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Dynamics of two-magnon resonances in the absence of bound states
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Spectral intensity distributions are calculated for different types of spin-pair excitations in a

simple-cubic Heisenberg ferromagnet with next-nearest-neighbor (nnn) exchange interactions.
The ratio of next-nearest- to nearest-neighbor (nn) exchange interaction (q) is chosen to be

large enough to prevent the formation of bound states, by containing all pair excitations in the
continuum, but without being too far removed from the nn case. Calculations have been per-

1
formed using q =

8
and S =1 for single-ion, nn and nnn pair excitations for total pair wave vec-

tors (K) along the [111]direction. An understandable picture of the excitations follows the

study of resonance peaks in the computed spectra and their comparison with those of the nn

case. The changes due to the relaxation of the exact Ising-like limit of the nearest-neighbor case
at the zone boundary in the [111]direction are largely due to states which were formerly bound

states having become resonances for all values of K.

I. INTRODUCTION

Most of the information on two-magnon pairing ef-
fects in ferrornagnets has been obtained for the
nearest-neighbor (nn) simple-cubic (sc) Heisenberg
ferromagnet. In the isotropic case Wortis' and
Hanus' demonstrated the presence of bound states
outside the two-magnon continuum', Boyd and Calla-
way' showed that the doublet bound state broadened
into a resonance inside the continuum, while Silber-
glitt and Harris4 examined the effect of two-magnon
resonances on the one-magnon propagator at finite
temperatures. Various extensions have been made
by other workers, especially for the incorporation of
uniaxial anisotropy' and of biquadratic exchange. '
The nn sc case possesses the special property of
transforming to the associated Ising problem when
the two magnons have a total wave vector ( K )
reaching the zone corner, as pointed out first by
Wortis. ' Loly and Choudhury recently exploited this
property to study the evolution of continuum reso-
nances at K =0 (the Raman mode) to bound states at
the zone corner. This transition (from Heisenberg to
Ising) foliows a continuous shrinkage of the two-
magnon (continuum) bandwidth as K increases in the
[111]direction until the limit is reached with zero
bandwidth at the zone corner. A similar behavior oc-
curs for the nn bcc case for K along the [100] direc-
tion, where bound states have been shown to exist
outside the continuum by Bonnot and Hanus' and
by Saenz and Zachary. " These special features are
not representative of the general case where there is
a nonzero minimum bandwidth and therefore no
corresponding Ising (discrete) limit. The fcc fer-
romagnet is a good example of a two-magnon contin-
uum with nonzero minimum bandwidth (even in its
nn case), while next-nearest-neighbor (nnn) interac-

tions have the same effect in the sc and bcc cases.
In the present work we are interested in under-

standing the factors that determine the position (fre-
quency) of continuum resonances (of significance to
Raman scattering experiments'2) when they have no
evolution in K space to discrete Ising levels at the
zone boundary. Correlations between Raman peaks
and Ising levels have been noted in several instances
[e.g. , RbMnF3 (Ref. 13) and mixed crystals (Ref.
14)] but it is not known if this is always to be expect-
ed. In this connection a thorough study of the nn sc
case showed that an internal saddle-point singularity
of the continuum gave a severe constraint to an im-

portant two-magnon resonance" and we suspect that
the more complex singularity structure of the general
case may play an important role in the determination
of resonance frequencies.

In the course of a recent study of nnn interactions
on the unperturbed two-magnon continuum of the sc
ferromagnet' the present authors concluded that it
would be instructive to do a fully interacting study of
two-magnon effects in a case that was close to the nn
limit of the well-understood sc case but without its
pathological shrinkage and also avoiding any acciden-
tal critical-point degeneracies [e.g. , for ratios of nnn

to nn interaction (7i = J2/J~) equal to —„(Ref. 16)].
1

The value of g equal to —, appears to satisfy these re-
quirements and is the case analyzed in the present-
paper. It should become clear below as we describe
the analysis that the computational effort required for
a single value of q is a severe deterrent to the exten-
sion of the present study to the other qualitatively
distinct ranges of q surveyed recently by the au-
thors. '

A spin Green's-function formalism" is ideally suit-
ed to the study of two-spin excitations in ferromag-
nets at absolute zero temperature because the equa-
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tion of motion for the two-spin propagator terminates
without the need for any decoupling approximations,
thereby yielding an exact set of simultaneous equa-
tions for the Green functions of interest which is
tractable if the range of exchange interactions is fin-
ite. We follow closely the formulation of Wortis'
whose rigorous bound-state analysis for the fer-
romagnet predated intense interest in Raman scatter-
ing from transparent antiferromagnets, which was
later put on a firm foundation by Elliot and Thorpe'
using a similar spin Green's-function method. More
recently Thorpe' renewed interest in two-magnon
spectra in ferromagnets through a simplified spin
Green's-function approach to Raman cross sections,
since extended in several directions.

Section II gives a compact outline of the develop-
ment of the central equation for studying the com-
plete K dependence of the two-spin propagators at
T =0 K for a Heisenberg ferromagnet with Ising-like
anisotropy of arbitrary range and single-ion anisotro-
py. In application to the nnn sc case there are now a
larger number of potentially interesting spectral
probes than in the nn case and the matrix equations
for their solutions are discussed in Sec. III. In Sec.
IV the results of extensive numerical computations
are summarized and the conclusions to be drawn
from this study are given in Sec. V.

II. T%0-MAGNON PROPAGATOR

In this section the two-magnon propagator is de-
fined and an exact equation for it derived at absolute
zero. This is then used, in Sec. III, to obtain the .

spectral functions for various two-spin excitation
processes for the nnn sc ferromagnet. The Hamil-

tonian we consider is the Heisenberg Hamiltonian
generalized to include both Ising and single-ion an-
isotropies

H X (Ijis;Sl + JjJSI'+Sl ) —XD (Sl')
I1 l

where i is a shorthand notation for the position vec-
tor K„ Iii and Jt are the longitudinal (Ising) and
transverse exchange constants, respectively, between
sites i and j, and D is the single-ion anisotropy. The
propagator for the scattering of two magnons with in-
itial wave vectors k~, k2 and final wave vectors k~, k2
1s

G(k(kg, k) kg, t)

Ie(t) -(o~ [s-„-(t) s-„- (t),s+, (o)s+, (o)] ~o)
k) k2

= ((Sk (t)s-„(t)is+ (0)S-„+ (0))) (2)

where S-„is the Fourier transform of S; and ~0) is
the fully aligned ground state defined such that
S'~0) = —S~0) and S ~0) =0. The equation of mo-
tion for the Green's function in Eq. (2) has the stan-
dard form

where G(..., c») and ((...))„represent Fourier
transforms. Evaluating the commutators in Eq. (3)
gives

c»G (kt kp, k) kp, c»)

= &o)[s-„- s-„-,s', s+,])0&k) k2' kl k2

+ (([Sk (t)s k (t), H] i S„+,(0) S„+,(0) ) )„,

[c» —2S[21(0)—J(T~ K+k) —J(
q

K —k)] —2(2S —1)D]G(Kk, K k, c»)

=4S'8, 5,+8,— ——X[I(q) —J(—K —k —q)+D]G(Kk+q, K k, c»), (4)2
q

where we have made a change of variables to total
and relative wave vectors defined as

K =k)+k2, 2k =k) —k2
~t ~t ~t ~t ~t ~t
K =k(+k2, 2k =k) —k2

In Eq. (4), 1(q) and J(q) are the Fourier
transforms of the longitudinal and transverse part of

the exchange interaction and N is the number of
spins. Taking K =K (conservation of total momen-
tum) and introducing the partial Fourier transform

G(ij, K, c») =—X e 'e ~G(Kk, Kk, c»)
N

(6)
Eq. (4) reduces to

c

G(ij, K, c») =Ss 1 — A(ij, K, c») +2 Xlt (il, K, c»)G(jl, K, c»)
I

+ 2 X (Jt —It) [A (il, K, c») +A (i I, K, c») ]G (jl, K, c») —2 XD A (i I, K, c») G (jl, K, c») Sto
I l
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where
cosk R;cosk Ri

A ij, K, r»
N

k o) —Q(K, k)

+2(2S —1)D (10)

Equation (7) is the required equation for the two-

magnon propagator.

III. TWO-MAGNON SPECTRA

The spectral function for processes involving the
creation of two spin deviations separated by a dis-
tance R; is given by the imaginary part of G (ii, K, a&).

Below we examine processes where two-spin devia-
tions are created on the same site (R«= (0, 0, 0)),
first-neighbor sites (Rt = (1,0, 0)a) and second-
neighbor sites (R2= (1, 1,0)a or R2 = (1,—1,0)a)
~here a is the lattice constant. In shorthand notation
these sites are denoted by i =0, 1, 2 and 2' respec-
tively. We note here that for K=0, Thorpe' has
shown that —ImG(00, 0, r») is proportional to the

cosk R;(cos—, K Ri —cosk Rg)
A(ij, K, «») =—X

«) —Q(K, k)
(9)

and Q(K, k) is the total energy of two noninteract-
ing magnons given by

Q(K, k) =2S[2I(0) —J(
2

K+k) —J(—K —k)]

cross section for two-magnon Raman scattering
through the spin-orbit interaction in ferromagnets,
while the best analogue of the exchange process
responsible for the antiferromagnetic observations is
given by —ImG(11, 0, t») (which was studied earlier
for the nn sc case9) and —ImG(22, 0, cu). In the
context of discrete two-magnon bound states, in
those situations where they are present outside the
continuum, the nn pairs were originally investigated
by Wortis' and by Hanus with the single-ion pairs
included later by Silberglitt and Torrance and by
Tonegawa as a function of the single-ion anisotropy
D. Though the extra variable is not desirable in our
present study, the single-ion spectrum exists for
D =0 and it is instructive to compare it with the oth-
er types of processes.

It is clear that Eq. (7) represents a set of coupled
equations involving various Green's functions which,
in general, is quite complex. In this paper we consid-
er an isotropic (I =J and D =0) nnn sc ferromagnet
and take the total pair wave vector K to be in the
[111]-direction for the sake of comparison with the
nn case. The coefficients A and A which appear in
Eq. (7) can be expressed in terms of the so-called lat-
tice Green's functions (LGF's) defined as

/7k ~ R/

L, (K, rs) =-
N-„~ —Q K, k

where the two-magnon dispersion function is given
by

Q ( K, k ) =4SJ (0) (1 —a/3) ( cosx +cosy +cosz ) —(2q/3) [n'( cosx cosy +cosy cosz +cosz cosx )

+p ( sinxsiny+siny sinz +sinz sinx )]] (12)

with n =cos(
2 K„a), p = 1 —n', x = k,a etc. , and

ri= Jz/Jt where J~ and J2 are the nearest- and next-
nearest-neighbor exchange constants, respectively.
These LGF's are evaluated using the tetrahedral
scheme. '9 In the limit of a =0 (the zone corner)
where the spectrum collapsed in the nn sc case we
now have a spectrum of the nn fcc type and the
LGF's are then expressed in terms of elliptic integrals
of complex moduli and evaluated using the
arithmetic-geometric mean method.

From Eq. (7), we find that the equations for the
four Green's functions mentioned above involve 14
LGF's and can be written more compactly in terms of
two matrix equations. The first of these connects
G(00, K, r») to three off-diagonal Green's functions
G (10,K, co), G (20, K, ag), and G (2 0, K, cu) and can

be written

G(oo, K, ~)
G(IO K ~)

'

I
' L((K, s))

(»)—G(20, K, o)) 2S L2(K, «))

,G (2'0, K, co), I 2, ( K, &g)

where A is a 4 & 4 matrix whose elements are func-
tions of the LGF's. Since G(00, K, a&) vanishes for
S = —, we shall be mainly concerned with the case of
S =1 which has the largest resonance effects for all
the processes indicated above.

The second equation determines the other three di-
agonal spectra that interest us and involves the
Green's functions G(ij, K, cv) with i and j taking one
of the nine values (1,0, 0)a, (0, 1, 0)a, (0, 0, 1)a,
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FIG. 1 Two-magnon spectra for the S.=1 nnn sc Heisenberg ferromagnet for representative values of the total pair wave

vector K in the [1 ill direction: (a) a =1.0, (b) a =03, (c) a=0.2, (d) a =0.1, and (e) a=00, where a =cos( 2E„a). Th

three curves represent 100 data points for the single-ion (solid line), nn (triangles) and nnn (squares} spectra. The three short
arrows give the positions of nn, nnn, and single-ion Ising levels in that order from left to right while the vertical broken lines

give the positions of critical points (see also Fig. 2).

(1, 1,0)a, (0, 1, 1, )a, (1,0, 1)a, (1,—1,0)a,
(0, 1, —l)a, and (—1, 1,0)a. Denoting G(ij, K, a&) by
the 9 x 9 matrix G (K, ao), the second equation is
written

8 G=F (14)
where 8 and F are 9 x 9 matrices whose elements are
functions of the LGF's. The dimension of 9 results
from half (by inversion symmetry) of the total coor-
dination number (nn plus nnn) though there are only
18 independent G's.

IV. RESULTS

The main computational effort is associated with
the evaluation and storage of the 14 LGF's for 11

values of K and 100 frequency values for a single q
value. After that, Eqs. (13) and (14) are solved by

numerically inverting A and 8 and the spectral func-

tions obtained for S =1 and q = —, are shown in Fig.

1 for several values of K. For second neighbor exci-
tations, the G(22, K, to) and G(2'2', K, to) spectra
are very similar (they are exactly equal at the zone
centre and corner) and we only present the results
for the G(22, K, to) spectrum here. The single-ion
spectrum has only one resonance peak while the first
and second neighbor ones each have an additional

peak due to exchange resonances which behave simi-

larly to the 'd-wave' of the nn case. All have indica-

tions of other structure that we shall discuss below.
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In addition, Fig. 1 shows a build-up of weight near
the bottom of the band for values of a between 0.2
and 0.4 and this may be recognized as the counter-
part of the 's-wave' part of the nn exchange bound
state which joined the continuum in a grazing
fashion.

The positions of the main resonance peaks vary
with K as shown in Fig. 2 which has been constructed
from plots for each spectrum taken at 11 K values
from the zone center to its corner. For clarity the
unshaded region represents the two-magnon continu-
um given by Q(K, k) in Eq. (10) and the solid lines
represent the two-magnon critical points found in the
preceding paper. ' The critical points are defined as
points in k-space where the group velocity
(V-„Q(K,k)} for the two-magnon dispersion func-

FIG. 2. Variation of the two-magnon resonance peak po-
sitions as a function of the total pair wave vector K in the

[111]-direction [n =cos(TE„a)]. The single-ion peaks in

the G(00, K, ~}, G(11,K, 0)), and G(22, K, co) spectra are
represented by open squares, solid circles and open circles
respectively, while the dominant nn and nnn exchange reso-
nance peaks in G(11,K, cu) and G(22, K, cu) are denoted by

solid and open triangles, respectively. The unshaded region
is the noninteracting two-magnon continuum, the full lines
represent the critical points (Ref. 16) and the horizontal bro-
ken lines are the nn, nnn and single-ion Ising levels, respec-
tively, in that order for increasing energy.

tion vanishes. The critical points I", X, M, and R are
the high symmetry points (0,0,0), (1,0, 0) m/a,
(1, 1,0) 7r/a, and (1,1,1)m/a, respectively, in the Bril-
louin zone. The other critical points A. , p, , and v

move in k-space as the pair wave vector varies. Also
shown are the Ising levels for single-ion, first and
second neighbor excitations. The Ising limit is ob-
tained by neglecting the transverse terms in the ex-
change part of the Hamiltonian in Eq. (1). Thus the
Ising levels for single-ion, first and second neighbor
excitations are 4SJ(0), 4SJ(0) —J~, and 4SJ(0) —Jq,
respectively.

The peak position of the single-ion spectrum
G (00, K, cu), shown in Fig. 2 decreases slowly as K
increases. The profiles also indicate a systematic nar-
rowing of the main peak relative to the continuum
bandwidth. This behavior is similar to the nn case
except at the zone boundary where instead of the
resonance peak coinciding with the Ising level for the
creation of two spin deviations on a single site as in
the nn problem, it is elevated somewhat having
crossed the M and R singularities near the zone
corner.

In contrast to the single-ion behavior, the other
major peaks in the first and second neighbor spectra
[G(11,K, co) and G(22, K, co), respectivelyj disperse
appreciably as K varies. The exchange resonances
are constrained (as in the nn case) below the X
(saddle-point) singularity. For n=0 to 0.6, the lower
peak in G(11,K, co) occurs at a distinctly lower ener-

gy than for G(22, K, cu) and by comparison with the
nn case we can be confident in identifying the former
with the nn exchange resonance and the latter with
the nnn one. For G(22, K, co) there is a suggestion
of the nn exchange resonance in the range n =0.3 to
0, 1 as a structure on the lower energy side of the
peak attributed to the nnn exchange resonance. We
also see that a comparison between single-ion peaks
in Fig. 2 reveals the effect of peak repulsions
between the single-ion and 'd-wave' resonances,
quite similar to the 'repulsion of energy levels' in
atomic problems.

Turning to other structure in the spectra we identi-

fy the build up of weight near the bottom of the band
in the range 0. =0.2 to 0.4 for all spectra as a result
of the 's-wave' part of the nn exchange resonance be-
ing boxed in between the two merging critical points
I' and A. (denoted by an asterisk in Fig. 2). The
separation of 1 and A. and the appearance of the nn
d-wave' resonance between them as the zone corner

is approached obscure the 's-wave' resonance in the
range a=0.2 to 0.0.

V. CONCLUSIONS

The type of analysis undertaken in this paper is
costly in terms of computational (and plotting) effort
because of the need to examine profiles at a large
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number of K,values. However the general trends
elucidated give a reasonable degree of confidence that
the simpler analysis of the background (unperturbed)
continuum structure as done for example in our
preceding paper, ' taken with a knowledge of the Is-
ing levels, would enable one to predict the behavior
of the resonances once a starting point (probably nn)
has been established. This follows from the inability
of either of the exchange resonances to penetrate the
X saddle-point singularity, the absence of such a
severe effect for the single-ion-type, together with

the s-wave dispersion due to the I singularity.
Turning to the relaxation of the connection

between resonance and bound-state positions to Ising
levels which had followed in the nn case, we have
found now that the resonances are generally shifted
from the Ising levels at large values of K (for both
single-ion and exchange varieties). Single the formal
transition to a discrete Ising problem is absent we
should not be surprised. However, as long as the ra-
tio of Jq/J' is small, there should still be some corre-
lation.

A similar departure of the bound-state energies
from the Ising levels can be anticipated when such

states exist, in the nnn sc case for somewhat smaller
values of g than 8. The critical value of q for their

existence is now not simply a matter of examining
continuum edge and Ising levels with the result that

g& = I/24S =0.0416/S as thought initially. " Indeed
Krompiewski2' has recently given the critical value of
J2/J' as 0.05 for S =1, and one of us" (A.A.B.) has
been able to obtain a definitive value of 0.04645/S by

noting that the bound-state condition at the zone
corner (a =0) obtained from our equations simplifies
considerably and can be evaluated in terms of accu-
rately attainable nn fcc lattice Green functions. 2

In other cases it would still be interesting to have a

full picture of the K dependence of the behavior of
resonances in the fcc ferromagnet where information
available to date is for resonances at K =0, and
bound states outside the continuum, 24 and also to
follow the passage of the bound states of the nn bcc
case as K is decreased all the way through to K =0.'
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