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Critical amplitude ratio of the confluent singular term for the specific heat:
Calculations to order e for systems with continuous symmetry
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The critical amplitude ratio of the confluent singular term for the specific heat has been

shown to be universal, and the value has been calculated to order e2 for systems with continu-

ous symmetry using renormalized P4 theory. The theoretical results are in good agreement with

Ahler's experimental values at the superfluid transition in 4He.

I. INTRODUCTION

One of the major advances in condensed matter
physics in recent years has been the development of
the renormalization-group theory of critical
phenomena. ' The theory provides both a qualitative
and quantitative description of the singularities which
appear at critical points. For example, the theory
predicts that on the coexistence curve, in the asymp-
totic critical region, a typical thermodynamic property
of the system can be written

where t is the reduced temperature measured from
T„).and x are critical exponents, and fo and go are
the amplitudes of the leading and confluent singular
terms, respectively. A major accomplishment of the
theory was the confirmation of the hypothesis of
universality, 2 which greatly reduces the complexity of
critical phenomena by dividing systems into a small
number of equivalent;e classes. %ithin each class the
critical exponents are the same, the systems even
share a common equation of state once two thermo-
dynamic scales "temperature" and "magnetization"
have been chosen. Later the hypothesis of two-
scale-factor universality, ' which postulates that the
length scale is universally related to the two therrno-
dynamic scales was established, 4 and it was shown
that just as there are 12 critical exponents and 10 re-
lations among them there are 12 fundamental leading
critical amplitudes and 10 universal relations among
them. 5

Now, when critical exponents are known with high
accuracy, via ~ expansion and knowledge of the
asymptotic behavior of perturbation series, when
universal relations between critical amplitudes are
known and have been calculated at least to second
order in a=4 —d', we are almost in a position to
make a detailed comparison between theory and ex-
periment. There is one major stumbling block: due
to the finite resolution of experiment the confluent

singular term shown in Eq. (1.1) must be taken into
account in the data analysis. ' The presence and ori-
gin of this term was first understood from
renormalization-group analysis. Although the
"correction to scaling" exponent x, which was first
calculated in a ~ expansion by Wegner, s is now

known with high accuracy, little work has been done
on the correction to scaling amplitudes.

In this paper we use renormalized perturbation
theory' " to prove universality of the ratio of the
correction to scaling amplitudes above and below T,
and calculate the ratio to order e'.

The paper is organized as follows. In Sec. II we re-
view the basic ideas of renormalized perturbation
theory and discuss the origin of the confluent singu-
lar term. In Sec. III the relation between renormal-
ized perturbation theoryiand thermodynamics is ex-
plained, and it is shown that the specific heat on the
coexistence curve can be written in the form Eq.
(1.1) with an additional additive constant which is the
same above and below T, , The universality of the ra-
tio of the correction to scaling amplitudes, D+/D is
established. The detailed calculation of D+/D is

given in Sec. IV.

II. RENORMALIZED PERTURBATION THEORY

In this section we review, briefly, renormalized
perturbation theory and its relation to the theory of
critical phenomena. ' " In the critical region the true
Hamiltonian may be replaced by a Ginzburg-Landau
effective Hamiltonian, "

PH = J)ddx H(x)

H(x) = —'[ey(x)] +—'p, y (x) + —,[y'(x)]
4

where $(x) is an n-component local vector field
whose statistical average is the order parameter of
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our problem.
n

y'(x) = $@,'(x)
i 1

The "bare mass" p, is related to the temperature by

p,
2 —T —To, where To is the mean-field transition

temperature; P is the bare-coupling constant. In
momentum space there is an ultraviolet cutoff
A =I/a where a is the lattice spacing in the original
problem.

In renormalized perturbation theory the one-
particle irreducible (1PI) Green's functions
I'L~)( p, pz, q) q)v, p, ', A, X, $), which con-
tain N $ fields and L P2 fields are renormalized in
such a way that the corresponding renormalized func-
tions I R are finite in the infinite cutoff limit when
the space dimensionality d 4. The magnetization P
is zero when T ) T, (the critical temperature), and
the magnetic field His set equal to zero. All I L~

can be renormalized multiplicatively except I
which requires additional additive renormalization.
The relations between r(z ~' and r)(L ~) are

r]™(p, p, ,q, q„;t, A, g, «,M)

ZL ZNI2 r(L,N)( p p q, q 'p2 A )( @)

(2.2)

r$'"(p, p;t=—o, A, g, «,M=Q)I, =(j, (2.4)

(2.S)

rtt'"( p; 0, A, g, , o) I,,=g (2.6)

r$'"(k), k2,p;0, A, g, «, 0) I (2.7)

rg "(p, —p;o, A, g, , o) I, ,=o, (2.8)

where s,p means p;,p,. = «(48J ——I); s,p means

k; = —«, k) k2 = ——«, and p2 = (k) +k ) = «

The arbitrary dimensionless parameter I characterizes
the renormalization scheme.

When the temperature is not exactly at T, we may
write

Here t, g, and M are renormalized temperature, cou-
pling constant, and magnetization, respectively, K is
an arbitrary momentum scale, and Z~ and Z 2 are re-
normalization constants. The subtraction term
I' ' (p, —p;k, A)I 2 2 in Eq. (2.3) is evaluated at
T = T,. The renormalization constants and bare-
coupling constant are computed in the massless
theory (t =0) as power series in g from the renor-
malization conditions

rt(2 )(p, p;t, A,g, «—, M)

=z'2(r""(p pp' A )t 4—)

—r"')(p, —p;), A)I 2 21 . (23)

t '=t '+(t '
t ') =t'+8—t" ~

pg= T To

and expand I (L ~) around p, , and g =0

(2.9)

(8 2)t( )Jr""(k;,p;;t ', $, ), A) =$ ",
,

r(""t)(k, t, =op, ,q, =o;&?,y=o, ), A) .
I,J ~ ~

(2.io)

Multiplying I +'~+~ by Z 2+ Z@
+~ wi]l make it finite as A ~. If we define

Sp, =Z 2t g=Z'"M (2.11)

it follows that:

r)L" (k;,p;;t, Mg, A) =Zz Zw/2 r(c,w)(k p.p $ )(. A) (2.12)

which is finite order by order in g as A ~. The
shift in transition temperature which may be calculat-
ed directly from Eq. (2.4) as a power series in A. , is
shown in Fig. 1. In the actual calculation all Feyn-
man diagrams are calculated in dimensionally regular-
ized form. ' If we note that the dimensional regulari-
zation of the integral of power is zero, " it follows
that JM, ,'=0, and could therefore be set equal to zero
initially, as we have anticipated in Eq. (2.12).

The renormalized 1PI functions therefore are
calculated as follows: first we expand
r(z' )(p, q;X, qh, p,2), (L,N) W (2, 0), (1,0) and (0,1),
as a power series in ) then transform from A. to g and
p,

2 to t and qh to M by Eq. (2.11); finally we multiply
I by Z 2, Z@ calculated from the massless theory

(t =0).
The critical behavior of the theory may be studied

via the renormalization-group equation which is ob-
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tained by differentiating Eqs. (2.2) and (2.3)

+P(u) —2q(u) N+M+ 8 1

gK QQ v(u) rlt
—2 L +t —I aL'O(q, p;t, M) =g g, « '8(u), (2.13)

where u = K 'g is the dimensionless coupling constant where

8 ln00
P(u) = —e

Bp
up=K 'A. (2.14)

«(p) = «p , (2.18)

)

BlnZ 2—2 =)8(u)
v(u) Ilu

(2.15)
lnp =.„

~"~" ~u

P( u')
(2.19)

9 lnZg
2)(u) =p(u)

BQ
(2.16) t u(p)

t(p) =texp —
J

\

1

1
2

du'

v(u') P(u')
(2.20)

The right-hand side of Eq. (2.13), which is due to ad-
ditive renormalization, will be calculated explicitly in
Sec. IV.

The homogeneous solution of Eq. (2.13) may be
derived in terms of an arbitrary parameter p.

t "tv) q(u')
M(p) = M exp —

2 Jl, du', (2.21)
)8( u')

[pd/dp —
—,
' N7)(u(p)) —[v '(u(p)) —2]L]

xrP' (p;;t(p), u(p), «(p)) =0, (2.17)

u(p=l) =u

then from dimensional analysis it follows that:

(2.22)

t 'N'
I'tL, N)( .t u M) ( «)d 2L N(d 2)t2 -P P) tLN) P t P P ( )

M t p« p « (p«)
(2.23)

We fix p by requiring

t(p)
(2.24)

When t 0, from Eq. (2.20) t(p) 0 also; hence,
from Eq. (2.24) the critical domain corresponds to

p 0; further, from Eq. (2.19), if 13(u) has a non-
trivial zero (fixed point) u" with positive derivative at

u', the p 0 implies u(p) u'. Introducing the
scales'"

t u(p)
X(p, u) =exp —

J [v '(u) —v ']/P(u') du'

(2.25)
f Q(p)-

Y(p, u) = exp —
2 J [2)(u') —g]/)8(u') du'

j

where v(u") = v and 2)(u") = rt are the usual critical
exponents, it follows that:

and

p= [X(p,u)t]"=t" (2.26)

n+2 2 n+2
(a) p, = T —Tp=-A. +X --- ~

C C 18

I'$ '(p;t, M, u) = Y( u)NX(, u)Lt "'4 N 4

x I')L~(pt ";1,x, u(p), «= I)
1(b) ~nese~ ~

q
2

where

(2.27)

(c) d q

q2(2~) d

ddq 1 ddq

(2~)2d ql2q22 (ql +q2)2

FIG. 1. (a) Feynman diagrams for p, c2. (b) Feynman pro-
pagator used in (a). (c) Feynman integrals for (a) with a
cutoff A.

d lnp
o) = P'(u')

du(p) o)[u(p) —u'] ' (2.29)

x =M(p)/p"-' = Y(p, u) Mt -" '-' ' (2.2g)

is zero when T & T„H=0 and is given by the solu-
tion to the equation of state when T & T„H=0.
The-running coupling constant is easily found by
solving Eq. (2.19) in the vicinity of the fixed point as
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and therefore

u(p) =u'+(u —u')p" (2.30)

Finally we may now write the 1PI functions in the vicinity of the critical point including the correction to scaling
arising from the confluent singularity produced by Eq. (2.30) as

r(tLtv)(, p tM u) Y~X t " " ~t r() ~(pt "I xu N=I)
'Brt('~)(pt ";1,x, u, K=I)/()u~ .

x 1+(u —u')t""
I )%L~)(pt "1,x, u', ~=1)

—Ã(I)g(u)/I)u) [ + v(d ——A((d —2+ g))(II.-'(u)/(Iu)
( . '

2 I 2 (2.31)

The second term in Eq. (2.31) comes from expanding the scales X(p, u) and Y(p, u) around u(p) = u', and X
and Yare defined by X=lim

( ),and Y=lim ),Y(p, u), respectively. It is important to note that

the only remnant of microscopic behavior is in the u dependence of the scale factors, Xand Y, and in the con-
fluent singular term (u —u'). Any dimensionless quantity independent of these factors will therefore be univer-
sal provided it can be shown to be independent of renormalization scheme.

III. SPECIFIC HEAT

(3.1)

In this paper we are concerned with the specific heat on the coexistence curve H =0, in particular with the ra-
tio of the amplitudes of the confluent singular term above and below the transition. In this section we show how
the specific heat may be calculated using the functional formalism outlined in Sec. II. We start from the generat-
ing functional of the connected Green's functions F(H) = lnZ(H)

1 1

Z(H) = J/D(P) exp. —J ddx —,
' ([Vg(x)]'+p, 'g'(x))+ —, $g (x) —H(x)@(x)

I
(

~( )
SF(H)
SH(x)

(3.2)

using a Legendre transform' "we may define the
potential r($),

r($) +F(H) = Jr g(x) H(x) ddx

5r(@)
a@(x)

(3.3)

(3.4)

(3.5)

here factors of T„which do not affect the subse-

which has been shown to be the generating function
for the IPI functions. '3 r($) can be calculated expli-
citly both above and below T, in terms of a loop ex-
pansion. The relationship with thermodynamics is
made by noting that, up to a factor of (kT),
—lnZ(H) is the magnetic Gibbs' potential and there-
fore r($) is the Helmholtz free energy. The usual
Legendre tranformation is simply a special case, uni-
form H, of the functional relationship given above.
In the critical region the most singular term in the
specific heat at constant H may therefore be written

O' F(H)
(j p2 H

(3.6)

which, using Eq, (2.9) can be written

g2r(y 2)
Ctt(T & T, ) =—

r(20)(y () ~2) (3.7)

On the other hand, when T ( T„@= @(p,') at fixed
H First we must find . the magnetization $ by solv-
ing the the equation of state on the coexistence
curve, then, using the Legendre transform (3.3) and
(3.5), it follows that:

d2r (@( 2) 2)
(3.g)

The connection with renormalized perturbation

quent discussion have been absorbed into C~. When
T & T, and H=0, $, is constant, and therefore from
Eqs. (3.3) and (3.5) we have immediately

C„(T&T,)=
g p2 p~p
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theory is now readily made from Eq. (2.3)

g 0)( )
9 I R(Mt)

Bt

z 2 r(2, 0)($. 2)
p2 sP

—z', rt'0)( p, —p;), A), (3.9)

which may be integrated to give the renormalized po-
tential as

r, (Mt) =r(y=z,'t2M, st 2=z,,t)
—

2
t'Z221 t2 0'( p, —p;))„A)

d' R(M(t), t)
dt2 H 0

where M(t) is obtained from

Or, (M, t)

9M

The specific heat may be obtained from

C'(M, t) =Z2, C„(y, t 2)

(3.13)

= -r g')(M = o, t) (3.11)

(3.10)
The calculation, details of which are given in Sec. IV,
proceeds by calculating the potential I via a loop ex-
pansion. Then introducing a renormalized specific
heat

82r, (M =o, t)
f2

+z2, r&'0)(p, -p ~ ~)

(3.14)

We conclude this section with a discussion of the
critical behavior which is handled in the usual way
via the renormalization-group equation. For T & T,
as we have seen Eq. (2.13), CH(T & T, ) satisfies an
inhomogeneous renormalization-group equation.

K +p(u)6 8
()K ()Q

1 1

1 8 R q 8—2 2+t CH(.T &—T, ) =)r '8(u) = K +P(u) —2 —2
8 1

v(u) Bt
' ' 8~ Bu v(u)

xZ2 r~20)(p —p) A)
~K

(3.15)

The right-hand side of Eq. (3.15) will be calculated in Sec. IV. If we write Ctt = C»+ Cv where C» and Cv are the
homogeneous solution and particular integral of Eq. (3.15), respectively, then the homogeneous solution can be
derived as in Eqs. (2.17) to (2.31). We have

Bc»IBu ~ ~ t2 q O
—)

C»(t M=0, u, ~) =X't C»(l, o, u', K=1) 1+(u —u') t""
C„(u') t0 Bu u

(3.16)

where K has been set equal to one for convenience.
Here we note that as

where

(3.19)

BCp

u

BCH BCp

u 6& u
(3.17) A+= X2 C»(l, O, u', ~ =1) (3.20)

the evaluation of the amplitude of the confluent
singular term will only involve 8cv/Bu ~, rather than

the complete particular solution. This calculation will

be carried out in Sec. IV. From Eqs. (3.15) and
(3.16) we can express lim, 0+CH(t, M=0, u, K) as

Bc»/Bu ~ e (2 ) 8
—1(u)D+= (u —u")
au

8+= Cv(K, u)

u p

(3.21)

(3.22)

C (t -0+) =A+t (1+D+t "")+8+ (3.18) For T ( T, we must show that Crt( T (T„M) sat-



1886 MAU-CHUNG CHANG AND A. HOUGHTON 21

isfies the same renormalization-group equation Eq.
(3.15). As noted

CNR(T & T„M) =Z 2Ctt($, P, )

+z,', r(2 "(p, —p;), A)I 2 2 .

(3.23)

Expanding each side about M = t =0 and $ = 0,

p, '= p, ,', respectively,

~ cR(N Jl™z2 c(N21 (BP' )
Wt J! ~' W!JI

where C are the expansion coefficients of the
right-hand side of Eq. (3.23). Noting that Sp, = Z 2t

and P = Z~(t2M, we have

(3.24)

C(N, J) Z
—(2+N) Z —J/2 CR (N, J) (3.2S)

Taking the logarithmic derivative of both sides of the
equation with respect to scale change

-- K +P(u) —
2

J'lt(u) — —2 (2+N) Ctt ' =SN p8r pK B(u)1 1 R(N;J)

BK BQ v(u)
(3.26)

and therefore
1

+/3(u) ——21(u)M — —2 2+t CN—(T & T„M) = K '8(u)8 1 9 1 R

BK Bll BM v( u) Bt
(3.27)

We have shown that the specific heat below the transition satisfies the same renormalization-group equation as

Ctt( T & T„M=0), it therefore follows that:

CtRt(T & T) =A t(1-+D t )+8
in which

t=Xt, rt =X2 Cp(1 xu', K=1)

(3.28)

BCR/Bll I

D = (u —u')
Cp(u')

(2 —n) Bv '(u)
OJ BQ

X"", a-=C, (K,u) =a+ .
I

(3.29)

x is the solution of the equation of state on the coexistence curve.
From Eqs. (3.18) to (3.29) we find the ratio of the amplitudes of the confluent singular terms for H= 0 is

D+

D

BC„(1,0, u, 1)/BuI ' /C (1,0,u', 1)(T& T,) —[(2— )/ ]B '(u)/BuI,
(T(T,)

BCR(—l,xu, 1)/BuI ~
' /Ct ( l,xu'—, 1)(T&T) —[(2 —u)/ ]Blvp, '(u)/BuI ~

(3.30)

A+/A has been calculated by Brezin et al. '4 and Bervillier' to order e and e', respectively, the calculation of
D+/D to order e2 will be given in Sec. IV. From Eq. (3.30) we see that D+/D is dimensionless and indepen-
dent of X and Y; it only depends on u'. Hence if we can show that D+/D is independent of renormalization
scheme we will have established its universality.

For a renormalization scheme 11 (&, & implies T &, & T, )

BC1&/Bll1I y
) B 1( )

C1&(tl, u1, K) =X1 t1 C1&(f1 =1,0, u1, K=1) 1+(u1 —ul')tp"
C1& ill tp Bul

BC1&/Bu(I e -1
(2 —tl) Bv (u1)

C1&( tl, ill, K) = X1 (—tl) C1&(tl = —1,xu(, K = 1) 1 + (u1 —u1" ) ( t,)""—
Ct&(ut ) Ql Bul

For a different renormalization scheme 12 as

C2(t2) Z 2'(l2) = Cb„,(Z, tl, ') = C1(t, )Z 2'(ll)

C2(t2).= C1(t1)Z21

Z21 = Z~2(!2)/Z~2( l1 )

(3.31)

(3.32)

(3.33)

(3.34)
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and therefore

C2&( t2, u2, K) = Z21X1 tl Cl&( t1 = 1,O, ill, K = 1) 1 + (ll1 ll1 ) t1

BC1&/Bul i e
~ 1( )

C1&(ll1 ) l0 But

C2&(t2&u2, K) = Z21X1' (—t1) C1 &(t1 =—I,xul', K = I)

BC1&/But i y 0 1( )
x 1+(u, —u1')( —t1)""

C1&(u1 ) (u Gut
t

All effects of change in the renormalization scheme
are absorbed by a change in the two scales X and Y;

which proves the universality of D+/D .

IV. CALCULATIONAL DETAILS

The relationship between I R(M, t) and I'($, p, ') is
given by Eq. (3.10). The bare potential I'($, p, 2),
which has been calculated by loop expansion, '0 " is
shown in Fig. 2; the renormalization constants
Z~, Z 2, and A. as a function of g are listed for refer-

ence in Fig. 3; and the subtraction term Z'2 I " '

( p. —p;&, &) ~ 2 2, as a power series in g, is given in

Fig. 4. The renormalized potential I'R(M, t) is then
obtained from Erl. (3.10) by replacing 5p, 2

by Z 2t

and $ by Z jt M The Feynman diagrams for
I'R(M, t) are shown in Fig. 5. When T & T„M=0
if H =0 When T &. T, and H =0, M = M(t) is
found by solving the equation of state on the coex-
istence curve H; = BI (M t)/BM; =0. The Feynman
diagrams for I R(M(t), t) ~0~ «p are given in Fig. 6.
The specific heats CH p(t &0) and CH p(t &0) are
obtained by taking the second derivative of

I R(M =o, t & 0) IH p and I R(M(r), t & 0) („p,
respectively. The Feynman diagrams for
CH p(t & 0) calculated in dimensionally regularized
form are listed in Fig. 7. The leading singular term
in the specific heats and hence 2+/A are found by
evaluating CH p(t&&0) at u = u' and subtracting
C~(u'). We note that the particular integral satisfies
the inhomogeneous renormalization-group equation

+p(u) —2 —2 CR=8(u) K, (4.1)
8

BK Bu v( u)

where

K '8(u) = K +p(u) —2 —2
8 8 1

BK Bu v( ll)

d +P( u) — Cp(u) = 8 ( u)
9ll V ll

(4.3)

x Z I' ( —p;l1., A)i 2 2 . (4.2)

Defining a dimensionless particular solution by
CR(u) = K 'CR( u) we find

+As +A +A

(b) 1

2

1

6

FIG. 2. (a) Feynman diagrams for the free energy I"(P, p2) in terms of bare parameters. (b) Feynman propagators used in (a).
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2n+2 9(a) Z~=1+g
k ~ e

.L.
1+ n+2 ~ ~ + 2 (n+2)(n+8) (Z 2

—1+g
4

+
&gr~

n+2
18 Qk2 I k2 2e 1

A, =g+g22 n+8
6

t. t L. ll ~
2+22n +108 r i i 5n+22 /l2 n

j 36 - )+ 1v V

n+2
9 ()k2 w ~ k2 2 I

(b) 1
2

d"q 1

(2 )~ (p+q)~q~ 2 „s K
4l p

d"q d"q,

(2~') q ~' (q ~
+q2)'(p~ +p2) (p2 —q2)

1 2 4

SP

FIG. 3. (a) Renormalization constants expressed in terms of Feynman diagrams. (b) There is only one Feynman propagator
in the massless theory. (c) The equivalence between the Feynman diagrams.

Z2 r~'0~(p —p'X A)
p2~~2

~II
n+2 t I]

2 (n +2) (n +6) I
12

Ai

n+2
j 3

n+2 8
ek' k2 K2e(

x —"
~

2
+g n(n +2) I s ( 2 n(n +2)

12 i I i / g 12 tf I
( } 2 ~ I t +g2 n (n +2 ) (

V& IV

~k.
n(n+2) I ~ ~ & 2 n(n+2)(n+8)—g—g

n(n +2)
JL )t I

—g

iP

+g+ 2 n(n+2) ~ ~ 2 n(n+2)
18 W ~~~ 9

J
k2~g2el

2 n(n+2)

FIG. 4. Subtraction term in Eq. (2.3),
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(a) I" (M, t) =—M~+ —M4
. R

r&+

+—' ""'
i ~+r+ 'M—~)+ ""'"'M" '

~)i ~
n —1 1' d"p p g q [t + (g/6) M~)~

(2 ) ~/

gM
8 2

ter

2
2g(n —1}
24

gM
6 /

g(n —1)
12

2 (gM
2 J

g lh
gM ( )

g~M~ I ~ 3
gM~

~h
/

3
2gM

2

z +2t+ —M~+ t+ —M~
36 '

6 2

gM /

gM~+ f+

(b) = 1

q~+t g+~M2/
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FIG. 5. (a) Renormalized free energy I"~(M,t). If t )0, H=0, then M=O. (b) The Feynman propagators used in (a).
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4 i

—2t l

Vi

(n —1)gt+
ll

t

—2t ~----
J j

$P
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F1G. {j. (a) Renormalized free energy Ftt(M(t), t) [H a «a, which is a function of t only. (b) The Feynman propagators used.
in (a).
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4 dt 8t 16t 16t
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2

ln( —2t)l)

(iv) ~& = [1+e[——ln( —2t)]+ez[f(2) +—+—ln( —2t) +—ln (—2t)]]

1 d(iv)
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FIG, 7. (a) Feynman diagrams in CH 0(t (0) calculated in dimensionally regularized form. (b) The Feynman propagators
for (a). (c) The explicit values for ((2) and I.
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At the fixed point P(u') =0 and therefore it follows from Eq. (4.3) that

Cv(u') = — B(u')
2 dv

(4.4)

Knowing B(u) and [1/v(u) —2]; and Z22 I't'03(pi, —p;g, A)
l 2 2 from Fig. 4, the inhomogeneous term B(u)

and hence B(u') are found from Eq. (4.2). B(u) is expressed in terms of Feynman diagrams in Fig. 8 and

and

1

B(u ) = n 1 +——e+c —+12 (——+—'J ——' I)2 2 2 (n +8)2 3 4 4

B'(u ) = 2n(n +2)
~(—+-J-—I),(n+8) 3 4 24

(4.5)

(4.6)

where
t

"dx "' 3xJ= J
' dy ln 1 —x+ (1 —x+xy) =0 7494

0 x ~0 4y
t

(4.7)

%e then find

2a( n ) I + & + &2 (3n +74n +708 n +3264n +6400) 4 —n
2

3(5n +22) 9(4 —n )
2(n+8)" 2(n +8) (n +8)' 4(n +8)2f3+ I

+ O(e3) (4.8)

which agrees with BervillIer. In Eq. (4.8) n is the
specific-heat exponent as a power series in e, ((2)
and ((3) are Riemann g functions and

1

I = dxln[x(1 —x)]/[1 —x(1 —x)] = —2.349 . (4.9)
aJ 0

As we pointed out in Sec. III, in order to compute
the amplitude of the confluent singular term in the
specific heat, we must calculate BCv/Bu l ~. See Eq.

(3.17). It follows from Eq. (4.3) that:

BC (uv)/Bu = (B(u) + C, (u) [2/v(u) —d])/P(u)

then using Eq. (4.4) we find

C,'(u') = (vB'(u')

+ [2/(2 —dv)B(u') Bv(u)/Bul„~])/

[u)v —(2 —dv)]

(4.10)

(4.11)

/I

+ 2, 2 n(n+2)+K Ll E~-~a(u) =—«n

2

~41
2, 2n(~+2)

Q
6

Then using results for CH 0(t )0),CH=O(t (0) and

Eqs. (3.16), (3.17), (3.30), (4.8), and (4.11),we find

after considerable algebra
't

D+ =1+e ——ln2
n+8

D- 2(n+2)

2, 2 n(n+2) 9
18 Bk

+K n(n +2)
4

k2 „2e k&,r
+ 2 3n —22n —88n +152

4(n +8)(n +2)

9 I 3(5n +22) (3)
2(n +8) (n +8)(n +2)

1 n —8n —68 + n+8 ln2+ i ln22
4 (n +8)2 n +2

FIG. 8. Feynman diagrams for the inhomogeneous term

a(u) K-~. (4.12)
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For liquid He, n =2 and d =3; Eq. (4.12) gives

D+/D =1+0.9e —3.84m'

Just as for the correction to scaling exponent the
series converges poorly and the second-order term
gives a large negative correction. This is consistent
with general experience of e expansions when three-
loop diagrams have to be included and is due to the

asymptotic nature of these expansions. Pade approxi-
mants suggest a value of D+/D =1.17.
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