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The electrical resistivity of Tb,Yi,Sb has been investigated as a function of temperature and

Tb concentration in order to study the competing effects of the crystal field and the two-ion ex-
change interaction on the scattering of conduction electrons. The methods of growing and

analyzing the crystals are outlined and the experimental technique of measuring the electrical
resistivity is accounted for. A theoretical description of the scattering of conduction electrons
from magnetic excitations is developed within a spherical model for the electronic energy bands.
The resistivity is calculated using the random-phase approximation for the excitations of the

Tb,Y&,Sb system, both in the paramagnetic and the antiferromagnetically ordered phase. Sa-

tisfactory agreement with the experimental results is obtained for the entire range of concentra-
tion c by use of only one value for each of the two adjustable parameters, the Fermi momen-
tum and the electron-ion exchange constant.

I. INTRODUCTION

The scattering of conduction electrons against the
elementary excitations of a metal gives rise to a
temperature-dependent resistivity, whenever the tem-
perature is comparable to or less than a typical energy
transfer involved in the collision. A well-known ex-
ample is the scattering of electrons against the pho-
nons of an ordinary metal. Another is the scattering
of electrons against the magnetic excitations in metal-
lic ferromagnets. A third example is the scattering of
conduction electrons against individual magnetic-
rare-earth ions which have their ground state split in

energy by the crystal field of the lattice.
If the spectrum of elementary excitations has an

energy gap 4, one expects the temperature-
dependent resistivity to be dominated at low tempera-

-'/k~ T
tures by an exponential e . When the electrons
scatter against collective excitations without a gap,
such as phonons or magnons in an isotropic fer-
romagnet, the low-temperature resistivity may be ex-
pected to show a power-law behavior, the details of
which depend on the dispersion of the collective exci-
tation and the form of thc coupling constant for the
interaction between the electron and the collective
excitation.

Electrical-resistivity measuremcnts on magnetic al-

loys may thus give information about the spectrum of
elementary cxcitations and their coupling to the con-
duction electrons. By examining magnetic alloys like
the Tb,Yi,Sb system for 0 & c & 1 one may also
study the influence of spatial disorder on the magnet-
ic excitations through their effect on the electrical
resistivity. The disadvantage of this method when

compared to, for instance, neutron scattering is the
rather indirect nature of the information regarding
the elementary excitations. Whereas a neutron
scattering experiment picks out a particular wave
number and frequency for the excitations, the electri-
cal resistivity involves an integral over wave numbers
and frequencies. In general one would therefore use
the neutron scattering information on the collective
excitations for the study of transport properties like
electrical resistivity to obtain additional insight on the
nature of the coupling between the conduction elec-
trons and the elementary excitations. Sometimes,
however, one can only get single crystals of rare-
earth alloys in small size, which makes the use of
inelastic neutron scattering difficult. In such cases
the electrical-resistivity measurements may also pro-
vide valuable information on the nature of the mag-
netic excitations of the system.

A major experimental problem in measuring
transport properties of rare-earth metals and alloys is
their high content of impurities, which makes it diffi-
cult to measure the separate resistivity contribution
due to inelastic scattering of the conduction electrons
from the magnetic excitations. In the present study
the samples used have residual-resistivity ratios rang-
ing between 3 and 21. With the high-resolution tech-
niques we have used, such samples are sufficiently
clean to enable us to study in detail the magnetic
contribution.

The magnetic properties of the rare-earth elements
are largely determined by the interplay of the crystal
field and the exchange interaction between the mag-
netic ions. When the ionic ground state is a singlet
the exchange interaction and the crystal field act in
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opposite directions, the former causing magnetic or-
der and the latter tending to prevent it. ' To study
the competition between crystal field and exchange
the alloy system Tb,Yi,Sb is in many respects ideal.
This system was first investigated by Cooper and
Vogt, who studied the magnetic susceptibility and
the high-field magnetization. The concentration of
the magnetic ions may be varied continuously
between zero and unity without changing the crystal
structure and the associated crystal field. The main
effect of varying c is therefore to cause a change in
the effective exchange interaction. In the dilute limit
(c ((1) the crystal field is dominant, and the sys-
tem is a Van Vleck paramagnet. When c increases,
the effective exchange interaction increases relative
to the crystal field, and when c exceeds 0.42 the alloy
orders antiferromagnetically. The Neel temperature
increases with increasing c and attains its biggest
value (15.1 K) in pure TbSb.

In the dilute limit the individual magnetic ion has a
nonmagnetic (singlet) ground state. The system
therefore exhibits no Kondo behavior in the usual
sense since the presence of an energy gap between
the singlet ground state and the next excited states
causes an exponential freezing out of the magnetic
moment. We have been able to satisfactorily account
for our observed resistivity by treating the interaction
between the conduction electrons and the magnetic
ions in the Born approximation, for both the dilute
and the concentrated alloys. Within the Born approx-
imation one may express the resistivity in terms of a
weighted average over wave number q and frequency
co of the imaginary part of the ionic susceptibility
function X(q, cu). Even though the system may not
possess well-defined elementary excitations the resis-
tivity is still given by a weighted average of
ImX(q, co). This fact is particularly important for the
spatially disordered magnetic systems we consider,
since damping effects caused by the spatial disorder
will be less important for the weighted average than
for the elementary excitations themselves.

The aim of the present paper is twofold: First, to
provide the detailed background for the previous
results on the resistivity of the alloy system
Tb,Y~,Sb, which have already been briefly report-
ed. Second, to extend these results to include the
magnetically ordered phase of the alloy system.

The paper is organized as follows. Section II deals
with the calculation of the resistivity and the magnet-
ic susceptibility of the alloy Tb,Y~,Sb within the
random-phase approximation. The application to the
resistivity of the paramagnetic phase of Tb,Y~,Sb
has already been made. Here we extend the calcu-
lations to include also the magnetically, ordered phase.
In Sec. III we account for the techniques of crystal-
growing, element analysis, and resistivity measure-
ment, while the experimental results and the compar-
ison to theory are discussed in Sec. IV. We conclude
in Sec. V by discussing the theoretical model and the
model parameters we have used to account for the
experimental results.

II. RESISTIVITY AND MAGNETIC
SUSCEPTIBILITY OF Tb,Yi,Sb

It is well known that the calculation of the electri-
cal resistivity within the Born approximation may be
formulated in terms of the imaginary part of the ion-
ion susceptibility function. Such formulations have
been used previously by many authors, e.g. , in the
context of transport calculations for liquid metals. '
We shall sketch here and in the Appendix the deriva-
tion of the basic formula for the resistivity since an
explicit expression which is readily applicable to mag-
netic systems does not seem to be available in the
literature. The calculations rely on the spherical band
approximation for the conduction electrons and are
performed for a system of cubic symmetry in which
case the resistivity is a scalar.

Application of the well-known variational principle7
to the solution of the linearized Boltzmann equation
allows one to put an upper bound on the resistivity p

p ~
z ks& $ (@-„—@-„)&-„ f (ek) [I —f '(ek)j Xevk t2f '(ek) [I —f '(&k)l@-„

k crk'a' kcr
(2.1)

Here P-k is the transition probability per unit time
for the transition kyar k'cr', given that the state ko-
is occupied and the state k'o' is unoccupied. f 0 is
the Fermi function and u is a unit vector in the direc-
tion of the electric field. The electronic velocity is
Vk = (I/t)8ek/Bk. The electronic charge is denoted
by e and ek = t'k2/2m The function $-„a.ppearing
in Eq. (2.1) is an arbitrary trial function.

Throughout this work we employ a simple form for
the electron-ion exchange interaction specified by the

s-fHamiltonian

3C~ ———A (g —1) X5(r —R )J s (2.2)

where r (R;) is the position coordinate of the conduc-
tion electron (ion), s and J are the spin and total an-

1
gular momentum operators (s, =+

2 ), A is the

strength of their interaction, and g is Lande's factor
for the 4f electrons. We also introduce the retarded



21 ELECTRICAL RESISTIVITY OF THE SINGLET-GROUND-STATE. . . 191

space-time susceptibility function per ion as

X~a(R, t) = i—([J~(R,t),Ja(0, 0)])O(t) (2.3)

(2.4)

where w (q, ru) is the transition probability
corresponding to a process in which an electron in

spin state o gains the momentum Aq and energy tee
when going to the spin state a'.

It is shown in the Appendix that

X w '(q, a)) =A'(g —1)'N„„

x Im Trx(q. a)),1 (2.5)

Here J is the u component of the total angular
momentum operator in the Heisenberg representa-
tion, the bracket ( ) denotes thermal averaging, and
O(t) is the usual step function.

I

%'e may express Pk as follows:

Pk = J d(SOD) 5(Ek' Ek —gal)

x J d'q 5(k' —k —q)w '(q, o))

if the magnetic excitations of the system are reason-
ably well defined, the dependence of ImX(q, ao) on
their finite lifetimes is eliminated, to a good approxi-
mation, when the integrations are performed. Ac-

cordingly, the RPA (random-phase approximation)
calculation of X(q, au) should be sufficiently accurate
in most cases. If the two-ion couplings are of long

range, produced by the indirect exchange mechanism,
the ground state is close to the one determined by
the molecular-field (MF) Hamiltonian, which we
shall assume to be a valid approximation. For the di-

lute crystals in which some of the Tb ions are re-
placed randomly by the nonmagnetic Y ions, i.e.,
c (1,we adopt the simplest procedure, the virtual-
crystal approximation (VCA), as this is justified by

the same two arguments presented above.
TbSb constitutes a remarkably simple magnetic sys-

tern, as most of its properties are described by intro-
ducing only one single-ion and one two-ion parame-
ter. It crystallizes in the NaCl structure, and because
of the cubic point symmetry the operator equivalent
of the crystal-field Hamiltonian takes the form

t' dQq itld/ktt T
x ' d(gru)

4m "— sinh2(geo/2ka T)

x —Im TrX,1 (2.6)

where

po = A2(g —1)zNi, „
8 e'keF

(2.7)

and eF = g kF/2m. The normalization constant po has
been chosen such that pp J(J + I) is the high-
temperature spin-disorder resistivity.

The magnetic contribution to the resistivity, Eq.
(2.6) depends on the imaginary part of the trace of
the magnetic susceptibility tensor, X(q, ~), and in

this section we shall establish the model used for cal-
culating X(q, co) and thereby p in the particular case
of Tb,Y|,Sb. Because of the (weighted) integrations
of X(q, ~), with respect to the wave vector and the
frequency, the calculation of p becomes less sensitive
to the precise form of the response function. Hence,

where Im TrX is the trace of the imaginary part of the
ion-ion susceptibility function and N;,„ is the number
of ions per unit volume. The result (2.5) relies on
the Born approximation for the interaction between
the electrons and the ions.

When Eqs. (2.4) and (2.5) are introduced in Eq.
(2.1) along with the standard trial function qb„a: k u

we may perform some of the integrations removing
the momentum 5 function appearing in Eq. (2.4),
with the final result

tl

2kF 2kF

V, =B40 (040 +5044) + B60 (060 —21064), (2.S)

Xf (Of) = Xo, ;„ i(N) + X i(G)) (2.9a)

when expressed in terms of the Stevens operators
(the z axis being along a [001] direction). A number
of experiments

" all consistently indicate that 86
is negligible in comparison to B4, which is found to
be positive and to lie between 6.6 and 8.0 mK. Here
we shall use B4 =7.98 mK and B6 =0 which are the
values obtained by Stutius' from his specific-heat
measurements on Tb,Yi,Sb. In terms of the param-
eters, x and 8, introduced by Lea, Leask, and Wolf
these values correspond to x =—1 and 8'=—0.48 K.
The total angular momentum of the Tb ions, J, is
equal to 6, and these crystal-field parameters yield a
level scheme which have the I"~ singlet as ground
state. The angular momentum operator, J, couples
the I i singlet only with the I'~ triplet which is also
the lowest excited level lying at an energy,
b, =—308'=14.4 K above the ground state. The
next excited level is also a triplet, I 5, with the exci-
tation energy being approximately 30 K. The remain-
ing part of the level scheme is at much higher ener-
gies, between 92 and 115 K and may be neglected
below a temperature of -50 K. Referring to the cal-
culations of Lea, Leask, and Wolf 8 a closer examina-
tion of the relative variation of the lower levels and
of their matrix elements with the J operator shows
that the singlet-triplet-triplet system is not very sensi-
tive to the value of B6, and even a substantial change
of x (from —I to —0.7) would have a negligible effect
on the paramagnetic susceptibility.

The frequency-dependent single-ion susceptibility,
X a(cu) is a sum of an inelastic and an elastic part
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Denoting the 2J+1 eigenvalues of the MF Hamil-
tonian by E; and the corresponding eigenstates by li)
then

xone„,l(~) = X (p; —p, )
&iIJ.Ij) &j I jalt'&

Ej —E( —h o)
E.WEj

(2.9b)

-PE,. -PE
where p; = e '/Xt e t is the population of the i th

state (P = I/ks T). The elastic part contributes only

at zero frequency, and is

xo~i(tp) = g, op g &il J,l j& &jl jpli& p, —
&J & &Ja&

I,J
E. E.i J

(2.9c)

where
& &

denotes a thermal expectation value. The
MF value of p is obtained by introducing Xpa(co) in
Eq. (2.6).

The integration with respect to the wave vector is
trivial, and the frequency integral is calculated by re-
placing co with ~+i q and taking the limit q 0+. Then

pMF po X X I
' ' '

1&iIJ-IJ&l'+ X I &tl J.lj&l'p —(&J.&)' +&p (2.10a)
E.WE E. E

I

If &J;& is independent of i (or a periodic function of i)
this potential only gives rise to a coherent scattering
of the conduction electrons without any effect on p
(as long as any superzone effect is excluded). This is
the situation if c =1. In the dilute case (c ( 1) the
nonmagnetic Y ions have to be included when the
average potential is evaluated (here it is essential that
the sites occupied by the Y ions are uncorrelated).
The deviation of the potential from its mean value,
on both the Tb and the Y sites, then gives rise to an
incoherent scattering. The contribution, 4p, to the
resistivity may be calculated directly (see Ref. 12) or
may be written

bp= —pp[c(&J) —c &J&) +(I —c)(0 —c &J&)']
C

(note, that pp is already proportional to the number
of Tb ions, i.e., c), which becomes

hp=pp(1 —c) $(&J ))' (2.10b)

Equations (2.10) are equivalent to the one used by
Hessel Andersen et al. 3 in the case of &J& =0. In the
high-temperature limit pMF reduces to the spin-
disorder resistivity

The last two terms in the large parenthesesori-
ginate from Xo,~, which is handled like the inelastic
part by introducing an arbitrary small excitation ener-
gy. The last term, 4p, is a correction to the starting
expression for pMF. hp vanishes unless &J) is
nonzero, owing to an applied field or to an intrinsic
magnetic ordering, and is produced by the static
scattering potential

~X =-(g —1)~ Xa(r —R)&J& s .

The result for pMF is useful at higher temperatures,
or whenever the two-ion couplings are weak. In the
case of TbSb the low-temperature resistivity is
strongly modified by the two-ion interaction

X= X V, (i) —
2 Xp(R; —RJ)J; JJ (2.12)

In the total Hamiltonian, X, we include only a
Heisenberg coupling [in accordance with the simple
RKKY (Ruderman-Kittel-Kasuya- Yosida) theory],
and neglect the possibility of (phonon-induced) qua-
drupole couplings. ""The most characteristic
phenomenon in the theory of singlet-ground-state
magnetism (for a review see, e.g. , Cooper') is, that
the presence of a two-ion coupling is not a sufficient
condition for the occurrence of a magnetically or-
dered phase (the single-ion susceptibility stays finite
in the limit of zero temperature), but the coupling
has to exceed a threshold value. The RPA value of
the susceptibility, " ' as derived from the two-ion in-
teraction in Eq. (2.12), is

x p(q, tp) = xga(tp) +p (q)

x X xp "(~)x"s(q, ~), (2.13)

x s(q, tp) =g a
Xp (Gl)

1 —g(q) xp(pp)
(2.14)

where g(q) is the Fourier transform of g(R; —RJ).
This is a general result valid in both the paramagnetic
and ferromagnetic phases. In the case of cubic sym-
metry the single-ion susceptibility tensor is propor-
tional to the unit matrix, Xpa(to) =Xp(po)8 a, if the
ground state is nonmagnetic, and we get from Eq.
(2.13)

pr =pp X &J ) = ppJ(J+I) (2.11) A second-order phase transition occurs at the tem-
perature T~, whenever X a(Q, co=0) diverges or
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when

I —g(Q)Xo(~ =o) =o, (2.15)

where Q determines the periodicity of the magnetical-

ly ordered structure below T~. TbSb is observed to
order at T~ =1S.1 K in a type-II antiferromagnetic
structure, "' i.e., Q = (w/a)(1, 1, I), where a is the
lattice parameter. The magnetic moments are along a
[111]direction, consistent with the positive sign of
B4o. When B4o =7.98 mK is inserted in Eq. (2.15)
one finds that T~ =15.1 K corresponds to
g(Q) =1.215 K.

The magnetic unit cell in the antiferromagnetic
phase is twice the crystallographic one, altering the
q-dependent susceptibility. The modification may be
obtained by the following procedure. In each one of
the two sublattices a separate coordinate system
(x',y', z') is introduced, the z' axes being parallel to
the magnetic moments (or the directions of the
molecular fields) of either one of the two sublattices
(the x' and y' axes being along the symmetry [110]
and [112] directions). The components off; and of
the susceptibility tensors, with respect to the two lo-
cal coordinate systems, are denoted by primed in-

dices, and we have

-i Q ~ R,.
J, J, =J„,J„,+e " (Jy,Jy, +Jg,J, ))

and

Trx( q, ~) = x'' '( q, cv) + x""(q+Q, ~)

+ x"'(q+Q, co)

„( )
Xo (oo)

I —xo («))P(q )
(2.16a)

which is the same expression as in the paramagnetic
case, whereas

The single-ion susceptibility, Xo ~ (cu), is the same for
all the ions, and equal to Xgs(co), when one of the
primed coordinate systems is chosen to be the com-
mon (unprimed) one. After this transformation the
conventional method'~' is applicable. The cubic
point symmetry allows a simplification of the final
expressions which is utilized by introducing the sus-
ceptibilities defined in terms of J—instead of J„and
Jy. ' . The results are

X (q, a&) =X~(q, oo)

Xo (~)+Xo'(~) —Xo+ {m)Xo'(~)g(q+Q)
4-[Xo-(~)+Xo'(~)][/(q)+ g(q+Q)]+X«-(~)xo+(~) g(q) g(q+Q)

' (2.16b)

p(TN) —p(T) ~ ((J,))'~ T~ —T . (2.17)
I

The q dependence of X (q, cu), introduced by the
Eqs. (2.14) and (2.16), is simplified by use of the ap-
proximate expression

g(q) =y[cos(q a) +cos(qua) +cos(q, a)]

where Xo+ (~) is equal to [Xo+(—oo)]". In the
paramagnetic phase, T ) TN, Xo (ru) =
Xo+(«&) =2xo'(co), by which the right-hand side of
Eq. (2.16b) is reduced to be equal to X„(q, ru) The.
single-ion and thus the q-dependent susceptibilities
are continuous functions of T, also at Tg. In the or-
dered phase, T & T&, a reversal of the magnetization
[which affects the single-ion susceptibilities only by

interchanging Xo+ (oo) and Xo+(co)] has no effect on

p, implying that p(T) depends linearly on T~ —Tin
the limit T~ —T 0+ as

g, (q) =cJ, &(q) (2.19)

Accounting only for the coupling between the six
next-nearest neighbors, we have kept the number of
parameters at a minimum. From their inelastic neu-
tron experiment on TbSb Holden et al. derived that
the nearest-neighbor interaction should also be of
some importance. However, the approximate expres-
sion, Eq. (2.18), retains the most characteristic
features of a more realistic „'j(q). In their analysis of
the magnetization measurements on Tb,Y~,Sb,
Cooper and Vogt2 also used this simplification.

In the present calculations the RPA value of
X(q, cu) is fixed alone by the two parameters, B4o and

„'j(Q), besides the additional one characterizing the
dilute crystals, namely, c. If c is less than one the
only modification of the equations above is the intro-
duction of the c-dependent exchange coupling

which implies

8(q+Q) =—Bq)
and

g(Q) =-3g .

(2.18a)

(2.18b)

The use of the virt'ual-crystal (VC) approximation
means that the random replacement of the fraction
1 —c of the Tb ions with the nonmagnetic Y ions
only introduces a uniform scaling of the two-ion in-

teraction. We expect an intrinsic c dependence of the
parameters to be small. Except for the 4f electrons
the electronic structures of the Tb ions and of the Y
ions are very similar, and the lattice parameter is
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nearly independent of c (ranging from 6.165 A in
YSb to 6.180 A in TbSb, which variation only affects
B4~ by 1.2% within a point-charge model). In the pre-
vious calculation of p in the paramagnetic phase we
introduced in addition a concentration-dependent ef-
fective lattice parameter, which resulted in a scaling
of the wave vector appearing in„'J, (q). This pro-
cedure is abandoned here since it has no real justifi-
cation (the fit is almost unaffected by this change).

The parameters B40 =7.98 mK and/, ~(Q)
=1.215 K, used in the present calculations, account
reasonably well for most of the observed magnetic
properties of the Tb,Y~,Sb system. '

In pure TbSb the zero-temperature moment,

FIG. l. Experimental transition temperatures T& of
Tb,Y~,Sb determined from measurements of susceptibility,
c3 (after Ref. 2); specific heat, 0 (after Ref. 1G); neutron
diffraction, 5 (after Ref. 11); and electrical resistivity, +.
The solid line is the molecular-field value of Tz.

(J,) r~, is calculated to be 5.15, which is close to the
saturation value J=6 and in fair agreement with the
experimental results of Cable et al. " ((J,) r~ = 5.22)
and of Child et al. '9 ((J,) r~=5.45) both obtained
by neutron diffraction. Because the ground state of
the crystal-field Hamiltonian is a singlet the transition
temperature, calculated by the use of Eq. (2.15) and
(2.19), does not scale linearly with c. In Fig. 1 we
show TN versus c compared with the values obtained
by various experiments. The good agreement yields
an independent check on our parameters, or may, al-
ternatively, be used as a justification of the VC ap-
proximation. At c =0.42 T~ is found to vanish,
meaning that the singlet-ground-state system is sub-
critical when „'j(Q) is smaller than 0.42$, ~(Q)
=0.51 K. This critical value of the concentration of
Tb ions is concordant with experiments as no mag-
netic ordering has been observed for c less than 0.42.

The q-dependent susceptibilities, Eqs. (2.14) or
(2.16), are now introduced in the expression for p.
The frequency integral in Eq. (2.6) may easily be
brought into an analytic form in the paramagnetic
case, when only the singlet-triplet-triplet part of the
level scheme is considered (we shall not state the
result here, but refer to Ref. 15). In the ordered
phase the level scheme is too complicated to allow an
analytic approach. Instead the eigenvalue equation
corresponding to X (q, co) was transformed into a
Hermitian form and solved numerically. In the case
of X (q, co) the eigenvalue equation is not Hermitian,
and here we applied the numerical method also intro-
duced by Buyers et al. ,

' in which co is replaced by
au+i q, but instead of taking the limit q 0, q is re-
tained as a finite quantity throughout the calculations
(we have used q =—5 mK). The elastic contributions
[below TN only X (q, u&), Eq. (2.16a) gives rise to
such contributions), may be written explicitly

pc

X—lim d(tee)
2

—ImX (q, a)) =X X i(i iJ ~j) ~ p; —(J )2
sinh2(ptas/2) rr

El-EJ

~ ([I-x,-,-,„„(o)g(q)1[1-xi[-(o)gq)jj-'+ ',
po

(2.2o)

including the effect hp due to the static potential
scattering. hp is not affected by the two-ion coupling
between the Tb ions and is given by Eq. (2.10b). In
the limit of T 0 the inelastic contributions vanish
and of the elastic terms, Eq. (2.20), only d p/po sur-
vive implying a magnetic contribution to the residual
resistivity determined by

The final integration with respect to q has been
done numerically where we summed over 5000
points in the Brillouin zone. Actually, it turned out
that the quite small value of kp, obtained by the fit-
ting procedure (see Sec. IV) allowed the use of a
spherical interpolation calculation as the integrand is
only weakly dependent of the solid angle 0-.

pr~ (I —c) ((J.) r~)'
pr J(J +1) (2.21) HI. EXPERIMENTAL TECHNIQUE

The calculated value of this ratio as function of c is
shown in Fig. 2.

The Tb,Y~,Sb crystals used in our resistivity
measurements have been made from metals of the
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highest commercially available purity, i.e., for Tb:
99.9%, Y: 99.9/o, and Sb: 99.999%. The crystal
growing is performed in a two-step process. (A more
thorough account of the process of crystal growing
and the methods of analysis discussed below may be
found in Ref. 12.) First a polycrystaliine powder is
formed by prereacting small turnings of the consti-
tuents for two weeks in evacuated (10 ' Torr) quartz
tubes with temperatures increasing from 125 'C to
about 700'C. In an evacuated pressure cell the po-
lycrystalline powder is exposed to a pressure of 70
atm. and formed into a pellet which for the final
reaction is placed in an evacuated (10 4 Torr)
molybdenum crucible. The formation of single crys-
tals is made in an oven at approximately 2100'C dur-

ing an eight to ten day period. The crystallization
may take place either by sublimation or recrystalliza-

FIG. 2. Virtual-crystal calculation of the magnetic residual

resistivity of Tb,Y&,Sb, normalized to the high-

temperature saturation value pT

tion, or both simultaneously, depending presumably
on the size of the temperature gradients over the cru-
cible. In the sublimation process the crystals are
formed at the (colder) top of the crucible, whereas in
recrystallization they appear at the bottom.

The single crystals are easily cleaved from the bulk
of the sample to form small rectangular prisms with
faces congruent to the crystallographic (100) planes
of the rocksalt crystal structure. Just after cleaving
they appear with a shiny metallic surface, which be-
comes dull and dark after a few days exposure to the
atmosphere. The interior, however, stays unaffected
as may be seen by renewed cleavings. The sample
size is typically 3 mm in length and 0.5 mm in the
base area.

In the mixed crystals of Tb,Y~ Sb the Tb and Y
ions are assumed to substitute one another in a ran-
dom way. The similarity in ionic radii of Tb and Y
and the very small variation in lattice constant
throughout the series support this belief. Measure-
ments of specific-heat, ' susceptibility, and the
present resistivity investigations, however, disclose
concentration gradients in the samples and deviations
from the nominal (as predestinated in the crystal pro-
cessing) Tb concentrations. The samples used in the
specific-heat and the susceptibility measurements are
composed of several single crystals. The concentra-
tion inhomogeneities, which in particular are revealed
in the broadening of the specific-heat peaks at the or-
dering temperatures, may therefore result from gra-
dients within the single crystals or, as suggested by
the differences in the process of crystal growing,
among them. The high-temperature slopes of the in-

verse susceptibilities may be used to determine the

TABLE I. Concentration analysis of Tb,Y~,Sb.

Nominal
c (%)

Neutron
activation
c+2 (%)

Electron
microprobe
c+3 (%)

X-ray
fluorescence
c+3 (%)

Suscep-
'

tibility
c (%)

0
5

20
30
38
40
45
50
55
60
70
80
90
95

100

6
24
36
45
46
48
55
57
69
65
66
92
97 ~

100

0
6

27
33
46

53
59
65

74
73
93
95

100

5
23
48
45

55
58
70
76
82

88
98

5
22
31
40
43

53

64
72
77

95
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Tb concentrations. In Table I we have shown the Tb
concentrations obtained by Cooper and Vogt from
their susceptibility measurements. Although each
result represents an average over many single crystals
it is seen that their values may deviate from the
nominal concentrations. More distinct deviations
may be found in our single-crystalline resistivity
measurements where the ordering temperatures in
some cases are far from predictions based on the
nominal concentrations.

To clarify the concentration problems the crystals
have been subjected to four different examinations:
Neutron activation, electron microprobe, x-ray
fluorescence, and metallographic analysis.

The samples actually used in our resistivity meas-
urements have been investigated only by neutron ac-
tivation analysis. The results given in Table I
represent the relative atomic percent of the Tb and
Sb content as compared to a TbSb standard.
Although the samples have not been destroyed dur-
ing the analysis the accuracy is indicated to be +2%
in the absolute value. This is obtained by an exten-
sion of the standard method in which the absorption
effects have been corrected for by analysis of two
essentially different y&~ lines. Rather large deviations
from the nominal concentrations are measured, espe-
cially for the sample with nominal concentration
c =0.80. It is measured to be c =0.66 which agrees
with the transition temperature observed in the resis-
tivity measurements. Note also that the samples with
nominal concentrations betwee 60 and 80% all turn
out to have the same Tb to Y ratio of 2:1. Apart
from samples with nominal concentrations c =0.70
and 0.80 the results of the analyses proved to give
larger c values. Although different crystals are used
in the other methods of analysis the same general
tendency is obtained. It should be mentioned in this
connection that in many cases the crystals come from
the same batch.

In the x-ray fluorescence analysis' the samples are
dissolved in order to avoid absorption effects. The
intensities of characteristic fluorescence lines from
the solutions are compared to standard solutions of
pure Tb, Y, and Sb. The accuracy is indicated to be
+3%. In some cases the results do not agree with
those obtained by the other investigations. It has not
been possible to explain these larger discrepancies.

The electron microprobe technique2 allows for
very detailed analysis of the homogeneity. Also it is
possible to obtain the absolute concentrations by use
of a complex correction method. ' In the present
case the electron beam. generating the characteristic
x-ray lines has a diameter of 0.5 p, m. The analysis
revealed no gradients in the Tb and Y content over
the samples. This contrasts earlier investigations
with the same technique where the inhomogeneities
over the samples in the worst cases amounted to 2%
in absolute values. They could be removed by an-

nealing the samples at 1400'C for some days and
may have resulted from insufficient reaction time in
the early days of the crystal processing. For the ab-
solute Tb concentrations, accurate within +3%, we
have in Table I given the Tb to Sb ratio.

The advisability of making microprobe analysis on
the samples is emphasized by the occasional observa-
tion of inclusions containing Tb3Sb4. By metallo-
graphic examinations the areas of the largest inclu-
sions in these crystals were found and Tb3Sb4 islands
as large as 60-p, m diam were observed.

In conclusion it should be mentioned that none of
the methods of analysis is able to detect the content
of oxygen. From the process of crystal growing,
especially in the prereaction, contamination with oxy-
gen cannot be excluded and may give rise to small
undiscovered islands of Tb and/or Y oxide.

The electrical resistivity measurements have been
performed in a standard liquid- He cryostat. A
stainless-steel tube immersed in the He bath is eva-
cuated to isolate the pot of the sample holder ther-
mally from the bath. The pot is heated externally
and the heat is conveyed to the sample via He ex-
change gas in the pot. The thermal contact between
the sample and the thermometer is established via
copper joints and is therefore much better than to the
heater and the bath. This allows for rapid change of
temperature without conflicting the isothermal condi-
tions.

The temperature is stabilized to within 0.01 K with
a THOR-Cryogenics Ltd. , model 3010 temperature
controller (Allan and Bradley carbon sensor below
40 K, a platinum resistor above). The thermometer
consists of an Au(+0. 03 at.% Fe) versus chromel
thermocouple with the fixed point in liquid nitrogen.
The thermovoltage generated at liquid-He tempera-
ture is approximately 1 mV and the thermopower is
10-15 p,V/K. In order to measure the temperature to
within 0.01 K a compensating system (accuracy better
than 0.1 pV) is used. The uncompensated signal
corresponding to approximately 1 K is recorded.

The electrical resistivity is measured by a standard
four-point dc method. Copper leads of 0.2-mrn diam
are spot welded to the crystal in a configuration
where boundary conditions are of no consequence. "
However, with a distance of approximately 1 mm
between the voltage leads, the uncertainty in the ab-
solute value of the resistivity may be as large as
+20%. An attempt to reduce the diameter of the
voltage leads conflicted the demand of mechanical
and electrical stability.

The excitation current of 10 mA is supplied by a
constant current source, stable within 5 & 10~ over a
day. It is kept as low as possible without affecting
the resolution set by the voltage detecting system, !t
is about a factor of 10 below the limit where devia-
tions from Ohm's law may be seen. Possibly, the de-
viations thus observed may originate from self-



21 ELECTRICAL RESISTIVITY OF THE SINGLET-GROUND-STATE. . . 197

heating at the contact points of the current leads
which have a resistance of approximately 50 m 0
each. The thermovoltages introduced by asymmetri-
cal joule heating and in the voltage loop in general
are compensated by reversing the current. It should,
however, be mentioned that the thermovoltages gen-
erated by Peltier effect are reversed with the current.
They may only be avoided by having low-excitation
currents and good thermal anchoring at the endpoints
of the crystal.

The voltage detecting system consists of a Keithley
Instruments model 148 dc nanovoltmeter, amplifying

the signal 10 or 10' times, and a Hewlett-Packard dc
differential compensating voltmeter model 3420E
Like the case of temperature recording the sample
voltage is compensated for the first two or three di-

gits and the last two recorded. The sensitivity of the
system is limited by the Johnson noise which at room
temperature amounts to 1 nV peak to peak and by
the resolution of the chopper amplifier in the nano-
voltmeter, being 1 nV also. The linearity of the
nanovoltmeter and the stability of the differential
compensating voltmeter give an estimated accuracy of
approximately 1:10 . With a characteristic sample
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FIG. 3. Electrical resistivity measurements on single crystalline Tb,Y~,Sb with the current in the [100] direction. The
results are displayed in three figures for clarity. The latin letters refer to the following concentrations: a, c =0.69; b, c =0.92; c,
c =0.97; d, c =0.65; e, c 0.24; f, c =0.66; g, c =0; h, c =0.57; i, c =0.46; j, c =1.00; k, c =0.36; I, c =0.45; m, c =0.55; n,
c 0.48; o, c =0.06.
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resistance of 1 mO at low temperatures and the exci-
tation current of 10 mA, this is also the resolution
obtained by the nanovoltmeter. Tbc Y) g Sb

IV. EXPERIMENTAL RESULTS
AND THEIR INTERPRETATION

We have measured the electrical resistivity of 15
samples of Tb,YI,Sb as a function of temperature
from 1.5 to 300 K over the whole range of concentra-
tion c. The results are sho~n in Fig. 3, displayed in
three separate figures for clarity. All measurements
have been performed with the current in the [100]
direction. The resistivities are obtained from the
measured voltages using the geometry of the crystal
and the positions of the potential leads. As discussed
in Sec. III this procedure introduces a quite large un-

certainty in the absolute value of the resistivity,
which is reflected in the variations of the high-
temperature slopes for the resistivity curves in Fig. 3.
In order to check whether the scatter in the results is

due only to their uncertainties or whether any sys-
tematic dependences are involved we have analyzed
the results carefully. No correlations could be detect-
ed between the concentration on one side and the
residual resistivities, the high-temperature slopes of
the resistivity, or the quality of the crystals on the
other. Also there are no correlations between the
quality of the crystals and the high-temperature
slopes. As a measure for the quality we use the
resistivity ratio p3pp/pI 5, which is not affected by the
large uncertainties in the geometrical factor.

Both the magnitude of the resistivity and its linear
increase with temperature at high temperatures indi-
cate the metallic nature of the alloy systems. A typi-
cal value of the measured high-temperature slopes is
100 nQ cm K ' which is comparable to that of pure
Tb metal. The absence of correlation between the
quantities mentioned above gives further evidence
for the crystals being metals and not impurity-doped
small-gap semiconductors or semimetals (the rare-
earth nitrides are know to be semiconductors).

In the metals the linear dependence of the resistivi-
ty on temperature is associated with the scattering of
conduction electrons against lattice vibrations at tem-
peratures comparable to or larger than a typical pho-
non frequency. A variation in the slope with concen-
tration could result from a change in the effective
number of conduction electrons, in the lattice vibra-
tional spectrum or in the electron-lattice coupling.
The high-temperature slopes in Fig. 3 show no evi-
dence for any systematic variation with c and the
largest deviation from the mean value of 117 nQ cm
K ' amounts to 30% which is close to the estimated
absolute uncertainty of 20%. This result indicates
that the scatter in the absolute values of the high-
temperature slopes is due to the experimental uncer-
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FIG. 4. Low-temperature resistivity of Tb,Yi,Sb. For
each concentration c the residual resistivity has been sub-
tracted and the base line has been arbitrarily chosen. The
solid line is the resistivity calculated as described in Sec. II.
The dashed lines are results assuming no magnetic ordering
for the concentrations c =0.45, 0.46, and 0.48. In all cases
the theory has been fitted to the experimental data at 15 K,
The arrows indicate the molecular-field transition tempera-
tures 7&.



ELECTRICAL RESISTIVITY OF THE SINGLET-GROUND-STATE. . . 199

tainties only. In order to reduce the influence of the
scatter in the absolute results we scale the measured
resistivity for the different crystals such as to get
high-temperature slopes equal to the mean value.
That the high-temperature slopes should be indepen-
dent of c is also a consequence of assuming an Ein-
stein model for the lattice spectrum with equal force
constants for the independent Tb and Y oscillators.

In Fig. 4 we present our experimental results in the
low-temperature regime from 1.5 to 30 K together
with the results of the model calculation described in
Sec. II. For the sake of clarity the base lines have
been shifted by an arbitrary amount for each alloy.

The total resistivity originates in ordinary elastic
impurity scattering, electron-phonon scattering, and
the scattering against the excitations associated with

the magnetic ions. The total resisitivity is not simply
a sum of the resistivities for each scattering mechan-
ism considered separately (deviations from
Matthiessen's rule). However, when ordinary impur-

ity scattering dominates we are able to take into ac-
count the deviations from Matthiessen's rule within

our theoretical model by separating the total resistivi-

ty in three terms

~here p„, is the temperature-independent residual
resistivity resulting from ordinary electron-impurity
scattering, while p,h and p are the additional contri-
butions to the resistivity associated with scattering
against phonons and magnetic excitations, respective-
ly.

In all crystals except for YSb (c =0.00), in which

only electron-phonon scattering contributes to the
temperature dependence, the magnetic scattering
dominates the scattering against lattice vibrations
below 15 K. %hen we fit our calculated p to the
experimentally determined p —p„, at 15 K the
remaining resisitivity contribution is qualitatively
similar to the electron-phonon resistivity of YSb, in

which the temperature variation is seen to be very
small below 15 K. %e have therefore chosen T
=15 K as a fitting temperature for the comparison
between our experimental results and our calculated
resistivity values.

To make a detailed comparison between experi-
ment and the free-electron calculations of Secs. I—III
one needs a value of the Fermi wave vector kq.
Various aspects of the experimental results suggest
kF to be small. First of all, the resistivities in the
paramagnetic phase exhibit a slower rise towards sa-
turation the larger the concentration. The formation
of bands from crystal-field levels, introduced by the
antiferromagnetic two-ion interaction, increases the
energy of excitations at small wave vector and de-
creases the energy of excitations at large q. Conse-
quently, the cutoff at the maximum wave-vector

0.15

E
O

Cl
0.1

O
CL

'Pn 0,05

0
0 0.5

Concentration C

1.0

FIG. 5. Concentration dependence of the parameters p0
as determined from Fig. 4. Solid circles correspond to solid

lines in Fig. 4, open circles to dashed lines. The straight

line, corresponding to the theoretical prediction of Eq. (2.7),
is obtained from a least-square fit to the solid circles.

transfer 2k~ implies a slower rise towards saturation
if 2k~ is small. This effect increases with the concen-
tration because the dispersion increases with the mag-
nitude of the effective two-ion interaction. Second,
there is no experimental evidence for superzone ef-
fects, which may occur at a magnetic phase transi-
tion, if the magnetic unit cell differs from the crystal-
lographic one, corresponding to Q & 0 in the notation
of Sec. II. A necessary condition for the superzone
effect to appear is that the wave vector Q should con-
nect points at the Fermi surface. Since superzone ef-
fects are not observed, we expect 2k~ to be smaller
than ~Q~

= 43m/a. The best overall agreement was
obtained by choosing 2kF =3n/4a after several at-

tempts with values of 2kF in the range from rr/2a to
m/a. The result of this calculation is shown as the
solid lines in Fig. 4.

The overall agreement is very satisfactory consider-
ing the large amount of data and the use of essential-
ly only two adjustable parameters. %e have used kF
as a fitting parameter common to all concentrations,
but fitted the constant po in Eq. (2.6) independently
for each concentration. In Fig. 5 we exhibit the con-
centration dependence of po which within our model
should be proportional to c. The standard deviation
of po/c from a constant value amounts to 15%, which
is more than the 5—8% expected from the uncertainty
in the absolute resistivity values after one has per-
formed the high-temperature scaling. described above.
This discrepancy, which is barely significant, is the
only indication we have found for a systematic varia-
tion of the electronic properties of the Tb,YI,Sb al-

loy systems with the concentration of magnetic ions.
There are no more free parameters entering our fit,
since the magnetic susceptibility is calculated with
crystal-field parameters given by other experiments'
and an exchange constant determined from the ob-
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served ordering temperature of TbSb.
In the temperature range below 15 K the agree-

ment between experiment and theory is excellent for
the samples which are not expected to order
(c (0.42). In the concentration range where the
molecular-field calculations lead to ordering at the
temperature indicated by an arrow in Fig. 4 the
agreement is in some cases less satisfactory. For the
ordered phases one must keep in mind that the
theoretical results are very sensitive to the value of
(J,) and hence to the accuracy by which the
molecular-field calculations reproduce the experimen-
tal values of (J,). For the concentrations c =0.45,
0.46, and 0.48 the contribution Ap from the static po-
tential scattering may give rise to large errors. hp is
zero in the paramagnetic phase but increases as the
square of the sublattice magnetization. From Fig. 2,
which shows the relative values hp/pr at zero
temperature, it may be seen that just above the criti-
cal concentration (c =0.42) the magnetic residual
resistivities should be large in disagreement with ex-
periments. This is presumably due to the inadequacy
of the virtual-crystal and molecular-field determina-
tion of the transition temperature close to the critical
concentration. To consider the possibility that these
crystals do not order, we have extended the resistivi-
ty calculations to zero temperature assuming the
ground state to be nonmagnetic. The results, which
are sho~n as dotted lines in Fig. 4, give a much
better agreement with experiment. The correspond-
ing values obtained for po are shown in Fig. 5 as
open circles.

In the concentration range 0.55 ~ c ~0.69 there is
likely to be some discrepancy connected with our use
of the virtual-crystal approximation which is better
justified in the high- and low-concentration limits.
We also mention that our results show that it is diffi-
cult to extract a precise value of the transition tem-
perature from resistivity measurements. This is be-
cause the rapid decrease in resistivity normally seen
below a transition temperature has already started
above the transition due to the thermal depopulation
of the excited states which causes the temperature
dependence of the single-ion resistivity.

For the three most concentrated samples, ~here
the transition temperatures are easily identified in the
experiments we may sti11 find some deviations from
the theoretical predictions. Apart from minor
discrepancies between the molecular-field predictions
of T~ and the experimental values (largest for
c =0.92) we also f'ind too steep a descent in the ex-
perimental data below T& when compared with the
calculations. In Sec; II we argued that the resistivity
should change below T~ just like (J,)' which within
molecular-field theory is proportional to Tg —T.
However, the actual sublattice magnetization in the
critical region, as determined from neutron scattering
experiments, has a much faster temperature variation

given by

(r„r-)'s,
since the measured exponents are P =0.2 for TbSb
and P =0.35 for tile diluted systems. The inaccura-

cy of the molecular-field ground state is therefore the
most important reason for the discrepancy below T~.

We also remark that long-range critical fluctuations
in the case of antiferromagnetic ordering only influ-
ence the resistivity if, as with the superzone effect, the
wave vector Q connects points at the Fermi surface.

At temperatures higher than 15 K the experimental
and theoretical curves deviate increasingly. This is to
be expected from the presence of electron-phonon
scattering. At small concentrations the deviations
correspond closely to the temperature-dependent
resistivity of YSb, which is entirely due to electron-
phonon scattering. At higher concentrations the de-
viations become relative larger (at a fixed tempera-
ture). This trend is quite plausible since the mass of
a Tb ion is nearly twice that of a yttrium ion. The ef-
fective Debye temperature must therefore decrease
when c increases, leading to an increase in the low-

temperature electron-phonon resistivity as observed
experimentally.

V. CONCLUSION

In this work we have made a detailed study of the
temperature-dependent resistivity of a series of al-

loys, in which the concentration of magnetic ions
may be varied continuously. The dilute alloys are
Van Vleck paramagnets, but they order antiferromag-
netically when the concentration of the magnetic ions
exceeds about 40% of its maximum value. Over the
entire range of concentrations we have been able to
account satisfactorily for that part of the
temperature-dependent resistivity which is due to
magnetic scattering. Within the Born approximation
for the electron-ion scattering the resisitivity depends
on a certain weighted average of the ion susceptibility
function, which we calculate within the random-phase
approximation supplemented by a mean-field,
virtual-crystal treatment of the magnetically ordered
ground state.

The detailed comparison in Sec. IV between experi-
rnent and theory suggests that the RPA approxima-
tion for the excitations is quite adequate. Our
greatest simplification concerns the conduction-
electron band structure, which we have treated in a
spherical model characterized by a Fermi wave vector
kq. In &he comparison with experiment k~ was con-
sidered an adjustable parameter common to all alloys
(independent of c). Apart from determining the
overall scale of the resistivity the magnitude of kF
has a decisive influence on its temperature depen-
dence in the more concentrated alloys, since 2k' acts
as a cutoff for the wave vector of the magnetic exci-
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tations involved in the scattering. The comparison in
Sec. IV shows that the temperature-dependent resis-
tivity for the whole alloy series can be understood in
terms of basically two parameters, the Fermi wave
vector kp and the scale factor po for one particular
concentration. If po is treated as an adjustable
parameter for each concentration, one finds that po/c
to a good approximation is equal to a constant, as
predicted by the simple model.

In addition there are two other parameters entering
the theory: The crystal-field parameter 84 for a sin-
gle ion and the exchange constant qI(Q) characteriz-
ing the ordered state. The parameter 84 was ob-
tained from specific-heat measurements'0 and used
together with the observed Neel ordering temperature
in TbSb to determine J(Q). In the free-electron
model the constant po is determined by k~ and the
electron-ion exchange constant A according to Eq.
(2.7). If we use the values of our fit parameters kF
and po to determine the electron-ion exchange con-
stant we obtain a reasonable value for A, but its in-
ferred magnitude will of course change, if the con-
duction electrons are characterized by an effective
mass that differs from the free-electron value. The
main feature of our model for the electronic energy
bands is the smallness of the Fermi wave vector
which means that only magnetic excitations with
rather small wave vectors are involved in the scatter-
ing. Other than that the model is too crude to allow
any definite conclusions to be drawn for the magni-
tude of the electron-ion exchange constant.

Finally we remark that we have considered ex-
change scattering processes as being the sole cause
for the characteristic low-temperature behavior of the
electrical resistivity in the present alloy series. In the
related rare-earth alloy TmSb it appears necessary'" to
take into account the scattering of the conduction
electrons from the 4f quadrupole charge distribution
as well. The reason, why this process is unimportant
relative to the exchange in TbSb, is the magnitude
of g —1 in the two systems. Since g —1 is

2
for

Tb'+ ions and only 6 for Tm'+ ions the exchange

contribution dominates the quadrupolar term in TbSb
but not in TmSb. One must therefore be careful in

applying the conclusions obtained from this study of
the Tb-alloy system to other rare-earth systems
without consideration of possible additional scattering
contributions.
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APPENDIX:

In this Appendix we relate the Born expression for the transition probability w (q, qi) to the imaginary part of
the (retarded) ion susceptibility function X s(R, t) defined in Eq. (2.3). The ion susceptibility function may be
written

X s(R, t) = i Xe —' [(i [J (R,r)[f) (f~JE(0, 0)(i) (i (Ja(0—, 0)(f) (f(J (R, r)(i)]O(t) (Al)

upon introduction of the complete set of ionic states
~f). The quantity 0 is the thermodynamic potential enter-

ing the thermal average of Eq. (2.3). Upon Fourier transforming with respect to the time and the ionic position
RI we get

l(q Ri ok—)—, (0 E )/k&T (E -E.)/k& )——
Xa(q ~)= die XERit)= e ' I —e

I i,f
—iq R (i JJ (Ri, 0)(f) (f (Ja(0, 0)fi)

EJ Ei+ /t(a)+ig)— (A2)

Here we have used the usual formula for the time evolution of the operators J(R, t) and the well-known rela-
tion

i
goo 1e'"'0(r) dr =

oo OJ + I'g
(A3)

Furthermore we have used that the second term in the sum (Al) is exp[(E; —Ef) lks Tl times the first one as one
sees upon interchange of the sum indices i and f.

The Golden Rule expression for w (q, ru) is



202 HESSEL ANDERSEN, JENSEN, SMITH, SPLITTORFF, AND VOGT

where
~ f) and ~i) denote final and initial states for the rare-earth ion system, while EI and E, are the

corresponding energies. When one takes the imaginary part of Eq. (A2) it follows immediately that the expres-
sions (A2) and (A4) may be related as stated in Eq. (2.5).
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