I. g T.
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FIG. 9. Phase boundary of the nearest-neighbor Ising an-
tiferromagnet in a magnetic field. -The circles are the Monte
Carlo results, the full curve denotes the "interface solution"
(Ref. 25), the dashed curve gives series-expansion results
(Refs. 27 and 60), while the dots denote the real-space re-
normalization results of Subbaswamy and Mahan (Ref. 23).
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2-
lattice gas lattice gas

)R=Ql Fig. 11. The shapes of the isotherms are quite simi-
lar for all temperatures and, in fact, the curves are
quantitatively quite similar as well.

V. MONTE CARLO RESULTS ON PHASE DIAGRAMS
AND THERMODYNAMIC PROPERTIES FOR R & 0

~ 0
0 ~

)

0
0.25 0.5 0.75 1.0 8

FIG. 10. Phase diagram of the lattice-gas model with
nearest-neighbor repulsive interaction.
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FIG. 11. Adsorption isotherms of the lattice-gas model
with nearest-neighbor repulsive interaction at various tem-
peratures. Arrows denote the points where the second-
order phase transition from the ordered to the disordered
phase occurs (cf. Fig. 10).

from a cell-cluster renormalization-group treatment"
are also not in particularly good agreement with our
data. The predicted T, (H =0), is too high, and the
low-temperature portion of the critical-field curve is
too low. Finally we note that Fisher's exact solu-
tion6' for a "superexchange" Ising square lattice in a
magnetic field yields a critical-field curve which falls
off much faster from the T =0 value than does that
for the ordinary square lattice.

The critical magnetization curve was also deter-
mined and is plotted as coverage versus temperature
in Fig. 10. The critical magnetization at T =0 was
estimated as M, =0.29+0.01 and hence the ordered
c(2 &&2) lattice-gas phase is stable at T =0 in the
range 0.355—0.645. The lower value would corre-
spond to the percolation limit and is in very good
agreement with the value 8'=0.371 obtained assum-
ing a noninteracting model with nearest-neighbor
hard-core exculsion.

The adsorption isotherms for R =0 are shown' in

It is already obvious from our discussion of
ground-state properties (Sec. II) and the mean-field
treatment (Sec. III) that for nonzero next-nearest-
neighbor interaction, several orderings may compete
and hence the analysis is much more complicated. It
turns out that it is also much more complicated to
obtain meaningful "data" from the computer experi-
ment in this case. Particularly cumbersome is the
proper distinction between phase transitions of first
and second order in this case, a problem which
strongly affects the phase diagram of the adsorbed-
layer system" (in cases where first-order transitions
occur, we have mixed-phase regions in a temper-
ature-coverage diagram, cf. Fig. 6). Since this prob-
lem will be important for studies of other models as
well, and errors have been made in our preliminary
analysis, '" we start by analyzing the difficulties oc-
curring.

Figure 12 gives typical examples of our results tak-
en on a 40 x 40 lattice with periodic boundary condi-
tions and observation times t in the range from 200
Monte Carlo steps MCS/spin to 3000 MCS/spin.
First it must be noted that for low temperatures the
results distinctly depend on the initial condition.
E.g. , in the case R =

4
where for fields

H/( J»( & H, 3/) JNN( (=3 in this case) the ground
state is antiferromagnetic, we made runs starting at
low fields with a perfect antiferromagnetic initial

state, and then omit the first d t =
4

configurations

and afterwards take an average over t configorations.
The last configuration of this run is used as an initial

configuration for the next run with increased value of
the field, etc. While some effects due to finite
averaging times near phase transitions are familiar in

Monte Carlo investigations, in our case these ob-
servation time effects are unusually large. This ob-
servation can be understood by the fact that tempera-
tures T « ~ JNN ~

have to be considered and hence
for the reorientation of some small clusters of spins it
may be necessary to overcome relatively high energy
barriers. When one starts with fields appropriate for
the disordered phase, using either a ferromagnetic or
random starting configuration and .then changes a
field one often observes pronounced hysteresis of the
order parameter. In addition, often the order param-
eter saturates at rather small values, which are not
reproducible from one run to another where different
random numbers are used, and which differ distinctly
from the results obtained by starting in the ordered
phase. Furthermore slight hysteresis in internal ener-
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I

gy, magnetization is found which persists throughout
the whole regime of the ordered phase. Inspection of
the configurations reveals (Fig. 1) that these findings
are explained by the fact, that during the observation
time near the tlansition only incomplete ordering is
achieved. Upon further changing the field (or tem-
perature) the domain pattern is "frozen in". In the
case of the (2 &&1) structure for H )H, 3 the anti-

phase domain boundaries between the domains of
the (2 x 2) structure [Fig. 1(b)] do not cost any en-

ergy apart from "broken bonds" at the corners of the
domains, as indicated in Fig. 1(b). The hysteresis in

energy seen in Fig. 12 is due to these "broken bonds"
and due to the difference in magnetization (via the
Zeeman term in the Hamiltonian). The hysteresis in

magnetization is due to the fact that formation of
such a domain pattern often produces a slight "misfit"
in the number of reversed spins which fit on our lat-

tice. Thus the hysteresis seen in Fig. 12(b) (and
similar hysteresis is seen in most of our data) is not
taken as an evidence for a first-order phase transition
but rather as an observation-time effect associated
with a second-order phase transition. 6 65

It turns out that in the regime H, 3 ( H & H, 4

(R ~ —, ) or H, s ( H ( H, 4 (R ) —, ) where in the
ground state the degenerate structure described in

Sec. II is stable, we never reached an order parameter
corresponding to that structure which appreciably dif-
fered from zero. The reason is that for the "cooling
velocities" (in the case of temperature changes) con-

sidered the frozen-in domain size still is distinctly
smaller thari the size of the sample. However, as
long as domains of the arrangement of Fig. 1(a) and
of that turned by 90' are present in the system, one
has a cost in energy proportional to the domain
interface —apart from the particular (2 x 2) arrange-
ment, where one has an energy cost at the domain
corners rather than edges, as noted above. Therefore
only the latter arrangement is found as long as one
obtains a multidomain sample. Although the lattice
treated is quite small (40 x 40) it would be extremely
time consuming to choose "cooling velocities" small
enough that monodomain samples were obtained.
Thus we checked the ordering with respect to that
structure by generating a structure as sho~n in Fig.
1(a) as an initial condition for runs at nonzero tem-
perature. This is done by choosing a random number
q with 0 ~ q & 1 for each antiferromagnetic row and
starting it with an up spin if q & —and with a down

2

spin elsewhere. Even then it is found that the order
parameter with respect to the one-dimensional anti-
ferromagnetic rows is zero at nonzero temperatures.
This is of course to be expected: if there were no
disorder in the ferromagnetic rows (which is an ex-
cellent approximation for T 0), the antiferromag-
netic rows can be treated as an ensemble of indepen-
dent one-dimensional chains, which have a phase
transition at T =0 only. Hence at T & 0 there is no

-longer antiferromagnetic order in the "antiferromag-
netic" rows but nevertheless there persists a (2 & I)
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superstructure since the magnetization of the "anti-
ferromagnetic" rows (which in the ideal case is zero)
differs from the magnetization of the ferromagnetic
rows (which in the ideal case is unity). The order
parameter according to this "superantiferromagnetic"
structure is included in Fig. 12. Our results suggest
that the transition from this phase to the disordered
phase is a second-order transition (taking into ac-
count the above interpretation of hysteresis in terms
of domain effects and finite-observation-time effects).

An interesting question concerns the nature of the
transition from this "superantiferromagnetic" struc-
ture to the ordinary superantiferromagnetic structure
(where ferromagnetic rows alternate, which in the
ideally ordered case have magnetization +1, respec-
tively), which is stable for R ) —, and H & H, 5 in the

ground state. Using the same arguments as above, at
low temperatures this transition can be viewed as a

change in mangetization (from —1 to 0) induced by
the field in an ensemble of essentially independent
one-dimensional rows (the rows with magnetization
+1 act via the antiferromagnetic couplings like a neg-
ative field which produces a negative magnetization
in the "antiferromagnetic" rows for H & H, 5). At

nonzero temperatures the field-induced transitions in

one-dimensional chains are continuous changes rath-
er than phase transitions. This expectation is in fact
borne out by the data [Fig. 12(c), Fig. 13]: even
with rather short observation time (t =200 MCSI
spin) the "transition" at fields H/~ JNN~ =4 in Fig.
12(c) does not involve any hysteresis, in contrast to
all other transitions [in particular, that at H/~JNN~
=7.5 in Fig. 12(c)]. Thus although the two "transi-
tions" seen in Fig. 12(c) look very similar at first
sight, their interpretation is quite different. The
snapshot pictures of spin configurations (Fig. 13)
support our above description of this "transition" at
H/~ JN~ ~

=4 as an essentially one-dimensional
order-disorder phenomenon. Since both "phases" at
low and high fields for R ) —, have a structure with

the same (2 x 1) periodicity, symmetry arguments67

would predict a field-induced transition to be of first
order, ending at a critical temperature T, where the
transition is second order, while for T ) T, the tran-
sition is a continuous change. This symmetry argu-
ment does not exclude our suggestion (which means
T,

' =0 for this transition) but would exclude a line of
critical points, of course. In the case of T, A 0 one
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would expect for T ( T, pronounced jumps of the
magnetization of the "antiferromagnetic" rows and
hence also pronounced hysteresis phenomena. We
consider the absence of such phenomena as a strong
evidence that only one superantiferromagnetic phase
occurs for T )0.

Even more tricky seems the question how the sys-

tem transforms for R & —, from the simple antifer-

romagnetic phase at low fields to the "superantifer-
romagnetic" phase as the field is increased [Fig.
12(a)]. At first sight the very pronounced hysteresis
seen there seems to imply phase transitions of first
order. If there were a direct phase transformation
from the one-ordered phase to the other as suggested
on the basis of preliminary data, '" the transition
would necessarily be of first order by symmetry:
there is no way to go from an antiferromagnetic order
to a superantiferromagnetic order continuously. This
is seen nicely, e.g. , by describing the order in terms
of a vector M with four components which are the
magnetizations of the sublattices in that order. ' Then
it is obvious from Eqs. (4) and (S) that

MAF MSAF = M1 + M4 —M2 -M3 =0

since M1 = M3 and M2= M4 in the antiferromagnetic
structure, and since M1 = M2 and M3 = M4 in the su-

perantiferromagnetic structure. Similarly also
(2)

MAF MsAF =0. . Thus the ordering vectors of these
two structures are orthogonal, and a continuous tran-- (1,2)
sition is only possible for MAF =MAF =0, i.e., the
paramagnetic phase.

Since in a four-component vector space there can
be at most four mutually orthogonal vectors, and we

also have

(1) —(2) —(1) —(2)
MSAF MSAF M SAF™M SAF M MAF ™0

it is clear that the four-sublattice structure of Eq. (7)
is not orthogonal to any of the others in the above
sense, but rather can be represented as a linear com-
bination of a11 four other orthogonal orderings.
Therefore one can have continuous transitions from
any of the other structures to the four-sublattice
structure without going through a point of paramag-
netic phase. Such continuous transitions are in fact
found in the mean-field treatment of Sec. III for the
transition to the antiferromagnetic phase for small
enough R.

From all these arguments it is not yet clear, how-
ever, that this first-order transition between antifer-
romagnetic and superantiferromagnetic phases actual-
ly occurs, because it may happen that one passes to
an intermediate regime of disordered phase when the
field is increased. We now interpret the fact that the
"hysteresis loops" of the two order parameters overlap
only weakly [Fig. 12(a)] as an evidence for this possi-
bility. The same conclusion also results from our
analysis of the transition as a function of magnetiza-

tion at T =0, Sec. II, where it was suggested that the
antiferromagnetic order parameter increases at the
critical magnetization from zero continuously: thus
one would expect that there is a transition AF-P of
second order for all T «0. Another argument that
the regime of the disordered phase extends down to
T 0 at H = H, 3 stems from a consideration of in-

terface energies at T =0. For that purpose one con-
siders a periodic I x I lattice with antiferromagnetic
structure and calculates the excess of energy if the
structure of I adjacent rows is changed to be the
(2 && 2) structures (both L and I have to be even
numbers). One finds that the excess of energy is

5U =LI[ ~H —-2(JgN- JNNN)]

+2L [—
2

H —2( JNN —JNNN) ]
1 (33)

The field H where the coefficient of the volume term
(~LI) vanishes defines the critical field H, 3 It is.
seen that at 0,3 also the interface energy per spin
(i.e., the coefficient of the term proportional to 2L)
vanishes. From these results one concludes that for
H = H, 3

—e one can create "clusters" of the (2 x 2)
structure of size Ll which cost an energy of order
unity only (due to the nonzero contribution of the
corners only) if HALI & 1. Therefore we expect that
the order parameter of the antiferromagnetic phase
goes to zero for any nonzero Tif e is small enough.
Since the same argument applies for clusters of the
antiferromagnetic phase within the degenerate phase
for H = H, 3+ ~, we conclude the regime of the disor-
dered phase should extend to the point (H, 3, T =0).

The above considerations on the interpretation of
our Monte Carlo data lead us to draw the phase di-

agrams as shown in Fig. 14. Comparing these results
to the mean-field calculation (Fig. 4) we note a strik-

ing disagreement. While H =0 and R = —,R =1 the

ordering temperature is overestimated by mean-field
theory by about a factor of 2, the ordering tempera-
ture is overestimated by about a factor of 3 for fields
H Q H 3 or H )H, 5, respectively. More important,
mean-field theory fails to account for vanishing or-
derings due to degeneracy effects: it predicts ordered

1
phases for H ( H, 3 in the case R = —, and H = H, 3,

T )0 in the case R & —,; it fails to describe correctly

the SAF'symmetry of the low-temperature phase for
H )H 3 (R ( , ) or H ) H, 5 (R—)

2
). Thus in all

examples treated here even the wrong topology of
the phase diagram results.

Considering now the phase diagrams of adsorbed
layers (Fig. 15) the differences to the mean-field
results (Fig. 6) are even more pronounced, since now
the order of the various transitions crucially comes
into play: the first-order transitions of mean-field
theory lead to two-phase coexistence regions which
are missing in Fig. 15 since we predict all transitions
to be of second order. As expected, the stability of
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the ordered phases extends to the highest tempera-
tures for those coverages ~here the ordering can be
perfect (8 = —,, —, , —,).1 1 3

Figure 16 finally gives our results for the adsorp-
tion isotherms obtains from the Monte Carlo calcula-
tion. It is seen that in the normalization chosen for
low coverages the isotherm is independent of the in-
teraction energy. Hence that regime is appropriately
useful for a determination of the binding energy from
experimental adsorption data, as expected. At higher
coverages the adsorption isotherms depend on the in-
teraction energies very sensitively, on the other hand.
The coverage where deviations from temperature-

FIG. 15. Phase diagram of an adsorbed layer with repul-

sive nearest- and next-nearest-neighbor interactions for

R =
4 (a), R =

2
(b), and R =1 (c). Elementary cells of1 1

the various occurring superstructures are indicated.

independent behavior of the 8 vs ( p, + e)/ka T rela-
tion set in is a measure for the range of the interac-
tion, while the temperature where deviations set in is
a measure for the strength of the interaction. While
different ordering phenomena occurring give rise to
different shapes of the isotherm, it is obviously hard
to see any pronounced changes in the isotherm at the
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R =1/4 the adsorption isotherm should be infinite. Our
results imply that this singularity either is visible in
an extremely narrow regime around the transition, or
the amplitude of the singular term is very small.
Therefore in our finite lattice this singularity is then
wiped out completely.

VI. CRITICAL BEHA VIOR
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In Secs. I—V we have concentrated on describing
the general characteristics of the phase diagrams
which result due to the application of a uniform mag-
netic field for a range of different R values.
Although we were primarily interested in determining
the order and location of the phase transitions over
the entire H, T plane, we have also taken great care in

studying the nature of the critical behavior near tran-
sitions which were clearly second order. From rather
naive universality arguments we would be led to
predict that the critical exponents assume the Ising
square lattice values independent of R or H. Recent-
ly, however, an analysis of possible ordered states us-
ing Landau-Lifshitz theory (but dropping the exclu-
sion of third order invariants) has suggested'8'9 that
the transition from the superantiferromagnetic to
paramagnetic state belongs to the unversality class of
the two-dimensional xy model with cubic anisotropy.
The critical exponents of this class are believed to be
nonuniversal, and we might thus expect to detect a
dependence on R and H. Previous studies' of the
zero-field critical behavior for R )

2
hinted at non-

Ising behavior, but the data were simply not of suffi-
cient accuracy to allow a meaningful, detailed analysis
to be made.

In analyzing our results we shall make extensive
use of the finite-size scaling theory developed by
Fisher. ' According to this approach, the thermo-
dynamic behavior of a finite system near the infinite
lattice T, can be described using a scaled variable
x = tL't" (where t = (1 —T/T, () and the infinite lat-
tice critical exponents. For example, the order
parameter and ordering susceptibility are given by

FIG. 16. Adsorption isotherms 0 = 0{p„T) calculated
from Monte Carlo simulation for the adsorbed layers shown
in Fig. 15. Arrows indicate the occurring second-order
phase transitions.

coverages where a second-order transition occurs.
Therefore mean-field theory yields some qualitative
features of the adsorption isotherms correctly and
fails dramatically only when first-order transitions
and hence jumps in the isotherm are predicted (Fig.
7). Apart from the special case where the slope of
the boundary de, /dT diverges, one expects that the
"susceptibility" X = (88/i) p, ) r diverges like the specific
heat, and hence at the various transitions the slope of

m = L-»"f(x),
X+T = L "t"g(x)

(34a)

(34b)

where, in the limit of t 0, x ~, f(x) Bx", and
g(x) Cx r so that the infinite-lattice critical behav-
ior is recovered. The data may then be analyzed by
assuming values for the exponents and testing the
scaling behavior of the data using these exponent es-
timates. Finite-size scaling analyses' "have been
quite successful in analyzing critical behavior of
several Ising models in two and three dimensions.

The data near the phase boundary for R =0 have
been tested for scaling behavior [using Eels. (34a)
and (34b)1 for several values of h = H/ktt T, and in
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(k~T, /JNN =1.743). Data shown are: L =20, 0; L =40,
L =80, +.
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all cases the data were well described by scaling func-
tions of the variable x when the ordinary two-dimen-
sional Ising exponents were used. As an example we
show (Fig. 17) a finite-size scaling plot of the order-
parameter data along a path of constant
H/k&T =1.34. Not only do the data fall upon a sin-

gle, smooth curve, but for large x the curve becomes
linear with a slope equal to P =0.125. The critical
amplitude obtained from the large x behavior is
8 =1.19+0.04 and within experimental error is the
same as the zero-field value' 8 =1.22. For paths of
increasing H/ks T the critical amplitude slowly in-
creases and for the steepest path studied in this way,
H/kaT =5.37 we find B =1.29+0.04.

Since earlier work 0 had indicated that the critical
1exponents for R ))—, were Ising-like, we chose to

study the value R =1 in more detail. (We had also
studied the phase diagram for this R value). The
specific-heat data for 8 =1 are shown for several
values of H in Fig. 18. For H =0 the specific-heat
peak is very sharp. An examination of the finite-size
behavior of the maximum values does not show the
logarithmic size dependence which would indicate
that the specific-heat exponent n is zero7O (see Fig.
19). We analyzed the divergent portion of the specif-

(cj

Il 3Q

1.0-
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I
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t

100

FIG. 19. Lattice-size dependence of the specific-heat
maximum. (Below) semilog plots of C~«vs L for: R =1,
H =0, (o); R =1, H/JNN =0.82, (); R =1, H/JNN
=1.64, (5); R =5, H =0, (x). The heavy line shows the
R =0 result (Ref. 74). (Above) log-log plots of C,„—B0
vs L for: R =1, H =0, with B0=-1.0 (0); R =1,
H/JNN =0.82, with B0=—2.0, (0). The two lower lines in

the lower part of this figure are fits to the data indicating
logarithmic behavior.

ic heat by subtracting off a "background" 80 which
would provide linear behavior (with slope = a/v) in a
log-log plot such as that shown in the upper part of
Fig. 19. Since rather large uncertainties exist in the
choice of Ba, the errors in determining a/v are signi-
ficant. The values of Bo used in Fig. 19 were the
smallest ones for which the variation over the entire
size range appeared linear. For H 0 the slope
= n/v =0.35 with Ba= —1 and for H/JNN =0.82
o./v =0.22. Finite-size scaling analyses of the order
parameter and ordering susceptibility for H =0 also
show clear departure from Ising behavior. From the
finite-size scaling plots shown iri Figs. 20 and 21 we
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FIG. 18. Specific-heat data for R =1 along paths of con-
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=1.64. Data are for: L 14, 0; L =30, +; L =40, 6;
L =60, o.

FIG. 20. Finite-size scaling plots of the order parameter

for R =1, H =0 with two different choices of exponents.

Data are for L = 10, k; L =20, ; L =40, b, ; L =60, O.
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FIG. 21. Finite-size scaling plots of the high-temperature
ordering susceptibility for R =1, H =0 (k& T, /JNN = 2.08).
Data are for L =10, i; L =20, ~; L =40, 6; L =60, O.

see that the data can be made to scale quite well us-
ing the non-Ising exponents: y =1.45 +0.10,
P=0.10+0.02, v=0.$5+0.05. Note that the data
clearly do not scale if Ising exponents are used in-
stead. Combining this estimate for v with our earlier
result of n/v=0. 35 we now obtain a=0.30. With
the application of a magnetic field the critical behav-
ior changes. The specific-heat peak is reduced, as
shown in Fig. 18 and by the time H/JNN =1.64 the
size dependence of the maximum value is logarithmic
(see Fig. 19) with an even smaller amplitude than
that for R =0. For h =0.82, our estimates are
v =0.90 + 0.05, y = 1.55 + 0.10, P =0.11 + 0.02, and
u =0.20. The finite size scaling plot for H/JNN
=1.64 shown in Fig. 22 shows that the data are well
described by the Ising exponents y =1.75, and
v =1.0.

The data obtained for R =5 are also well described
by Ising exponents. The size dependence of the
specific-heat maximum is logarithmic (see Fig. 19),
and a finite-size scaling plot of the high-temperature
ordering susceptibility (Fig. 23) shows excellent seal-
ing behavior with y =1.75 and v =1.0. It is, of
course, quite probable that the true exponents for
both R =5, H =0 and R =1, H/JNN =1.64 differ
from the Ising values but by an amount which is
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FIG. 23. Finite-size scaling plot of the high-temperature
ordering susceptibility for R =5, H =0 (k~T, =11.2S).
Data are for L =10, k; L =20, ; L =40, b; L =60, O.

below our limits of resolution. We do wish to point
out that for R =5, the normalized critical tempera-
ture ka T,/JNN„—2.255 is v—ery close to the value of
ksT, /JNNN =2.269 which must appear for R = ~
when the interpenetrating NNN lattices are complete-
ly decoupled. Thus, our findings are consistent with
a real-space renormalization-group treatment as well
as perturbation methods which predict R-dependent
exponents in this regime.
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Since the critical exponents which we have ob-
tained here are not constant, they obviously do not
obey simple universality. As an alternative we have
considered the possibility that "reduced" critical ex-
ponents, e.g. , y = y/v, P = P/v', $ = (2 —u)/v, etc. ,
are constant according to Suzuki's idea of weak
universality. We find for R = 1, H =0,

y = 1.71 + 0.15, P =0.118 + 0.020

$ = 2.00 + 0.25

For R =1, H/JNN =0.82,

y = 1.72 + 0.15, P =0.12 + 0.02

@= 2.0 + 0.2

For R =1, H/J~N =1.64 and R =5, H =0, the re-
duced exponents are indistinguishable fom the R =0
values y=1.75, P=0.125, @=2.0. These results
suggest that Suzuki's "weak" universality holds for
this model.

We feel that this variation of critical exponents
with R and H is a rea1 effect and not just due to a

crossover of Ising critical behavior to the multicritical
behavior at the point R = —,, H =0, where T, =0 and

the correlation length seems to increase exponentially
fast as T 7; =0 (Ref. 30 ): The latter behavior
would correspond formally to v = ~, and hence the
effective exponent v,«due to such a crossover should
exceed v =1 distinctly, in contrast to what is found
here.

VII. CONCLUSIONS

In this paper we have considered Ising systems
with antiferromagnetic nearest-neighbor interactions
JNN and a wide range of competing next-nearest-
neighbor interactions JNNN and have studied the mag-
netic field induced phase transitions. Our results
show that simple tricritical behavior is limited to the
regime R = J~N~/JNN (0. For R =0 our results for
the second-order phase boundaries are (within ex-
perimental accuracy) identical to the prediction of
Muller-Hartmann and Zittartz thus supporting the
conje'cture that the result is exact. For 0 ( R (—a

2

degenerate phase is also found where ferromagnetic
and antiferromagnetic rows alternate. We interpret
the T =0 transitions as percolation transitions; hence
the points (Hc, T =0) are multicritical points. The
T =0 transition from the degenerate to disordered
phase is a generalized percolation transition but the
resulting "percolation clusters" have nonunique struc-
tures. Remarkably, dynamic cooling of the system
from the disordered phase tp T =0 produces a meta-
stable domain configuration of the simpler (2 &2)
structure but with an energy cost only at the corners

of the domain. For R & —, only the degenerate1

phase exists. The critical exponents describing the
transition to the disordered state are nonuniversal
and appear to approach the two-dimensional Ising
values only for large R or H. We find that mean-
field theory dramatically fails for several reasons to
yield even all the qualitative aspects of some of the
diagrams: (i) The free-energy differences between
various ordered and disordered phases are extremely
small over a wide range of temperature and field thus
complicating analysis of the phase transitions; and (ii)
mean-field theory cannot handle all of the degeneracy
effects which make some of the transition tempera-
tures go to zero.

It is tempting to speculate about what will happen
when interactions of still longer range are added. If
all interactions are repulsive, ordered phases with

larger superlattice cells may be possible. If the third-

nearest-neighbor interactions are attractive the "per-

colation point" 8, will become a tricritical point on a

phase boundary to the (2 x 2) structure which is then
stable. 02 should then be a triple point where the
(2 x 2), c(2 x 2), and disordered phases coexist.
Clearly then, in the case of competing interactions
the phase diagrams are sensitive to both the strength
and the range of the interactions.
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