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Lower critical field of an anisotropic type-II superconductor
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We consider the Ginzburg-Landau free energy of' the anisotropic mass form in the presence

of a magnetic field of arbitrary f'ixed direction. It is shown that the free energy may be

transformed into the isotropic Ginzburg-Landau form with a K that depends upon the direction

of the magnetic induction B relative to the crystal lattice. The lower critical field H, t is then

found for arbitrary direction of B. For highly anisotropic crystals the angular dependence of H, t

can exhibit a discontinuity or a cusp. The special case of a crystal with uniaxial symmetry is

considered in detail.

I. INTRODUCTION

Recently, there has been a growing interest in the
effects of anisotropy on the magnetic properties of
type-II superconductors. ' ' Although single-element
superconductors do not exhibit a large degree of
critical-field anisotropy, the layered and filamentary
superconductors in particular may exhibit anisotropies
of the upper critical field of more than an order of
magnitude. ' One would thus expect a similar-,

though slightly smaller, anisotropy of the lower criti-
cal field. However, to date there has not been any
theoretical treatment of the anisotropy of H, i that
~ould apply to such highly anisotropic materials. As
experiments on (SN)„, TaS2(pyridine) lg, and other
such materials are currently being performed, ' it

would appear useful to have some theoretical results
to compare with the data.

For the layered and filamentary superconductors,
the appropriate Ginzburg-Landau free energy is of
the Lawrence-Doniach Josephson-coupled form. '

For sufficiently low temperatures such that the coher-
ence length perpendicular to the layers (filaments) is

less than the interlayer (interfilament) spacing, the
normal cores of the vortices fit between the layers
(filaments) if the field is directed parallel to them.
Clearly, this should have drastic effects upon H, i,
since it costs very little energy to fit a vortex between
the layers (filaments). This problem will be dis-
cussed in a further publication.

Near T„ the coherence length perpendicular to the
layers (filaments) extends over many layers (fila-
ments), and the system acts as a bulk anisotropic su-
perconductor. In this temperature region, the aniso-
tropy of H, 2 obeys a simple anisotropic-mass law. "'
We shall see that the anisotropy of H, i obeys a more
complicated law, arising primarily from the fact that,

II. ANISOTROPIC-MASS MODEL

We assume that the Helmholtz free energy in. the
superconducting state, relative to that in the normal
state in zero field, can be written in the anisotropic-
mass form" "
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where b( r ) = "7 && a is the microscopic magnetic in-
duction, a is the vector potential, e is the magnitude
of the electronic charge, u and P are the usual
Ginzburg-Landau parameters, ill( r ) is the order
parameter, t)„—= i)/t)x„, x„ is x, y, z for p, =1, 2, 3,

even in the bulk, the microscopic magnetic induction
is not parallel to H, i.

In Sec. II, we discuss the anisotropic-mass
Ginzburg-Landau free energy and write it in dimen-
sionless form. In Sec. III, we show that the free en-
ergy may be mapped onto the usual isotropic
Ginzburg-Landau free energy with a Ginzburg-
Landau parameter K that depends upon the direction
cosines of the local magnetic induction relative to the
crystal symmetry axes. In Sec. IV, we calculate the
upper and lower critical fields and examine in detail
the lower critical field for the case of planar isotropy,
which is applicable to layered and filamentary super-
conductors near T, . Finally, in Sec. V, we discuss
additional ramifications of our solution.
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respectively, and the integration extends over the
volume V of the specimen. We assume that the
direction of b is constant throughout the supercon-
ductor, which implies that b may be written as

b(r) =b(r)(sin8cosg, sin&sin@, cos8) (2)

in spherical coordinates. In the absence of a field, we
have p = go = (—a/p) '~2 in equilibrium below T, . We
further define a penetration depth h. ( T) and a coher-
ence length g(T) via

1/2

)(T) =
16m e2&'

(3a)

and

,1/2

g(T) =
2m 0!

2

(3b)

where

m = (mtm2m3)

We next express all quantities in dimensionless
form, using the conventional normalization' ' in
which length is measured in units of A. , magnetic
field in units of &2H, = go/22rgk, vector potential in
units of XJ2H, =go/2ng, and energy density in units
of H2/4n =@o2/(322r2$28. 2) =a /P, where go=bc/2e.
The reduced free energy is then given by

Equation (8) and the equation

b= 7x ap

comprise the starting point for our calculation. Equa-
tion (8) clearly reduces to the isotropic form if' each
of the m„equals m, but we are interested in the. case
in which not all of the m„are equal. For generality,
we assume that all of the m„are different. In Sec.
111, we show how Eq. (8) can be transformed to iso-
tropic form.

III. TRANSFORMATION TO ISOTROPIC FORM

x~ = (m/m„)'~2x~ (10a)

which implies

We note that Eq. (8) contains the mass-anisotropy
factors m/m~ in the gradient and vector potential
terms, but not in the b' term. Although a single set
of transforrnations that will transform this equation
immediately to isotropic form can be found, it is in-

structive to break the transformation into three parts:
an anisotropic scale transformation, a rotation, and fi-
nally an isotropic scale transformation. During each
of these transformations, it is necessary to preserve
Maxwell's equations.

We first make the anisotropic scale transformation,

where

2
I'+ X ——t)„+a~ f +b

m p K

8„=(m„/m ) '~2tl„'

This transformation is subject to the restriction

pe, b„=X a„'b.' =0,

(lob)

f=Allo.
and K = &/g is the effective Ginzburg-Landau param-
eter. We now write f in terms of a magnitude and a
phase,

which implies

b„= (m/m„)'"b„' (12)

f=foe",
and introduce the gauge-invariant quantity,

1-
ap= a+ —Vy

K

(7a)

(7b)

Furthermore, using Eq. (4) we obtain

', 1/2 1/2
m~

' ~ m~mpb„=~ 2 &»Q&gp
m p~ m

1/2

usually referred to as the superfluid velocity, to ob-
tain

m

p~ my

~r
+»v~p~ pv (13)

1
F, = Jl d r i fo + fo——

where p„p, and y are all different. Since we require
b'= V x ap in the primed frame, we obtain

(rl f )2ya2 f2 +b2
mi K

(8)

ao~ = ( m„/m ) '~2ao„

With this definition of m,

(14)

(15)
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and the reduced free energy may now be written

F, =J d2r'
.fo +—2.fo +

2
('7.fo)2

1

the reduced free energy is now in the much simpler
form,

F*=) d'r"
.fo +—,fo +——., (& .fo)'

i2/2 + y ftl bi2

p

(16) I I2

+ap' fp2 + (24)

We observe that this scale transformation has re-
moved the m/m„ factors from the gradient and vec-
tor potential terms, but has introduced them into the
magnetic energy term. If we are to perform an addi-
tional transformation we would like to transform the
magnetic energy term

(17)

without disturbing the symmetry of the other two
relevant terms. Hence, we desire a transformation
that also has the fo'rm x~ =x~/n, (25a)

This equation is nearly in the desired isotropic form,
as we have transformed all of the mass parameters
into one parameter n. Since the reduced free energy
also contains the parameter K, which is the only
parameter of the isotropic Ginzburg-Landau reduced
free energy, it is desirable to perform a simple scale
transformation in order to put the free energy into a
single-parameter form.

We therefore make the transformation

and
l2 I I2

ao ap

(18a)

(18b)

B~ = o.'B~

ap~ = Op~

b„" =nb„

(25b)

(25c)

(25d)

if such a transformation can be found. Clearly, Eq,
(18a) can be satisfied by a rotation. The problem
then is to find a rotation that satisfies Eqs. (17) and
(18b).

Let us consider a vector x in the primed and
double-primed frames,

I~l
x = x~e~ = x~e~= ~~e

F, =a '&I d2F [ fo + .fo

+ - (4'f', )2+ /,2-, + b'] (26)

where

It is easy to show that this transformation satisfies
Maxwell's equations. We finally have

~ll II
and choosing the A.„„such that b is only in the e,
direction,

b„" =b"5„3

we find that ap„and ap„' also satisfy Eq. (20), and
that

(21)

$™b„' = $ A.„„A~~5„28~2b"
mI - Ave mJ

1

l/2
2 b 2 b

2ffl ~
(22)

EEence, Eqs. (17) and (18b) can be satisfied by the
rotation described by A.„„.

Since in a rotation the volume element transforms
according to

where the second equality follows from the fact that
the primed frame has the same axes as the unprimed
frame. Set ting

x,' = X it„„x„"

K=K 0! (27)

—2'7 fo+aofo=.fo(1 fo). .
2 .

K
(28a)

and

V xb= V x(V xao)= —foao . (28b)

This equation is of the same form as the isotropic re-
duced Ginzburg-Landau free energy, with an effec-
tive K that depends, via n, upon the direction cosines
of the magnetic induction with respect to the crystal
lattice. It remains merely to find o..

We remark that since we have transformed the
Ginzburg-Landau free-energy functional and not
merely the Ginzburg-Landau equations, the transfor-
mations we have performed are not restricted in ap-
plicability to the mean-field properties of the super-
conductor. Rather, they even apply in the critical re-
gion.

The Ginzburg-Landau (mean-field) equations may
easily be obtained from Eq. (26) by minimizing F,
with respect to variations in f'0 and ap„, yielding

d r'=d r" (23) It now remains only to calculate the A.„„and hence
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A AI AII
n. Let us first calculate A3„. Let b, b, and b be
unit vectors parallel to the untransformed, scale
transformed, and rotated local magnetic induction,
respectively. Hence, b =e2 by Eq. (21). By Eq.
(19), a vector g =fb transforms to f =f„'b, where

t 1/2

We therefore have
II I

e„
sing'

= cos8'cos$'

,sin 8' cosf'

—cos$'
cos8' sing'
sin8 sing'

0
—sin8'

cos8',
(36)

1/2
m~

2

(29)

where from Eqs. (31) and (32),
1/2

m1
sin8 cos@ =— sin8cosg,

n m
(37a)

which implies that
r ' 1/2

"(e„b)'
2

and

(30)
1/2

m3
cosH' =—

0. m
cos8

1/2
~ I 1

sin8 sin& =—
a; m

2

sin8 sin@ (37b)

(37c)

1

m~be=(be)

Now in the rotation,

'1 2 1/2

v (e . b)2
m

(31)
In retrospect, we note that the three transformations
we used to map the anisotropic Ginzburg-Landau
free energy onto the isotropic Ginzburg-, Landau free
energy may all be combined into one transformation,

+II I +I ~ I sI=b 'e =b 'e~ =b (32)

where the second equality holds because we have
merely rotated the coordinate axes, holding the direc-
tion of b fixed and thus equal to that of b, and the
rotation preserves the length of the vector. Combin-
ing Eqs. (22), (31), and (32), we have

m~=A
m

2

' 1/2

1/2

' 1/2

$ it„„b„,

1

1 mX~=-
A m~

(38a)

(38b)

e (e . b)2
m

2

1/2
Nl= CK

m
A3 b

1/2

(38c)

or

1/2

m
a 0

m $ ~vpQpv (38d)

a= $ "(e b)'
m

(34)
where b„=b35„3 and a03 0.

A

where the e„b are the direction cosines of b as
given by Eq. (2).

The entire A,„„matrix may now be found in a
II I I

straightforward way. Let us choose e1 = b x e3 and
WI

e2 = e3 x e1. In the primed frame, b is at an angle
aI8' with respect to e3, and the projection of b into the

et —e2 plane makes an angle $' with respect to et.
Hence, the rotation from the primed to the unprimed
frame corresponds to a rotation of p' about the e2

axis and then a rotation of 8' about the e2 axis.
Hence,

e3 = et sin 8' cosqh' + e2 sin 8' sin@' + e2 cos8'

e2 = et cos8'cos@'+ e2 cos8' sin@' —e2 sin8' . (35)

IV. UPPER AND LOWER CRITICAL FIELDS

Since the free energy for the anisotropic supercon-
ductor can be transformed into isotropic form, the
calculation of H(B) is closely related to that for an
isotropic superconductor, with the replacement of K

by K. To show this, we begin by examining how
fluxoid quantization manifests itself in the trans-
formed frame. %e continue to use the normalization
in which magnetic flux is measured in units of
J2H, V = h. $p/22rg, such that the flux quantum $p
becomes 2m/x in reduced units. Integrating Eq. (7b)
around the axes of n singly quantized vortices, we
obtain in the original frame

et = et sin@' —e2 cos@' 4 —f)d l ap= 27TI1

K
(39a)
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where

dl= J/dS b =IItd l a (39b)

quantity ~I in the fully transformed frame via

eIL =o. eIL (47)

27TIl
ql —

II) dl ao=
K

(40a)

where

Applying the transformations of Eqs. (38a)—(38d) to
this result, we obtain in the fully transformed frame

F = B~ot/2' (4g)

where L and L are line lengths in the original and
fully transformed frames. By taking x„=L 5„3 and
using Eqs. (41a) and (33), we obtain I. =a'L, such
that

r
ql = J d S b = tI) d 1 a (401)

Now eI depends only upon 8, the direction of B,
19,20

through its dependence on 2

As can be seen from Eqs. (40a) —(40b) and the
Ginzburg-Landau equations (28a) —(28b), the proper-
ties of the vortex structure in the transformed frame
can be calculated exactly as in the isotropic case, ex-
cept that the usual Ginzburg-Landau parameter K is

replaced by K. However, to relate these properties to
the corresponding behavior in the original frame is
complicated by the fact that the flux density 8 (aver-
aged over a unit cell of the vortex lattice) is not in

general parallel to H. In thermodynamic equilibrium
H(B) is defined via'o'o

tt(K) = 2m Jl dpp[ l (1 —fo )'+ fr ( 7 fo)'

+./o'ao +b ]

which can be reexpressed more compactly as'4

goo

et(k) =27r J~ dp p(1 —fo')

From Eq. (41) we obtain in the limit B 0

H&t(8@)=B+8 +@Htoa(8$)98 sin 8 t)$

(49)

(50)

H(B) = —'7s F(B) (41)
where the component of H, I parallel to B is

(51)

where F(B) is the Helmholtz free energy per unit
volume of the superconducting state relative to the
Meissner state,

+el lla KEt K)/

In the large 2 limit, "
(52)

F =Fs/V+ —' (42) H t ~[a (2K) '(lnK +0.497) (53)

F(8) t +Bl+ [~(B)—Bl'
1+[2~ (B)—1]P„

(43)

where Pa=1.1596 for the equilateral triangular lat-
tice. ' When the flux density is equal to

Close to H, q, we can directly apply Abrikosov's
results' to first find the Helmholtz free energy in the
fully transformed frame and then use the fact that
B =B, derived from Eqs. (33) and (38c), to obtain

Since 2 depends explicitly upon 8 and qh for an an-
isotropic superconductor, H, ~ will be parallel to B only
when both are along a symmetry direction. When
the anisotropy is large, H, [ and B may be nearly per-
pendicular for some directions of B (or H, t). To il-

lustrate the angular dependence of H, I, we shall con-
sider in detail the special (but important) case of
fl1x = Ply A mq.

Setting' e=m„/m„we write for' e & 1

B,l =BK(B) (44)
=K(K( cos 8 + sot n8) (54)

H, l =B,l = BK(B)

For widely separated vortices close to H, I, '

F flKI

(45)

(46)

where n = ~B/2n is the number of vortices per unit
area and e~ is the energy per unit length stored in an
isolated vortex line, where both n and e~ are ex-
pressed in reduced form. From Eqs. (26) and (42) it
can be seen that eI is related to the corresponding

bulk superconductivity is quenched ( fo 0), and the
magnetic field as defined by Eq. (41) is also equal
to ' ' I ' '2 2 = ~&(sin'8+ e ' cos'8) '~' (55)

where K&=K(m/m„)' '. The cases o &1 and ~) 1

correspond to materials with layered and filamentary
structure, respectively. Equation (55) has the same
dependence on angle as Eq. (54) with the replace-
ments 8 90' —8 and e ~ '. The component of
H, ~ perpendicular to B and parallel to 8 is given in
the large-K limit by

H„u-= ' " (l K —0.503)
4K&

(56)

where K( = K(m/m, )' . For ~( )) 1 and e & 1, we
see that K &) I for all 8. For e & I we write
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which depends upon the sign of 1 —~. The com-
ponents of H, t and H, t

= IH, t I itself are related by
the following symmetry properties:

H t ~~a (K m„/m, m, /m, 8)

= H„,
~
a( K, m, /m, m„/m, 90' —8), (57)

H'u a(~, m„/m, m*gm, 8)

H„~a (—g, m, /m, m„/m, 90' —8), (58)

H't(K, m„/m, m, /m, 8) = H't (~,m, /m, m„/m, 90' —8)

(59)

In Fig. 1, we have plotted the angular dependence
of H, t for K(=K(m/m, )' =10, e=lo ', normalized
to its value at 8 =0. For materials with filamentary
symmetry, this graph corresponds to e = 10, K&

=K(m/m„)' =10, and 8 90' —8. We note that at
the symmetry directions, 8 =0' and 8 =90', H, ~ is
parallel to B, as expected. However, for 8 —70—75',
H, ~ is directed about 45' from B. Hence, the rnagni-
tude of H, j is more sharply angular dependent near
8 =90' than is H

$ II+ This strong angular depen-
dence of H ~ near 90 is greatly enhanced as ~ is de-
creased, as is shown in Fig. 2 for ~ &

= 10 and
~ = 10 . In fact, for 6 = 10 H&~gg is so much
larger than H„„a that H, t(8) has a peak at 8 —80'.

In Fig. 3, we have plotted the angular dependence
of H ~ for K& = 10 and e = 10 . Since the angular
dependence of H, I is so strong near 8 =90', we have
plotted the logarithm of H, t/H, t (8=0) as a function
of the logarithm of 90' —8. Note that at 8 —3', H ~

has a peak, which is roughly 40% larger than its value
at 8 =0. In the range 90' ~ 8 & 87, H ~ varies by a
factor of 20.

Since in Figs. 1—3 we note that, near 90', H, ~ is
nearly perpendicular to 8 for ~ && 1, it would be in-
structive to plot H, t versus the angle 8H it makes
with the e, axis. In Fig. 4, we have plotted H

&

versus 8H for materials with layered symmetry for

1.0
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Z) O

? 204

0.2

0 5 l0 l5 20 25 3055 40 45 50 55 60 65 70 75 80 85 90
8 (deg)

FIG. 2. Shown are the components of H, &
parallel and

perpendicular to B, and the magnitude of H, ~, as a function
of 8 for K& =10 and a=10

K& = 10, & = 10 ', 10 ', and 10 . We observe that
the curve for ~ = 10 ' is smooth and monotonic, re-
flecting the fact that H, t(8) vs 8 does not have a

peak. However, for e=lo and 10, H, t(8H) is

multiple valued for small 8H. Comparing this figure
with Figs. 2 and 3, we see that as 8 increases roughly
to the minimum in H, t(8), both H, t(8) and
H t(8H) decrease monotonically. When this
minimum is reached, however, an increase in 8 cor-
responds to a decrease in 8H. This decrease in 8H

with increasing 8 continues until the maximum in
H ~ is reached, after which 8~ increases very rapidly
with a slight increase in 8.

In Fig. 5, we have plotted H, t(8H) for filamentary
systems for K& = 10, e = 10 ', 10, and 10 . Thus
8III =90' on the graph corresponds to the field paral-
lel to the filaments. We note that even for ~ = 10 ',
H, t(8H) is multiple valued. , As in the layered case,
8 -90' corresponds to a relatively small angle for 8H.
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FIG. 1 ~ Shown are the components of H, ~
parallel and

perpendicular to B, and the magnitude of H, &, as a function
of the angle 8 that B makes with the z axis, for K& = 10 and
6 = 10 '. The curves are all normalized by H, ~ (8 =0).

FIG. 3. Shown are the components of H, i parallel and

perpendicular to B, and the magnitude of H, ~, normalized

by H, &
(8=0), and plotted as a function of 90' —8, for

K& = 10 and ~ = 10 . Note that this is a log-log plot.
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V. DISCUSSION
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1
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01

(60)

which is clearly v y
~ ~

ver comp ica e .1' ted. We also note that
of the vortices

the vortex lattice in the laboratory ra
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siderably distorted. Since in the transformed frame
the equilateral triangular lattice is degenerate with
respect to rotations, for a given tl and $ for B, there
will be an infinite number of possible lattices in the
laboratory frame. This will be discussed further in a

separate publication. Our finding that the aniso-
tropic-mass Ginzburg-Landau theory leads to a de-
generate vortex lattice is in'disagreement with earlier
work by Tilley, "who concluded that such a theory
predicts locking of the vortex lattice onto the crystal
lattice.

Finally, we note that the anisotropic-mass model
for a superconductor has applications to other physi-
cal problems. For example, the Ginzburg-Landau
free energy for a smectic liquid crystal is of the
anisotropic-mass form, where the 2eat/c is replaced
by (2n/d)Sn, where Sn is the locai variation in the
unit vector parallel to the local optical axis, and d is
the spacing between the layers in the smectic phase. '
Ho~ever, as the analog of the magnetic energy term
in the free energy is not of the form ('7 & Sn )2, but
rather of the form K22(V Sn)'+ 3K3[(n 0'7)Sn]',
where no is a unit vector parallel to the mean optical

axis, the transformations we have performed will not
preserve the form of these terms.

Recently, Hertz has discussed several gauge models
for treating spin-glass frustration. ' Our model would
be similar to an anisotropic-mass extension of his
Abelian model, but is only formally identical to it if
one were to use the n 0 replica trick, which has
important consequences. Nevertheless, the transfor-
mations we have employed would map the aniso-
tropic-stiffness analog of his model into an isotropic-
stiffness model, just as in the case we have con-
sidered.
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