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Grain-boundary melting transition in a two-dimensional lattice-gas model
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A two-dimensional lattice-gas model that is capable of producing gas, liquid, and two orienta-

tions of a solid phase is adopted to study properties of a boundary between two crystalline grains

by use of a nine-site cluster approximation of the cluster-variation method. At a temperature

far below the melting temperature Tm, a gradual but well-defined transition is discovered

between the low- and high-temperature structures of the boundary; this transition signals the

onset of a liquidlike phase inside the boundary. The thickness of the boundary increases with

T; the excess entropy due to the boundary diverges as —ln(T~ —T) near T~; and the grain

boundary, .is completely wet with liquid at T~.

Recent calculations of some two-dimensional
lattice-gas models have led to low- and high-density
disordered phases (called vapor and liquid) and or-
dered phases (called crystalline). '2 Moreover, in

some of the models the same crystalline phase can
occur in different orientations. Such models can be
used in studying linear interfaces between all pairs of
phases as we11 as the grain. boundary between two
crystals of the same solid phase differing in orienta-
tion. The particular model we use is shown in Fig. l.
Using a nine-site cluster approximation of the
cluster-variation method, we have found two singu-
larities in the behavior of the grain boundary:

(i) Well below the melting point of the crystal
there is a gradual, but clearly defined, transition in
the structure and thermodynamic properties of the
boundary.

(ii) At the melting point T of the crystal, the ex-
cess entropy per-unit length of the boundary diverges
as —ln( T —T), while the excess free energy remains
finite and equals twice the solid-liquid interfacial free
energy.

These two transitions are related. At the lower
transition, the boundary changes from its low-

temperature structure into a high-temperature struc-
ture, which continues to evolve and becomes at T a

liquid layer bounded by two solid-liquid interfaces,
with the thickness of the liquidlike layer diverging as
—ln(T —T). Therefore, since the change of state
starting from the low-temperature transition gradually
leads to the melting of the boundary, we call the
transition in (i) a melting transition even though the
structure at that temperature is still far from T for
the bulk phase.

Our model is a two-dimensional square lattice-gas
model with interaction potentials chosen to match a

prior computer simulation. ' %'e used the cluster-
variation method (CVM) and natural iteration
(NI)4 to calculate the equation of state and the phase
diagram. Figure 2 indicates that the phase diagram
so calculated matches that obtained by the computer
study. The properties of interphase interfaces were
calculated along the appropriate two-phase coex-
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FIG. 1. A two-dimensional model of a grain boundary.
Positions of atoms in the crystalline state are shown by cir-
cles. This illustration is for the unrelaxed state, and thus is

schematic.
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teraction between atoms separated by more than the
distance AC. We calculate the equilibrium state of
the entire system including the boundary and obtain
the probabilities of encountering each of 20 possible
arrangements of atoms on the nine-site clusters cen-
tered on each site in a strip of width PP' along the
grain boundary and extending from j =1 to 81
(sometimes 61 or 41) into each grain. The boundary
conditions are so chosen that on the two end lines,
j=1 and 81, the probability distributions of nine-site
cluster configurations are those of the homogeneous
phases. Both the nature of the approximation and
this boundary condition prevent the boundary from
experiencing the wandering that has been predicted
by us' and proved by Gallavotti. " We will define the
unit length along the boundary to be the distance
PP' =5J2a, and will calculate thermodynamic tluanti-
ties for a strip of the unit width across the boundary.

From the cluster probabilities, we computed for
this strip excesses of the energy [E], entropy [S],
number of atoms [W, ], and grand potential o.

(excesses compared to an ettuilibrated single crystal
with the same number of lattice points at the same
temperature T and chemical potential l4):

FIG. 2. The equation of state (p, vs T) of the homogene-
ous phase diagrams derived from the present model. Black
circles are the values obtained by the computer-simulation
method in Ref. 1.

Thermodynamic self-consistency requires that

d(r = [S]dT —[N—, ]dp, ,

istence of Fig. 2 and for the grain boundary between
two solid-state grains of different orientations, as in
Fig. 1. The CVM and NI were used as they had been
in our previous studies of antiphase domain boun-
daries in ordered structures. ' '

If we consider crystallization in this model to be an
ordering of holes ( V) and atoms (A) into a V4A

structure, then the grain boundary is indeed a boun-
dary between two ordered domains. The model is
then also a model of antiphase domains in an adsor-
bate layer that can crystallize into a (J5 x JS) crys-
talline structure with a rotation of + tan '

—, with

respect to the underlying substrate.
The particular grain boundary in Fig. 1 is a sym-

metric tilt boundary. With this much tilt, a X =5
coincidence lattice exists in which one atom in five
(e.g. , P and P') occupies a site that could belong to
either crystal structure. The underlying lattice is
known as the DSC lattice. ' If we let a be the lattice
constant of the DSC lattice, the lattice constant of the
crystal (as marked by white or black circles in Fig. 1)
is a JS.

For the CVM, we use the basic nine-site cluster
sho~n at the bottom of Fig. 1. We used the same
potentials as the earlier study. 2 Pairs of atoms are
not allowed closer than AB, and the energies of pairs
at distances AB and AC are assumed attractive, be-
ing, respectively, —1.2e and —e." There is no in-
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FIG. 3. The o- vs T of the present work for p, /e = —1.5.
The points are computed results; the one marked IPB is the
o. for the solid-liquid interphase boundary at the melting
temperature. Two solid curves are Eqs. (3) and (6),
respectively.
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which is a useful test for equilibrium and forms the
basis for our extrapolation as we use it below.

Figure 3 shows o- calculated as a function of tem-
perature for p/a = —1.5. The low-temperature
behavior is readily understood by examining Fig. 1.
The pair QQ' is forbidden, and either site must be
empty. For the unit length of the boundary, this
leads to [S]=k ln2, [N, ] = —1, and [E]=Saga
at T =0. Hence, for low T,

o =So+@,—kTln2 (3)

which agrees with the curve for kT/a (0.3.
The left half of the density profiles perpendicular

to the boundary is shown in Fig. 4 for various tem-
peratures. The low-temperature W'shape ( V shape
for the half shown) near the center of the boundary
is consistent with the expectation that the layer on ei-
ther side of center is half occupied. As the melting
point is approached, a low-density layer with liquid-
like properties is formed near the center of the boun-
dary, and the thickness of the layer approaches our
computer capacity. The excess quantities [S] and
—[N, ] tend to increase without limit as does —8 /oITt

as the melting point is approached.
Figure 5 plots [S] versus —ln( T„—T). For

p/a= —1.5, T is 0.71629m/k. The curve in Fig. 5 is

made of two distinct portions. For low temperatures
(kT/a (0.20), we see

[S]= k ln2
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for high temperatures (kT/e & 0.45), [S] is linear in

ln(T„—T) as
0.9 0.40

[S]/k = —3.681 —4.1520 ln[k( T —T)/a] . (5)

Making use of these relations for [S] in Fig. 5, wef
can integrate J [S]dT to obtain the estimate of o ( T)

for the high-temperature region:

a.ur =1.523m —k ( T —T)

x [—0.471+4.152 ln[k(T —T)/e]] . (6)
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This is shown as a solid curve for kT/e & 0.4 in

Fig. 3.
The good agreement between the solid curve o-HT

and individually computed o- values indicated by dots
shown in Fig. 3 serves as a test of Eq. (2), the self-
consistency of the formulation, but it also permits ex-
trapolating o- to the melting temperature, where its
value is 1.523m.

We separately calculated the solid-melt interfacial
properties for the orientation corresponding to that of
our grain boundary. The value of its reduced o- was
found to be 0.763m, while its density profile closely
matched that of either half of the grain boundary.
We concluded not only that the grain boundary has
become a melted layer at the melting point, but that
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FIG. 4. Density profile across the grain boundary. The
center of the boundary is chosen at the 41st lattice plane.
The profile is repeated on the right of the 41st plane as a

mirror image. (a) is for p/~= —1.5 and starts from a very

low temperature. (b) is for p,/e= —2.2 and shows how the

profile changes near the melting temperature (kT~/e
=0.5032). The curve for T is for an intermediate stage of
convergence.
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liquid-solid surfaces and keeps the melted layer. from
collapsing below the melting point. In the analysis,
crsL, ES, and E(X) are assumed to be independent of
temperature. Minimizing o.ML with respect to A. at a
fixed temperature, we obtain a relation for

dE/dh +hS(T —T) =0 (8)

%hen this relation holds, we can further obtain

d o'ML/dT ——h. b S

[sj

3

Since A.AS in Smith's model is readily identified with
[S], our finding in Fig. 5 and Eq. (5) implies that X

linearly depends on —ln(T —T), and integrating Eq.
(8) leads to an expression for Smith's E(h. ) in the
lattice-gas grain-boundary model as

E(X) =C, exp( —C h. ) (10)
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FIG. 5. The excess entropy S of the present work plotted
against —log t0( T' —T').

This indicates the reasonable nature of the repulsive
term in Smith's formulation, Eq. (7). It is generally
known, and is verified in our Fig. 4, that the density
profiles have exponential tails. The exponential
repulsion in Eq. (10) strongly suggests that it arises
from the overlap of exponential tails of profiles.
When we use Eq. (10) together with the temperature
dependence of h. , we can write o.ML in Eq. (7) in the
form

oML 2osL ( Tm —T) [C3 + C4 ln( T —T) ], (11)

it behaves as if it is coated with a melted layer for a
considerable temperature interval below the melting
point. At some temperature near 0.35m/k, there is a
gradual transition in structure from the low-
temperature profile to a structure that with increasing
temperature increasingly tends to resemble a melted
layer and that exhibits a singularity as T is ap-
proached. Since the grain boundary is completely wet
with liquid at T, it is legitimate to call the gradual
transition near T =0.35m/k the melting transition.

The possibility that a grain boundary would have a
liquid layer at the melting point was first discussed by
Gibbs. ' Whenever cT for the grain boundary has a
tendency to exceed twice the o. for the solid-liquid in-
terface, the transition we found is expected to occur.
Smith'4 attempted to formulate the temperature
behavior of a melted-layer model of the grain boun-
dary. The value of 0- for the melted-layer model was
assumed to consist of three terms

o.ML =2o.sL+ A.hS( Tm —T) + E(X)

where 2crsL is the contribution of the two solid-melt
interfaces, h.hS( T —T) is the contribution of a
melted layer of thickness A., 4S is the entropy of fu-
sion per unit volume, and E(A.) is an unknown
repulsive energy; the latter is between the two

which has the same ( T„—T) dependence as does Eq.
(6).

In the present paper, we used a two-dimensional
lattice-gas model, and thus the grain boundary is
essentially one dimensional. Gradual transitions are
expected for such one-dimensional systems. For a
three-dimensional system with a two-dimensiona1
grain boundary, it is expected that the transition from
low- to high-temperature behavior may be a sharper
one. A second-order phase transition has been found
in a theoretical three-dimensional antiphase boun-
dary-. '

A melting transition in real metals has been ob-
served'5 as a function of orientation difference and
explained in. terms of a dislocation model with liquid
cores. ' The temperature dependence of such a
model might show several transitions.

Although the computational method used in the
paper is approximate, we believe the qualitative con-
clusions (i) and (ii) stated at the beginning of the pa-
per are reliable. Three pieces of supporting evidence
ire as follows. First, the good agreement in the
homogeneous phase diagram (Fig. 2) with the com-
puter simulation; second, the agreement between the
computed o with the rigorous estimate Eq. (3) near
T =0; and third, the agreement of our cr in Eq. (6)
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near T = T with Eq. (11), which is derived based ori
Smith's theory. It is true that when the CVM uses a
finite-size cluster as its base, the method cannot take
into account very large fluctuations and thus gives an
incorrect answer near a second order transition point.
The present treatment, however, is free from such
shortcomings because the entropy is diverging at a
first-order melting point, the divergence being caused
by the fact that the thickness of the liquid layer

caught between two solid phases increases to infinity
as T is approached.
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