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A-theory of the dynamical properties of a helium film near its superfluid transition is present-
ed. Details are given of previously published results on the linear response of the film to a sub-
strate oscillation. A key role is played by the diffusive motion of quantized vortices, which be-
come free above the thermodynamic Kosterlitz-Thouless temperature T, but which only exist as
bound pairs below T, . An analogy with a two-dimensional plasma is presented and used. Con-
tact is made with experiments involving oscillating substrates. The nucleation of single vortices
from pairs is calculated, and this process is balanced against pair recombination to calculate the
rate of decay of superflow below T, . Formulas are worked out for the propagation and damping
of third sound, and a discussion is given of hydrodynamic modes. An analogy between the
dynamical equations for the film and Maxwell's equations is exploited.

I. INTRODUCTION

A. Purpose and outline

It has long been recognized that the decay of per-
sistent currents as well as other dissipative processes
in superfluids or superconductors are directly related
to the rate at which vortices move across the flow
path. ' It has become clear, following the pioneer-
ing work of Kosterlitz and Thouless, " that in two-
dimensional systems (i.e. , in films thin compared to
the superfluid correlation length), vortices are the
key to understanding the transition between the su-
perfluid and normal phases. " It is therefore natural
to combine the Kosterlitz-Thouless analysis of the
equilibrium distribution of interacting vortices with
the earlier descriptions of vortex motion, in order to
understand dynamic processes near the superfluid
transition in thin films. A summary of the results of
such an analysis has been given by the present au-
thors in an earlier paper, ' hereafter referred to as I.
(See also the work of Doniach, Huberman, and
Myerson. ") Applications to superconductors have
also been discussed recently by several authors. " '

In the present paper we shall give a more detailed
derivation and discussion of the results previously
presented in I. In addition to the application dis-
cussed there —the response of a film to an oscillating
substrate, corresponding to the experiments of
Bishop and Reppy' —we shall apply the theory to. the
propagation of third sound, and to the calculation of

hydrodynamic modes above the transition tempera-
ture.

In outline, this paper is organized as follows. We
first give a brief review of superfluidity in two dimen-
sions, and discuss the philosophy underlying our cal-
culations. In Secs. II —IV we apply the theory to situ-
ations, such as the oscillating substrate experiment,
in which the supercurrent is divergence-free, and
there are no macroscopic variations in the thickness
and temperature of the film, In Sec. II, we consider
the equations of motion for vortices and sketch an
analogy with the diffusive motion of a system of
two-dimensional charges. In Sec. III, we discuss the
response of bound and free vortices to a small ampli-
tude oscillation of the substrate (linear-response
theory) in a form suitable for comparison with the
experiments of Bishop and Reppy. Nonlinear
behavior is discussed in Sec. IV, including the nuclea-
tion theory of the decay of superflow in the super-
fluid phase. This section includes discussion of the
effects of vortex creation and annihilation at the
boundary of the film.

In Sec. V, we generalize our discussion to the case
where the divergence of the supercurrent is nonvan-
ishing. We discuss the equations of motion in this
case, and point out an analogy with the Maxwell
equations for electrodynamics in two dimensions.
We discuss here the applications to third-sound pro-
pagation and to the hydrodynamic modes above T,.
Section VI contains a summary of our key results.

Four related topics are relegated to appendices: the
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effects of interactions with an irregular substrate (A);
some details and justifications for the dynamical
theory (8); superfluid transition in films of finite
thickness (C); and a compendium of relevant results
from the static theory (D).

B. Superfluidity in two dimensions

It is generally accepted that Bose condensation is
the root cause of the anomalous properties of bulk
liquid He near and below the A. temperature T& '.
For a strongly interacting liquid like He, one usually
means by Bose condensation that, at any temperature
below T), ', a three-dimensional sample of the liquid
large on the scale of the bulk correlation length, and
without hydrodynamic flows, may be characterized by
a macroscopic order parameter Q, a complex number
related to the average value of the field operator

P,„(r ). Different values of the phase of this com-
plex number correspond to different broken-
symmetry states, in the same way as do different
orientations of the macroscopic magnetization of a
bulk ferromagnet. As the temperature is raised, fluc-
tuations increase, the correlation length increases,
and, finally, at T&', the order is destroyed. The
modern theory' of this phase transition begins by as-
serting. that the important statistical complexions
whose excitation reduces the macroscopic order are
states characterized by a spatially varying complex or-
der parameter P( r ) defined on length scales down to
a short-wavelength cutoff, which is much larger than
the interparticle spacing but smaller than the corre-
lation length. Each such complexion is assigned a
free energy F[(P], which may be assumed for simpli-

city to have the Ginzburg-Landau form. The ther-
modynamic properties, which follow from doing the
remaining partition sum as a functional integral over

-F/ka T
Q(r) of e s, are believed to be insensitive to the
precise form of the functional F. (For example, the
same critical exponents are presumably obtained for a
wide class of free-energy functionals F.)

In order to describe dynamical properties, one must
consider an order parameter Q( r, t) which is a con-
tinuous function of time t as well as of position r.
The time evolution of P is described, in general, by
stochastic equations of motion, which take into ac-
count interactions with fluctuations on the atomic
scale, not included in the partially smoothed order
parameter P(r, t). Again, a detailed description of
these equations of motion is not necessary for our
purposes: superfluid hydrodynamics and dynamic
critical properties are presumably independent of
these details; identical results should be obtained for
a wide class of models.

The concept of a spatially varying order parameter,
which is needed to understand the critical statics and
dynamics of bulk liquid 4He, becomes even more
central in the case of thin films. There exists a

rigorous proof" that in two or fewer dimensions ma-
croscopic order in the sense of a nonzero space aver-
age of Q,~( r ) (for an infinite system) is incompati-
ble with, and completely eliminated by, thermal fluc-
tuations at any nonzero temperature. At the
phenomenological level, the destruction of long-range
order can be shown to be due to fluctuations in
phase' of the local order parameter.

The importance of phase, as opposed to amplitude,
fluctuations in two-dimensional systems is worth
dwelling on further. In a bulk system near T&, am-
plitude and phase fluctuations are both significant.
In a film, however, one is interested in two-dimen-
sional transitions occurring at temperatures
T « T), , which implies that amplitude fluctuations
(about a deep minimum in the Ginzburg-Landau free
energy) will be generally small. At the same time, a
constant phase change costs no free energy, because
of the degeneracy associated with the broken sym-
metry. Long-wavelength phase fluctuations are cor-
respondingly cheap, even at temperatures below T& '.

These arguments have been substantiated by a de-
tailed renormalization-group analysis' in which it is
shown that in two dimensions the stiffness against
amplitude fluctuations becomes larger and larger as
short-wavelength fluctuations are integrated out —i.e.,
small fluctuations in the magnitude of Q(r) are ir
relevant —at the temperatures of interest for film
transitions. Nevertheless, recognition that the
smoothed order parameter P(r) can pass through
zero at isolated points is crucial to understanding the
phase transition and critical phenomena of the two-
dimensional superfluid. Zeros of the order parameter
are necessary for the occurrence of vortices, which,
as we have remarked, play the central role in the
Kosterlitz- Thouless theory. Specifically, Kosterlitz
and Thouless describe the transition from the super-
fluid to the normal state in terms of the unbinding of
pairs of quantized vortices of opposite sign, moving
in a sea of other vortex pairs. (Some remarks about
the thermodynamic transition are contained in Ap-
pendix D.)

For the purposes of the present paper, we define a
vortex as a point r; ~here the real and imaginary
parts of f vanish. The circulation K; about the vor-
tex is then

( ) d 27rt

where C is a contour enclosing the vortex, n; is an in-
teger, m is the mass of a helium atom, and v, ( r ) is
the "local superfluid velocity, " related to the phase
P(r) of the order parameter by

m m
\

In practice, we need only consider vortices with

n; =+1. The coefficient (t/m) in Eq. (1.2) is chosen
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so that v, ( r ) transforms as a velocity under Galilean
transformations of the system as a whole, i.e., simu1-
taneous motion of the helium and substrate. [By its
definition, P(r) transforms like a one-particle wave
function under Galilean transformations. ] An argu-
ment showing that Eq. (1.2) retains its form in the
case of relative motion of condensate and substrate is

given in Appendix A.
If we neglect fluctuations in the magnitude of P,

other than in the vortex cores, we can define a local
supercurrent derisity.

(1.3)

where the coefficient p, is a "bare value" of the su-
perfluid density, integrated across the thickness of
the film. The value of p, is intended to include the
effects of short-wavelength modulations of the sub-
strate surface, as well as thermal excitations such as
rotons and short-wavelength ripplons, but p, does
not include the effects of vortices separated by dis-
tances greater than our microscopic cutoff.

If the average of v, ( r ) in some macroscopic re-
gion deviates from zero, then there will be a net
mass flow, equal to the average of j,( r ), which is

simply the macroscopic supercurrent for T ( T„or a
"superfluid fluctuation contribution" to the mass
current for T & T,. The goal of the present paper is
to estimate ( j,( r ) ) in various nonequilibrium situa-
tions.

As was mentioned earlier, the motion of vortices is
the sine qua non for the decay of superflows below
T,. The kinetics of the motion of vortices thus be-
comes the central question for the dynamics of fluid
flow. In Sec. II we shall introduce equations for the
diffusion arid net drift of vortices, which we assume
to hold on the "macroscopic scale" of our initial
short-wavelength cutoff. (As in the theories of
three-dimensional hydrodynamics and dynamic criti-
cal phenomena, we assume that most details of the
microscopic equations of motion are irrelevant for
the long-wavelength behavior of interest. ) In princi-

ple, we should then proceed to eliminate successively
the vortex pairs of smallest separation, including the
effects of the close pairs, by renormalization of the
equations of motion of the remaining vortices of
large separation. In practice, we have not carried out
the renormalization calculation in detail. For the in-
teractions between vortices we have simply used the
results of the equilibrium renormalization anlaysis of
Kosterlitz. " (See also the discussion of Young, in
Ref. 9.) We have assumed that the Markovian form
of the vortex equations of motion is preserved under
the renorrnalization group, and that the diffusion
constant D is not drastically renormalized as one goes
to the large distance scale. (An argument that there
is no divergent renormalization of D is presented in
Appendix B.)

It is worthwhile to remark, by way of further justif-

II. DYNAMICAL THEORY

A. Vortex motion

Consider a He film of uniform thickness, thin
compared to a bulk correlation length, on a substrate
which has a very large length L in the x direction and
a large but finite width Kin the y direction. The
substrate is driven with a velocity u„(t) Our goal, .in
this and the next several sections, is to calculate the
response of quantized vortices present in the film to
this motion, the consequent change in the mean su-
perfluid velocity of the film, and the effect of this
response on the inertia and absorption of energy of
the film.

To obtain the coupling between the vortex cores
and the superfluid and substrate velocities, we adapt
ideas of Hall and Vinen' for vortex lines in three di-
mensions. Motion of the vortex core relative to the
local superfluid velocity leads to a Magnus force FM,
whereas relative motion of the vortex core and the
substrate leads to a drag force Fg. We take these
forces to have the forms

and

F 027lh - C/r
( )

fn dt

1 r

FD =~ vn — +8 nz x vn-dr I dr
dt dt

(2.1)

(2.2)

Above, r is the position of a vortex core; p, is the

ication for our approach to vortex interactions and
motions, that there is an important difference
between the behavior of vortices in two and three di-
mensions, as one approaches T, from below. In
three dimensions, the core radius of a vortex (i.e. ,
the "healing length" over which the order parameter
rises from zero to its equilibrium mean value) is of
the same order of magnitude as the correlation
length, which diverges at T,. Although a three-
dimensional superfluid has a finite equilibrium densi-
ty of vortex rings with ring diameters comparable to
the correlation length, and although it is possible to
argue that the three-dimensional phase transition
may be understood as a divergence of the size of
these rings, it does not seem reasonable to neglect
the overlap of the cores of the vortices. In two di-
mensions, however, we take the vortex core diameter
to remain finite as T T, . [Although there is a
length scale ( which diverges for T —T, , this length
plays a relatively minor role in the two-dimensional
system. (See Sec. III A, below. )1 Furthermore, if
bound vortex pairs at the atomic scale are ignored,
the density of vortices is small relative to the finite
core radius, even for temperatures slightly above T, .
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superfluid density, integrated across the film thick-
ness, which would be present in the absence of vor-
tices; z is a unit vector in the z direction; B and B'
are phenomenological drag coefficients describing in-
teractions with the substrate and with thermal excita-
tions such as rotons and ripplons; n (=+1) is the
sign of the vortex; and the other symbols have been
previously defined. The motion of a vortex will be
determined by a balance between the forces described
above and the thermal fluctuations associated with
the interactions that cause the average drag force FD.
The mean motion is obtained by setting FM+FD =0,
which yields

dr =2rrn z x [v„—v, (r)]
dt mkg T

+C[v„—v, (r)]+v, (r) (2.3)

where

D =kgT 8
[(2rrt/m )po B']2+B2

(2.4)

[(2nt/m) p, B'](2m—t/m) p,C=1-
[(2mt/m) p, —B']'+B (2.5)

+C(v„—v,') +v,'+rl;(r) (2.6)

Here the index i labels the vortices (of sign n; = +1),
v, is the local superfluid velocity at r; (excluding the
divergent self-field of the vortex at r;) and q;(r) are
fluctuating Gaussian noise sources whose com-
ponents q; (t) satisfy

We note that in the limit B, B' 0, we also have C,
D 0, so that in the absence of drag forces the vor-
tices would be carried along by the local superfluid
velocity.

The temperature has been introduced in Eq. (2.3)
in a physically motivated way. Considerations —given
in Appendix B—of how thermal fluctuations must
balance the dissipative effects contained in Eq. (2.3)
(in order that the long-time average behavior of a
system of vortices in a substrate at rest be corisistent
with thermal equilibrium) show that one must add on
the right-hand side of this equation a fluctuating
velocity whose autocorrelation fluctuation is propor-
tional to D. With the inclusion of this fluctuating
velocity we obtain our basic equations of motion for
the positions r;(t) of a collection of vortices:

D2m-ep, '
dt

'
mka T

selves to situations where the superflow is diver-
gence-free: '7 v, =0. Of course, we also have
'7 x v, =0, except at the vortex points. We re-
quire, in addition, that the normal component of v,
vanish at the edges of the film, and that v, have the
correct circulation about each vortex point.

The solution to the above equations can be written
in the form

v, ( r) = u, + —z x $ n, '7 G( r, r, )
m

(2.8)

where the symbols not previously defined are u, the
average of v, (r) over the film area and G, a Green's
function describing the flow field (obeying the correct
boundary condition at the film edges) due to a posi-
tive vortex at r, Thus G is the solution of

1 t

B2 B2+ G( r, r, ) = 2m'( r —r,), (2.9)
Bx By

where 5( r —r, ) is concentrated for r in a region on
the scale ao of the vortex core near r, andf

d'r h(r) =1. The boundary condition of no flow
out of the film is satisfied by requiring G( r, r, ) =0
for r on the edges. With this choice of G, the aver-
age over the film of the last term in Eq. (2.8) is seen
to be zero, so that the average of v, (r) is indeed u, .
Far from the edges and the core region G
= ln(~r —rj~/ao), where ao is a vortex core diameter.

The time dependence of the average superfluid
velocity u, (t) produced by the motion of vortices is
given by

du 2~$ „dr;
n;z &&dt; mL8' '

dt
(2.10)

To understand Eq. (2.10), note that the displacement
of a positive vortex by an amount dy in the y direc-
tion changes the average velocity in the x direction in
a strip of width dy from (rrt/mL ) to +—(rrt/mL ).
Equation (2.10) is a microscopoic restatement of the
equation for the decay of two-dimensional superflow
due to vortex motion, as discussed by Langer and
Reppy. Similar ideas were used earlier by Ander-
son. '

Equations (2.6), (2.8), and (2.10) are our basic
dynamical equations. These equations are consider-
ably illuminated by an analogy with the dynamics of a
two-dimensional plasma, confined between capacitor
plates, and subjected to an oscillating electric field, in
which charges move by diffusion. We develop this
analogy in Sec. II B.

(q, (r) rig(r') ) =2D5 J8 &5(r —r') (2.7) B. Analogy with diffusive motion of electric
charges in two dimensions

In order to provide a complete dynamical descrip-
tion, we must relate v, to the positions of the vor-
tices. In the present section, we shall restrict our-

The plasma analog of the system described above is
the following. We imagine two-dimensional charges
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dr; D
n;qpE( r;) + 7t;

df kgT
' (2.11)

where E( r;) is the electric field at r;, excluding the
divergent self-field of the charge at r;. The mobility
of the charge has been written as (D/ktt T) where D
is the diffusion constant and T is the temperature of
the system. The fluctuating velocity q;, which satis-
fies Eq. (2.7), may be considered to arise from in-

teractions with a heat bath at temperature T. The lo-
cal electric field E( r ) is determined by the equation

E( r ) = (E) +2qo $n, '7G( r, r, ) (2.12)

where G( r, r, ) is minus one-half the electrostatic
potential due to unit charge at r, when the capacitor
plates are grounded. G then obeys Eq. (2.9) and the
boundary condition discussed below that equation,
namely, G(r, r, ) =0 for r at the plates. The aver-
age electric field (E) is related to the external field

E,„„due to charging the capacitor plates, as follows:

moving in the xy plane. " Let the motion be confined
to the region between two capacitor plates (lines in

our two-dimensional space), parallel to the x axis and
of large length L. Let W be the distance separating
the plates. %e take the charges to have the values
nqo(n = +I), where qo will be specified below. The
Langevin equation for the diffusive motion of a

charge n;qo at r; is

III ~ LINEAR RESPONSE

A. Dynamical dielectric constant

For small substrate velocities at a finite frequency
cu, the inertial and dissipative properties of the heli-
um film may be related to a dynamical dielectric con-
stant defined as follows:

u, (~) = [ I —e '(~) ] v „(tv) (3.1)

where u, is the space average of v, ( r ), as in Eq.
(2.8). In the plasma analog, this equation is the con-
ventional relation

4m P(sv) = [1 —e '(tv)]E, „,(tv) (3.2)

Furthermore, by comparing the interaction energy of
a pair of charges and a pair of vortices, one obtains
the correspondence 2qo ~ 2mp, (ttlm)'.

The motion of vortices in a helium film on an os-
cillating substrate is thus equivalent to the diffusive
motion of two-dimensional charges between capacitor
plates subjected to an oscillating potential difference.

. This analogy will prove very useful in calculating the
inertia and absorption of energy of the system. We
turn to such calculations in Sec. III A. We shall use
the language of charges or vortices interchangeably,
the equivalences given in the last paragraph always
being understood.

(E) =E,„,—47r P (2.13) The momentum per unit area of film is given by

where P is the average dipole moment per unit
area of the system of charges. The rate of change
of the average dipole moment due to the motion of
the charges is

dp'
~ n, qo dr,

0'/ L W 6'f
(2.14)

and

qoE( r ) ~ (27rp,"tr/m ) z && [ v „—v, ( r ) ]

47rqo P ~ (2mp,'tt/m ) z && u,

qoE, „,~ (27r p, t/m) z x v„

Note the analogy between the pairs of Eqs. (2.6) and
(2.11); (2.8) and (2.12); and (2.10) and (2.14). The
only difference in form is contained in the second
and third terms on the right of Eq. (2.6), hereafter
called the "convective" terms. These terms carry an
isolated vortex in the direction v„and leave un-
changed the separation vector of an isolated pair.
Thus the convective motion of single vortices and
pairs does not contribute to du, /dt in Eq. (2.10).

If we ignore these terms we obtain the transcrip-
tion

g ( r ) = p,' v, ( r ) + (p —p,') v „ (3.3)

The reaction force on the substrate due to the film,
per unit area, is equal to dg/dt, and —the power dis-
sipated per unit film area is the time average of
v„dg/dt, namely,

Po= —,
'

p,'(v„'")'svIm[ —e '(tv)] (3.4)

(3.5)

where 3 is the surface area of the substrate. The
force exerted by the film on the substrate also leads
to a shift 4P in the period P of the harmonic oscilla-
tor given by

2AP ~ ps

P M
(3.6)

In attempting to calculate e(tv), different regimes
of temperature and frequency must be distinguished,

If the substrate is part of a simple harmonic oscillator
with mass M much greater than the mass of the heli-
um film, the stored energy is

z
M(v„""")'. If there

are no losses other than the power dissipated in the
film, then the 0 of the system is given by

p,'W
Q

' = Im[ —e '(t0) ]
M
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From a conceptual point of view, the most straight-
forward regime corresponds to temperatures below
the Kosterlitz-Thouless temperature T, and all fre-
quencies cu such that cu & D/ap2. We proceed to
sketch the calculation for e(cu) in this regime. Ac-
cording to the Kosterlitz-Thouless theory, the equili-
brium thermodynamics below T, is described by a di-

lute gas of pairs of renormalized vortices. The
dynamics of an isolated pair is obtained by subtracting
the Langevin equations for two vortices of opposite
sign moving in their mutual velocity fields and sub-
ject to an oscillating external driving force. Working
in this way with Eq. (2.6) or (2.11), we find the fol-
lowing equation of motion for the relative coordinate

dr 2D c)U+
dt kgT ()r

In the plasma language of Sec. IIB

U( r ) =2qp2 Inr —qp5E' r 2tcp

(3.7)

where p, o is defined in Appendix D, and 5E is a small
macroscopic field, which we take to vary sinusoidally
in time with circular frequency co. The noise source
7i (t) obeys (q (t)qa(t') ) =4DB(t —t')8 a . It may
be worth emphasizing that the convective terms in

Eq. (2.6), i.e. , the second and third terms on the
right, cancel between the two members of the pair
and do not enter Eq. (3.7) for the relative motion.

As in the Kosterlitz-Thouless theory, which we
wish our dynamic theory of pairs to approach in the
static limit, we include the effect of smaller pairs on
the pair singled out in Eq. (3.7) by a screening
correction to the interaction energy. This then be-
comes

pr
U( t') =2qp J —qpSE ' r —2p, p . (3.8)'p r'e(r ')

de
eb(cu) =1+J dr g(r, cu)

0 dr

which form was earlier written down' on intuitive
grounds. The function g(r, cu) is a response function
for pairs of separation r; g (r, cu) = 1 corresponds to
local equilibrium. There are two scales of length that

(3.9)

Here e(r) is Kosterlitz's static length-dependent
dielectric constant. We use a static dielectric function
in Eq. (3.8) because the screening is produced by
pairs of small separation, which relax more rapidly
than the larger pair being considered in Eq. (3.7).
The properties of G(r) are reviewed in Appendix D,
below.

In Ref. 22, Eqs. (3.7) and (3.8) were used to calcu-
late —via a Fokker-Planck equation —the time-
dependent polarization per unit area, to linear order
in 5E, Without further approximation, it was shown
that the resulting bound-pair contribution to the
dynamical dielectric constant has the form

enter this response function: the coherence length
$, defined in Refs. 10 and 22 and in Appendix D,
and the diffusion length rD —= (2D/cu)' ' If.g « ro,
as is true for the frequencies at which experiments
have been done for essentially all T & T, (see Sec.
III B), then one finds'2 to a rather good approxima-
tion that

g(r, cu) =14Dr /(14Dr —icu) (3.10)

Reg(r, cu) = H(14Dr ' —cu)

Img(r, cu) =
4

rrr8(r —414D/cu)

(3.11)

(3.12)

where 8(x) =1, for x )0 and 0(x) =0, for x & 0. It
then follows that, for T~ T„(e)cu=eh(cu), where

and

Rebb(cu) = e(r = (14D/cu)'t') (3.13)

1
Imbb(cu) = —,rr r (3.14)

Eqs. (3.4), (3.5), (3.13), and (3.14) are the principal
results of our theory below T, and give the inertia
and dissipation of weakly driven films in this region.
The restriction cu & D/ap2 mentioned below Eq. (3.6)
is actually not very restrictive at all (see Sec. III B).
It means simply that for the theory to apply, the fre-
quency should not probe microscopic lengths where
the idea of a low density of renormalized pairs is
inapplicable.

Note that nothing dramatic happens to eb(cu) as T
approaches T, from below. The point is that the
thermodynamic T, is the temperature at which pairs
of infinite separation unbind. On smaller length
scales even above T„ the Kosterlitz recursion rela-
tions' show that the charged system still behaves like
an insulator. Above T„ there is a correlation length
g+( T) which determines the length scale above which
it is not meaningful to speak of pairs; it is then more
accurate to associate one free charge (vortex) per
(.(+)' of film area. Thus above T, we must modify
Eq. (3.9) to read

&'+
eb+(cu) = I + Jl dr g(r, cu)

'0 dr
(3.15)

and add to this bound-pair effect the contribution of
"free vortices. " Eqs. (3.10)—(3.12) for g(r, cu) remain

The physics of Eq. (3.10) is simply that the diffusion
length determines the crossover between the smaller
pairs which can and the larger pairs which cannot
equilibrate to the oscillating field. Under the assumed
conditions the integral (3.9) may then be well es-
timated by noting that in the range of separations r
for which g(r, cu) passes from its low to its high-
frequency behavior, the dielectric constant e(r) is a
slowly varying function of lnr. We may thus approxi-
mate
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dPf 2 D
fq E

where nf is the density of free charges (-(+'). Ad-
ding this contribution to the dipole moment of the
bound pairs we then get for T & T„

(3.16)

e(M) = ey (QJ) +47I I (7/Cd (3.17)

where a- is the electrical conductivity in the plasma
analogy,

cr = nfqoD/ks T (3.18)

Returning to the language of vortices, we set

qo «mt'po/m2. The formula for e(cu) may then be
used in Eqs. (3.4) and (3.5) to derive observable
consequences.

It should be remarked that the quantities (+, nf,
etc, , have only been defined, so far, up to numerical
factors of order unity, This lack of precision is not
serious for our purposes, since we will not attempt to
calculate the absolute values of dynamic quantities.
Nevertheless, it is possible to define a number of
correlation lengths in a precise way and then discuss
the differences between these lengths.

In the context of the superfluid or XY model, it is
natural to define a correlation length for the order-
parameter correlation function from the requirement

(P'(r) P(0) )
—e

' ", (3.19)

for r ~. One may also define a screening length

k, ' from the decay at large distances of the vortex-
charge correlation function

(N ( r ) N(0) ) —exp( —k, r ) (3.20)

where N(r) is the vortex-charge density defined in

Eq. (5.3), below. There is reason to believe'4 that
k, ' and $+ differ by precisely a factor of 2,

k, =2$p (3.21)

In the Debye-Huckel theory, the relation between k,
and nf is

valid when rD (( (+. The region of temperatures for
which g+ = ro is more difficult to deal with, but we
find in this region that the response is dominated by
free vortices. It therefore suffices for practical pur-

poses to retain Eqs. (3.10)—(3.12) above T,
As far as the free charges are concerned, we make

a "Debye-Huckel" approximation, in which each
charge diffuses in the macroscopic electric field. We
thus obtain a contribution Pf to the dipole moment
per unit area, given by

defined, and even within the Debye-Huckel theory
there is some arbitrariness in the definition of nf. If
we simply identify eb with ~„ the dielectric constant
at T„and we use the Kosterlitz-Thouless result
qo/e, k sT, =2, we obtain from Eqs. (3.21) and (3.22)

2
-2

ks 0+
Elf

8 7r 2' (3.23)

B. Comparison with experiment

A detailed comparison of the linear-response
theory of Sec. III A and the oscillating substrate ex-
perirnent has been published together with the
description of the experiments. ' We therefore
confine ourselves here to a qualitative discussion of
how the theory explains one striking feature of the
observations, namely the peak in the dissipation at
fixed frequency as the temperature is raised.

The basic equations for making correspondence
between theory and this feature of the experiment
are Eq. (3.5) for the dissipation and Eqs. (3.9),
(3.15), and (3.17) for the frequency-dependent
dielectric constant.

From these equations, one sees that the bound-pair
contribution to the imaginary part of the dielectric
constant is given by

(p, ) '
Immi, (co) = rr4y2 I = —In, (3.24)

t2 4, i ]4D
m'kg T ' a2(

where we have used Eq. (3.14) and expressed the
derivative of the length-dependent static dielectric
constant in terms of the length-dependent activity via
the Kosterlitz recursion relations. '9 (See also, Appen-
dix D.) Since y'(t) measures the number of pairs
with separation aoe', Eq. (3.24) says very physically
that the imaginary part is proportional to the number
of pairs (on the length scale determined by the fre-
quency and the diffusion constant) whose motion is
maximally out of phase with the driving force. Now,
as one raises the temperature at fixed I, y' grows
smoothly, reaching the value (47rl) ' at T = T, and
continuing to grow, without any discontinuity at T„
until the bound-pair contribution is cut off by the
upper limit in Eq. (3.15). This is the origin of the
low-temperature side of the peak. At the high-
temperature end, the peak is due to the motion of
free vortices. Here the imaginary part is given by the
second term of Eq. (3.17). Since the number of free
vortices, proportional to ((+) 2, grows as tempera-
ture increases, this imaginary part dominates all other
terms at high temperatures, and one obtains from
Eqs. (3.5) and (3.18) the result

47Tqp nf2

~bka T
(3.22) r 1

m kBT
M 2nf D

1

(+
F (3.25)

Clearly, there is not really a sharp line between free
charges and bound charges, so that eb is not precisely Here we have written nf = (F/f2+), with F a coeffi-
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cient of proportionality which we expect to be of or-
der unity. Now f+= aoexp[2m/x( T) ], where
&(T) = b(l I —T/T, l)' 2 and b is a nonuniversal con-
stant. "0The growth of (+ as the temperature is
lowered produces the increase in dissipation. This is
the explanation of the high-temperature end of the
peak in the dissipation.

The fit of theory and experiment involves the ad-
justment of several parameters —explained in detail in
Ref. 25. It is therefore important to emphasize that a
good correspondence is obtained with reasonable
values for the parameters. In particular, the main
parameter of the dynamical theory, the diffusioin
constant D has to be assigned a value of the order of
10 4 cm2/sec. This is consistent with our idea that D
is a microscopic quantity not significantly renormal-
ized by the transition to larger length scales. (See
Sec. I and Appendix B.) At the microscopic level we
estimate D by dimensional arguments (Appendix B)
to be of order f/m —10 ~ cm2/sec. As explained in
Ref. 25, the other parameters in the fit also take on
reasonable values. We also remark in passing that
with this value of D the diffusion length rD
—= (2D/co)'/ —10 cm for the experimental fre-
quency -1 KHz. Thus rD is indeed'much larger than
the core radius ap 10 ' cm, as assumed in Sec. VI.

A more stringent test of the theory is possible if
the experiment is done at several frequencies on the
same film. If the basic ideas of the theory are
correct, the dissipation peak, and the corresponding
drop in the superfluid density should move to higher
temperatures as the frequency is increased. The rea-
son is, of course, that one then shortens the diffu-
sion length and thus probes the system on shorter
length scales which soften at higher temperatures.

~ exp

~ exp
r 2

C

(4.3a)

where I'( r ) is the number of pairs per unit film area
per unit area of pair separation in the neighborhood
of the separation r.

In a finite field E, which we take to point in the x
direction, the potential U(r ) of Eq. (3.8) has a sad-
dle point at r, = (r„0) where r, is determined by the
equation Er, ~(r, ) =2qo. (See Fig. 1.)

To calculate the rate of nucleation of free vortices
from bound pairs, we follow the standard method of
seeking a stationary solution of Eq. (4.1) in which
there is a steady current of pairs passing over the
saddle point shown in Fig. 1. Making an expansion
of U( r ) in this neighborhood, and defining
U(r„0) —= U„we obtain

exp( —U/ksT) = exp( —U, /ksT)

x exp[qo (Bx) /ks Te(r, ) r, ]

xexp[ —
qo (Sy) /ksTi(r, )r, ]

(4.2)

'Here Sx and Sy are x and y deviations from (r„0.).
Using the scale dependent stiffness constant and
activity —see Appendix D —Eq. (4.2) may be ex-
pressed as

4

exp =
4

y'(/, ) exp[2n E(i, ) ]
kBT

IV. NONLINEAR EFFECTS

A. Theory of nucleation

BI
( ) 8

Qr

1

2D exp —I'( r ) exp
—U 9 U

B Qr kBT

(4.1)

The linear theory of Sec. III A is based on assump-
tions that are violated under easily obtainable experi-
mental conditions. In the present section we shall

consider the effects of large amplitude, low-frequency
substrate motion for T ( T,. Specifically, we shall
calculate the rate of creation of free vortices from
pairs in response to a finite amplitude substrate oscil-
lation, when the frequency is small in the sense that
rD[ =—(D/co) ]' ) r„where r, is a critical nucleation
radius discussed below.

We start from Eqs. (3.7) and (3.8). From these
equations, one obtains in a standard way a Fokker-
Planck equation23:

FIG. 1. Contours of constant potential between a pair of
oppositely charged vortices at separation r = (x,y). The po-
tential decreases upon approaching origin, but has a hard
core (shown cross hatched in the figure) of radius ap. A:

uniform superfluid velocity has been imposed in the y direc-
tion. There is a saddle point at r, = (x„0),over which the

pair separation can "escape" to large positive x.



1814

t

AMBEGAOKAR, HALPERIN, NELSON, AND SIGGIA 21

where

I, =—ln(r, /ao) (4.3b)

(4.3), the required steady-state solution in the vicini-

ty of the saddle point r, = (r„0) is found by stand-
ard methods. 27 %e make the ansatz that

The vector in square brackets in Eq. (4.1), call it

j ( r ), is a current denstiy. With .the normalization

of I' given below Eq. (4.1), the quantity R —= d(5y)
xj„(r„5y) has the interpretation of the number
of separating pairs, i.e., the number of pairs in
which the internal separation crosses the saddle
point, per unit film area per unit time. Within the
Gaussian approximation of Eqs. (4.1), (4.2), and

jy =0

j„(5y) =R [K(l,)/r']'

x exp[ —7rK(l, ) (5y)'/r, ']

(4.4a)

(4.4b)

Note that Eq. (4.4a) together with the steady-state
condition '7 j =0 implies that j is independent of
5x. It then follows from Eqs. (4.1) and (4.3) that

K(l, )
R „d(5x') exp~ sx

C

~K(I, ) (5x')' = (2D) —y~(l, ) exp[2n K(l, )]I'(5x, 5y) exp( U/k Ts) . (4.5)
I'C

t

The assumption that j„=0near the saddle point can
be satisfied by choosing I to have the same 6y
dependence as exp( U/ks T)—in this neighborhood.
Evaluating Eq. (4.5) for 5x & [r,'/27rK—(l,) ]'I',
where I has its equilibrium value aq exp( —U/

ka T), gives the principal result of this section

R = (2D) [ y2(l, )/r4] exp[2mK(l, ) ] (4.6)

4my(l, ) =x(T) exp[—,' [x(T) I,]]

K(l, ) =—[I+-„'x(T)],

where x(T) = b(~1 —T/T, ~)' 2 determines g via

(4.7a)

(4.7b)

Before proceeding to interpret this result, we must
make some comments about the approximations
made. The calculation given above, based on Gaus-
sian approximations, applies strictly only for the situ-
ation of rare escapes over a high barrier. The condi-
tion 2m% )& 1 is thus implicit. In fact, for our prob-
lem 2mK =4. Thus we cannot be sure that Eq. (4.6)
is not missing a numerical factor, but there is no rea-

son to doubt that the I; dependence is correct. The
situation is quite different in some other two-

dimensional barrier escape problems, e.g. , a potential
of the form U(r) = —A [

2
r 2+ (x/r3) ] discussed by

Onsager and McCauley. ' In this case, the angle sub-
tended by the region of small barrier becomes large
as I', ~ so that the saddle-point method becomes
meaningless.

Returning to Eq. (4.6), we remark that there are
two length scales in the problem: r„and g —the
length which determines when e(r) approaches its

finite asymptotic value at the temperatures below T,
which we are considering. Both these lengths have to
be macroscopic, i.e., much greater than ao, for the
derivation given above to be valid. However the
result (4.6) depends on the ratio of these two large
lengths.

For r, » g ( T) we have5'o 25 (see also Appendix
D)

I

ln(g /ao) = [x(T)] . In this limit, which is violated
very close to T, where g ~, we obtain, by substi-
tuting Eq. (4.7) into Eq. (4.6), a formula given in I'9:

R ~ Dao 4 [ x( T)]'( ao/r, )4 +" t~ (4.8)

For the vortex-pair problem, the length r, is ob-
tained, by using the definition below Eq. (4.1) and
the dictionary in Sec. II 8, to be

r, =k/m
~
v„—u, ~ e(r, ) (4.9)

For fixed ~„, as the temperature is increased towards
T„ the rate (4.8) increases. Finally the condition« r, is violated and we must use approximations
valid in the limit x( T) I, « 1, namely,

47ry(l, ) = I, '

K(l, ) = —(I+—,'I ) .

(4.10a)

(4.10b)

The rate (4.8) then has the form

R (T-T;) —,(I,)-' .
r,

(4.10c)

B. Boundary effects and decay of superAow

In order to calculate the density of free vortices
nf, one must combine the rate of nucleation of free
vortices calculated above with the rate of annihilation
via the inverse process, in which two free vortices of
opposite sign collide and form a new bound pair. In
addition, for a sample of finite width, one must con-
sider the annihilation and generation of vortices at
film edges.

In vortex nucleation theories of superflow decay in

films, 2 it has often been assumed that bulk genera-
tion of free vortices is balanced by annihilation at the
boundaries, Although annihilation at boundaries is
certainly important in sufficiently narrow samples, we
shall argue that this process is balanced by an
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enhanced rate of creation at free vortices near the
boundary. For samples sufficiently wide that boun-
dary creation is negligible, one may also neglect
boundary annihilation, and the steady-state vortex
density is limited by pair recombination in the bulk of
-the film. The steady-state density nf will turn out to
be essentially independent of whether bulk or edge
effects are dominant.

To study this point further, we calculate R„, the
rate of production of free vortices at the edge of the
film, by calculating the rate at which a vortex can es-
cape from its image charge at the film boundary.
Consider for simplicity an equilibrium population of
vortices bound to a straight film edge of length L
parallel to the- x axis, when there is a uniform super-
flow u, —v„ in the y direction (see Fig. 2). Under
these conditions, an isolated vortex feels a wall po-
tential U which is only a function of x, the distance
to the wall. In the Coulomb gas language, one finds

One is again faced with an "escape over the barrier"
problem (Fig. 2), with the barrier now being a ridge
running parallel to the wall with coordinates ( r„y—)
Proceeding as in Sec. IVA,"one finds that the rate
per unit wall length of escaping vortices is

R„=D[y(l,)/r3][2E'(l, )]'t2exp[nE(l, )] . (4.13)

dnf 2 R„uqnf
dt

= R —vga-, nf +— (4.14)

A factor of exp(7rE) appears, rather than
exp(2mE), because Eq. (4.11) is half the corre-
sponding pair potential. The other factors occur be-
cause the escape is over a ridge, rather the across a
saddle point.

To determine the instantaneous concentration of
unbound vortices under conditions of uniform super-
flow, consider the rate of change of the free-vortex
density. This may be written

U„(x) =qo J —qoSEx —p,o
0 xf(2x)

(4.11)

(4.12)

in contrast to Eq. (3.8). The wall potential assumes
half the value corresponding to a pair of separation
2x, since the region x (0 occupied by the fictitious
image charge does not contribute.

The Fokker-Planck equation for I (x), the density
of vortices within r, of the wall, is now

where 8'is the width of the superfluid strip, vj is the
average velocity of vortices perpendicular to the su-
perflow, and a., is the cross section for vortex-pair
recombination. The first and third terms are just the
bulk and wall generation rates discussed above. The
final term is the flux of vortices into the wall; vj can
be estimated from Eq. (2.3).

2mDtpo
vq= q = ~v„—u, ~~2rrÃ(l )Dr, '

mkg T
(4.15)

'I

where we have used the definition of r, given below
Eq. (4.8), and the fact that (E/m) [ p, /ks T~(r, ) ]
=K(l,). The term in Eq. (4.14) proportional to nf
is due to recombination of free vortices; the associat-
ed capture cross section o', is clearly of order r, . Our
equations describing superflow. in the nonlinear re-
gime at low frequencies are completed by Eq. (2.10),
which in this limit, reads

du,
nf Ug

di m
(4.16)

FIG. 2. Lines of constant phase for positively charged
vortex trapped by its image charge near a wall occupying the
shaded region. When an external uniform superflow is im-
posed parallel to the wall, the trapped vortex can escape
over a dotted ridge line of potential maxima at a distance x,
from the wall. (Distance x, is denoted

2 I, in the text. )

dnf ] du,

nf dt u, dt
(4.17)

Thus it is reasonable to assume that Eq. (4.14) re-
laxes very rapidly to a quasisteady state with nf deter-
mined by the instantaneous value of u, (t) and u„(t);

Note that nf, vq, a-„R, and r are all time depen-
dent, through their dependence on ~ v „(t)—u, ( t) ~.

In the limit of large W, the wall terms in Eq. (4.14)
are negligible relative to the bulk contributions.
Under conditions of large amplitude, low-frequency
driving, it is easy to check that after an initial tran-
sient,
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where we have used Eq. (4.15) and set o-, = r, . In
the regime of Eq. (4.8), this becomes

' 2+(li2)x( T)
x( T) &o

flf
ap' r, ( t)

(4.19)

and remembering that r, ~A'/m
~
v„—u, ~, we have'9

(4.21)nf(t) = R„/vg .

As one can easily check from Eq. (4.13), this nf(t)
has the same r, dependence as Eq. (4.19), so Eq.
(4.20) again follows.

Comparing our results with the approach of Langer
and Reppy, 3 we find from Eq. (4.18) that it is the
square root of the rate considered by those authors
which sets the scale for the decay of superflow. This
result also holds when wall effects dominate, since
the relevant saddle-point. energy is half the corre-
sponding bulk value. This observation may be of
some relevance also in three dimensions. For exarn-

ple, in bulk, two vortex rings exceeding the critical
size might combine to form one ring greater than the
critical radius and another smaller than the critical
size. This would be analogous to the pair-
recombination process discussed above. When an-

nihilation of vortex rings at the wall is important,
then wall generation should also be included, as the
barrier to ring formation is smaller at the ~alls than
in the bulk.

' ~x(T)
~
v —u )3+«t2&"&» (4.20)

dt

in agreement with Eq. (12) of I.
Equations (4.14) and (4.15) can also be used to

study the relaxation of an initial state of nonzero u,
with u„(t) =—0. Then, the relaxation rates
(I/nf) dnf/dt and (I/u, ) du, /dt are comparable and
one must deal with two coupled nonlinear equations.
Equation (4.20) with u„=0 should still give the
correct qualitative behavior, however.

Thus far we have neglected the wall contributions
to Eq. (4.14). For sufficiently narrow samples
( W ( I/o, nf), annihilation of free vortices may oc-
cur predominantly at the walls rather than through
pair recombination. In this case, however, the wall

generation term R„/II'dominates pair dissociation.
In both the driven problem and freely decaying su-
perflow, nf now relaxes rapidly to a quasiequilibrium
value

( )
g Img"7p
m

(5.1)

which is well defined everywhere except at the zeros
of ~Q~. Since the line integral of v, (r, t) around any
closed path must be 2m times the enclosed vorticity,
we must have

'vr && v, (rt) =X( ,r, t)z

where N(r, t) it the vortex density,

(5.2)

%(r, t) = $n;8[r —r;(t)1

Upon defining a vortex current density,

(5.3)

and noting that vortices are created or destroyed only
in pairs or at the boundaries, we have in addition the
equation of continuity

Bishop and Reppy" and of Webster et al. Third-
sound measurements, " "on the other hand, probe
the response of films to finite wave-vector excita-
tions. In this section, we generalize the treatment of
I in a way which allows us to track third-sound exci-
tations through the Kosterlitz-Thouless transition,
and study the hydrodynamic region immediately
above T,.

Following the original work of Atkins, '" Bergman
was able to study the linearized hydrodynamics of
third sound in some detail. "' In particular, both
heat transfer to the substrate and vapor, as well as
mass transfer to the vapor were taken into account.
Here we show how the effects of free and bound vor-
tices can be incorporated into the Bergman descrip-
tion.

Our aim is to obtain "semimicroscopic" equations
for the local superfiuid velocity v, ( r, t) and other
quantities, with fluctuations on a scale less than some
cutoff A ' filtered out. In particular, we shall choose
A ' to be larger than the effective vortex core diame-
ter after very short-wavelength fluctuations of rotons,
etc. are integrated out. The quantity v, ( r, t) will be
"semimicroscopic" in the sense that it can possess a
nonzero curl from point to point due to the presence
of vortices. Assuming a continuous condensate wave
function Q( r, t) on scales greater than A ', we de-
fine v, by Eq. (1.2)

V. THIRD SOUND AND HYDRODYNAMICS ABOVE T,

A. Equations of motion

Thus far, we have studied the response of super-
fluid films to spatially homogeneous time-dependent
perturbations. This is the problem of physical in-

terest in the Andronikoshvili-type experiments of

= —7 J
Bt

(5.5)

vs'7 x — '+zx J„=O
Ot

(5.6)

This equation, when averaged over a hydrodynamic
volume containing many vortices, is related to the
Fokker-Planck equation associated with Eq. (2.11).

Since Eqs. (5.2) and (5.5) can be combined to read
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we can write

'+zx J„=7=
Bt

(5.7)

'7 p, =S'7 T f '7h— (5.&)

~here S is the partial entropy of the film per unit
mass

(jS
eM

(5.9)

(M is the total mass of a film with constant area), T
is the temperature, h is the film thickness, and f is

the Van der Waals constant. Our final equation for
Bv,/Bt is thus

where is a scalar function. To make contact with
the Bergman work, we identify =( r, t) with the local
chemical potential p, (r, t) {Of.course, this identifi-
cation follows from the Josephson equation if one is
not too close to a vortex core.) But it is also the case
that

A ( r, t).
In order to complete the equations for the film,

one must specify the behavior of J and J~. We
shall focus our 'attention on a particularly simple
"ideal" situation, where one can neglect mass trans-
port through the vapor, and where thermal conduc-
tion through the substrate is sufficiently high so that
there are no fluctuations in temperature. This means
that we set J =0 in Eq. (5.11) and 7 T =0 in Eq.
(5.10). Mass transport through the vapor should in
fact be negligible for very thin films, where the tran-
sition temperature is low compared to the bulk transi-
tion temperature, and the vapor pressure is very
small at the temperatures of interest. Temperature
fluctuations associated with third sound may be
neglected at low temperatures even without good
thermal contact to the substrate, because there is
very little coupling between height and temperature
fluctuations. Extension of our analysis to the more
general situations considered by Bergman should be
relatively straightforward.

' =S'7T f'7h-z x I-„,
Bt

(5.10)
B. Analogy with the Maxwell equations

and hydrodynamics above T,

8( ph)
Bt

=—p V v —J (5.11)

which is a modification of Eq. (3) of I. Note that the
conservation of v, is explicitly broken by the current
of vortices flowing perpendicular to it.

The Bergman equations for the film height and
temperature are unchanged by the presence of vor-
tices, and may be written m(r, t) =[ho —h(r, t)]f/g

where ho is the average film thickness, and

(5.13)

Equations (5.10), (5.11), and (5.12) simplify con-
siderably when temperature fluctuations and mass
flow into the vapor are neglected. Let us introduce
the variable.

phC = p, TS'7 v, +~hV T —LJ —Jtt, (5.12)

dp
(5.14)

where ph is the mass density per unit area in the film
and I. is the latent heat of evaporation from the film
per unit mass. The quantity C is the film specific
heat per unit mass, K is the thermal conductivity of
the helium in the film, J is the mass flow per unit
area from the film to the vapor, and Jg is the sum of
the heat currents from the film to the substrate and
to the vapor. The normal-fluid velocity v„ is as-
sumed clamped to zero by the viscous interaction
with the substrate, and all gradients are, of course,
two dimensional.

Equations (5.10)—(5.12) together with Eqs. (5.2),
(5.5), and the vortex equations of motion derived in
Sec. II, constitute our description of excitations in su-
perfluid films, both above and belo~ the transition
temperature. Note that fluctuations in the amplitude
of Q( r, t) have been neglected, enabling us to write
the superfluid momentum j,= p, v, at all tempera-
tures, with pa= ~f~z=const. Amplitude variations
are, however, effectively taken into account to some
degree by the vortex cores associated with the density

Equations (5.10) and (5.11) may now be written

vs =g 7m —zx J„
Bt

9m
Bt

=psg 7 ' vs

(5.15)

(5.16)

(0, 0,m(xy)) =08 8 8
Qx 8p Bz

(5.17)

while Eq. (5.5) is, of course, the equation of charge
continuity.

These equations, together with Eqs. (5.2) and (5.5),
bear a striking resemblance to the Maxwell equations
for two-dimensional electrodynamics (see Table I).
Identifying z x v, with the electric field and m( r, t)
with the z component of the magnetic field, we see
that Eq. (5.2) is Coulomb's law, Eq. (5.15) is
Ampere's law with a "displacement current, " and Eq.
(5.16) is Faraday's law. The zero-divergence condi-
tion on the magnetic field here amounts to the trivial
assertion that
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TABLE I. Maxwell equations —third-sound analogy. Upon setting

Nt„„(r,t) =N+(r, t) —N (r, t) =SN, (5.23)

Maxwell equation

'7 E =4~p
4m- 1 BE
c c Bt

1 BBV XE+— =0
c Bt

'7 B=O

Bp--+ '7 J =0
Bt

Third-sound equation

'7 x vs=Nz
»s

gVm =z xJ„+
Bt

p Bm
psg 7 Vs

(0, 0,m(x, y)) =0B B B
Bx' By' Bz

+ 7 J„=O
Bt

where

=ypV (z x v, ) +D 7 SN
t

(5.24)

p 2
D p. &f 2mb

Qp AT m

and one now readily identifies a current density

(5.25)

where N+ and N are densities of free positive and
negative vortices, respectively, one readily constructs
a Fokker-Planck equation linearized in 5N and v, .
The resulting equation is

J „free= —PPz X vs D 75N (5.26)
In I and previously in this paper, we were led by

the geometry of the Andronikoshvili experiments to
consider a "quasistatic" approximation to the equa-
tions quoted above. (The "quasistatic" version of the
Maxwell equations analogy was discussed in Sec.
II B.) In this case, '7 v, =0, and ('7 p, ) =0 to a

first approximation. The static solution (2.8) of
"Gaussian law,

" which neglects retardation effects, is

then appropriate. However, retardation must be in-

cluded in more general situations, where '7 v, ~0.
Let us first consider the equations of motion appli-

cable in the limit of long wavelengths and low fre-
quencies, i.e., the hydrodynamic region, for a fixed
temperature slightly above T,. In this region, the
physics will be dominated by the dilute gas of free
vortices, with the density nf ~ (~2. The effects of
bound vortices are described by the dielectric func-
tion eb, which in this region can be approximated by
a constant, et, = e, —=p, /p, (T, ). The "Maxwell
equations" (5.15) and (5.16) etc. , can then be modi-
fied in the usual way" to account for effects of the
bound-vortex charge. The resulting equations read

Passing to Fourier transformed variables 5N(k, cu)

and v, (k, cu), it follows from Eq. (5.24) that:

ypi k x—v, ( k, ~)
z5N(k, cu) = —leo +Dk

(5.27)

where e;, is the 2 & 2 antisymmetric unit matrix,
el2= —e2l =1. The coefficient of i,'(k, cu) is related
to the conductivity in the Maxwell equations analogue.

Inserting this result in Eq. (5.18), we find a closed
set of equations for v, (k, cu) and m(k, cu). These
can be simplified further by introducing longitudinal
and transverse projections of the superfluid velocity,
namely

vs
k

&T=
kxvs

k
(5.29)

The corresponding current density is
1

J„ tcee (k, Cu) = yP e,&
'

2 ilz(k, Cu), (5.28)
l (d +Dk

dvs
c g 7m 2 X Jtt, free

dt
(5.18)

Only the longitudinal part couples to m(k, cu), pro-
ducing eigenfrequencies cu+(k, (+) which are the
solutions of

Bm =psg 7'Vs
Bt

c 7 X V, =Nfreez

(5.19)

(5.20)

ca++i ypm f g p,'k' = 0

For small k, one finds

(5.30)

where Nf„, and J„f„,are a density and current of
free vortices which satisfy

~Nfree J., f ee .
dt

(5.21)

To obtain a closed system of equations for v, and

m, it is necessary to determine J „ in terms of v, .
We start with the Langevin equation (2.4) specialized
to the case v „=0with C =1 for simplicity

—
yp

cu+( k, g+) = i ~ (+i—
c

cu-(k, (+) = iDt, k.', —

The transverse part of v, relaxes at a rate
c 1

+0
cup(k, g+) =——+Dk i

Ec
t

(5.31a)

(5.31b)

(5.31c)

(5.31d)

2maapp
n; zx v, +—Yt;(t)

dt
'

mkB T
(5.22) +0

I cx (+ I
Ec

(5.31e)
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Making use of Eq. (5.20) in Eq. (5.27), we see that
this is also the relaxation rate of fluctuations in Nf„,.

The relaxational modes co+ and coo exhibit critical
slowing down as T T,+, with the same temperature
dependence as (+3. The conserved quantity m(r, r),
which is proportional to the local film thickness, only
appears in the mode co, in the hydrodynamic region
for T T,. The behavior is diffusive, with a diffu-
sion constant Db which diverges as g.

It is useful to define a mass-transport coefficient A.

by

(5.32a)

Comparing the relaxation rate obtained from Eq.
(5.32a) with Eq. (5.31b), we find that

X = Db/g' (S.32b)

so that A. also diverges as g~~, for T T+.
The transport coefficient X can be measured in

principle by a heat-transport experiment, if the vapor
pressure is not too small. Here, a temperature gra-
dient is used to drive a mass current j, = A. '7 p, in the
film. Under suitable conditions, one may assume
that the film thickness varies in such a way that the
vapor pressure above the film is constant. One may
then show that to a good approximation

'7 p, = (L/T) '7 T— (5.33)

it Ke"r = gL, 3/T (s.34)

Experiments to measure thickness diffusion or
thermal transport would provide both an important
test of the dynamical theory, and an indirect measure
of the crucial quantity g~(T).

where L is the latent heat. In the steady state, the
mass flow in the film is balanced by a counterflow in

the gas, which is maintained in turn by evaporation at
the hot end and condensation at, the cold end of the
film. Since each atom condensing deposits its latent
heat in the film, the net heat transported is the same
as if the film had a thermal conductivity K'", given by

ip3—eb(p3) v, =igkm+z x J, fppe

—leam =ip, gk v,

i pleb(0)) k x v g
=. Nrlgg

(5.35a)

(5.35b)

(5.35c)

where eb(p3) is given by Eq. (3.15) with the under-
standing that (+= ~ for T ~ T, . Now, J„r„„canbe
computed just as before. Note from Eqs. (5.27) and
(5.28) that Nr„„and J „r„,are zero below T, in this
linear theory, as they should be. Instead of Eq.
(5.30), we now'find eigenfrequencies co+(q, (+)
which satisfy

eb(co+) bp'++i yp(o+ g'p,'k'=0— (5.36)

Below T„yo vanishes, and the dispersion relations
co+(k) are determined by inverting

k+(p3) = [+eb(~) ]'i'o)/C3P (5.37)

where c3 =g~p, . Decomposing eb(cu) into its real
and imaginary parts, and expanding in Imtb/ReEb
(which is small below T,), we have

ImEb(co)
k+(o)) =+ + 3i 0)

c3(co) ' c3(co) Retb(QJ)

where

(5.38)

placed by a wave-vector- and frequency-dependent
bound-vortex dielectric function eb( k, p3). At a fre-
quency co the dominant contribution to eb will come
from bound pairs of separation r & (14D/ru)' ', but
(D/cu)'i' is also the maximum distance that a vortex
can diffuse in a quarter cycle of the third sound. The
third-sound wavelength h.3 =2m c3/&o will be very large
compared to the distance (D/co) 'i2, provided that p3

is small compared to the microscopic frequency
(h'/map3 ) =10"sec ', and we may therefore evaluate
eb(k, bp) at k =0. It is also clear that we may neglect
retardation in the interaction between the two
members of a vortex pair whose separation r is of or-
der (14D/bp)' ', so that eb(0, co)

—= eb(p3) is just the
frequency-dependent dielectric function (3.15) that
we estimated previously.

With this observation, Eqs. (5.18), (5.19), and
(5.20) become, upon Fourier transformation

C. . Third-sound propagation c3((o) = c3 [Re6b(fp) I
' (5.39)

We next consider the solutions to Eq. (5.30) for
wave vectors such that kg( p, /Ep) ))yp. (This is
the situation for short wavelengths above T„and for
all wavelengths at T ~ T„where yp=0. ) We now
find that Eq. (5.30) has two propagating (third-
sound) solutions, with p3+ = +kg ( p, /e, ) ' '. A more
accurate description of the velocity and damping of
third sound in this region requires a more careful
analysis of the effects of polarization of bound-vortex
pairs. In principle, this means that the quantity e„ in

Eqs. (5.18), (5.20), and (5.30), etc. , should be re-

As one would expect, Reeb(p3) determines the renor-
malization of the third-sound velocity, while Imeb(cu)
controls the damping. As k 0 for fixed T ( T„
Eq. (5.37) can be inverted to read

p)+(k) =+c (0)k Dk " 'i—(5.40)

where we have used Eqs. (3.13) and (3.14), D3 is a
coefficient obtainable from Eq. (5.38), and

(5.41)

Of course, irreversible couplings neglected in Eqs.
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o) = c3(0)k +1—I

4ln D kc3ao
(5.42)

We see that third sound should propagate fairly well

for long wavelengths, at T,.
For T ) T„we find that third sound propagates

fairly well, provided that the wave vector k is larger
than the quantity pp/c3 ~ (+'. For k ( yo/c3, there is

no third-sound propagation, and the hydrodynamic
results of Sec. VB apply.

The overall situation is illustrated in Fig. 3. Equa-
tion (5.36) provides a smooth interpolation (with an
essential singularity at T, ) of the eigenfrequencies
co+(k, (+) through all regions of Fig. 3. In order to
find the characteristic frequency GUp(k, (+) for
transverse-velocity fluctuations, or for fluctuations in

the vortex charge density N, in the region of large k,
one must find the solution of the following equation,
[which generalizes Eq. (5.32a)]

1

+Dk2 i
fb ( k CtlQ)

(5.43)

(5.10), (5.11), and (5.12) will generate additional dis-

sipation, proportional to k . Since E drops from
large values at low temperatures to 2/rr at T„ the
damping displayed in Eq. (5.40) should dominate for,
say T & —T,. Precisely at T„we find

one finds a solution coo= —iDk . The important con-
tribution to eq(co) in this frequency range, however,
comes from pairs whose separation r is of the same
order as k ', in contrast to the situation discussed
above for third sound.

In fact, for large k, the first term in Eq. (5.43) is

probably more important than the second, since there
are many more bound vortices than free vortices.
Nevertheless, both terms suggest a characteristic re-
laxation rate of order Dk2, and Eq. (5;32a) probably
leads to a correct order-of-magnitude estimate of coo

for any value of k(+, provided that k ' and g+ are
large compared to the atomic spacing.

It is interesting to contrast our results with the pre-
dictions of dynamic scaling in bulk helium. In
bulk helium, second sound evolves into thermal dif-
fusion and order-parameter relaxation modes as T in-

creases through T,. In films, ~ is analogous to the
thermal mode, while su+ and coo correspond roughly
to relaxation of the phase and amplitude of the order
parameter. Dynamic scaling breaks down badly in

superfluid films: upon defining characterisitic fre-
quencies co,

' by evaluating the ru;(k, (+) at (+= k ',
we see that co+ —

coll
—k2, while co' —ko. If dynamic

scaling held, the powers of k would be identical. This
point, and its connection with possible breakdowns of
dynamic scaling in three dimensions, will be discussed
further in another publication. 4

In this case, it turns out that one cannot neglect
the k dependence of eq. For example, if one ignores
the first term on the right-hand side of Eq. (5.43),

T&Tc

THIRD

PROPA

FIG. 3. Different regions of dynamic behavior at long
wavelengths in the wave-vector-inverse-correlation-length
plane. Region I, where third sound propagates, extends
above T, to the blurred region where k = {const)(+ . In

region II, there is diffusive transport of the film thickness,
and a wave-vector-independent relaxation rate for the
momentum density. In contrast to the behavior indicated
here for third sound, the characteristic relaxation rate of
transverse velocity fluctuations changes character when

k = (+ . The correlation length g is just a convenient
measure of temperature below T,; there are only minor

changes in the hydrodynamic behavior near k( =1.

VI. SUMMARY AND CONCLUSIONS

We have studied the response of superfluid films
to spatially homogeneous time-dependent perturba-

.tions, the nonlinear decay of superflow at low fre-
quencies, and the dynamics of long-wavelength exci-
tations such as third sound above and below T,.
Here, we summarize those features of the theory
which could be tested experimentally, or might merit
further theoretical investigation.

Superfluid film dynamics is described in greatest
generality by the Eqs. (5.5), (5.10), (5.11), and
(5.12) with heat and mass flow to the vapor and sub-
strate included. With some simplifying assumptions
(e.g. , negligible mass flow to the vapor, and no tem-
perature fluctuations), these equations take the form
of the Maxwell equations in two dimensions. To
these relations, one must add the Langevin equations
of motion for vortex positions discussed in Sec. II. A
semimicroscopic model of this kind leads to a
Fokker-Planck equation for the charge density, and al-

lows the vortex current to be eliminated in favor of
the superfluid velocity field.

The analysis of weak, homogeneous, low-frequency
perturbations in Secs. II and III may be viewed as a
kind of "electrostatic" application of the theory. The
approximations made there were dictated by the
geometry of the Andronikashvili experiments of
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e(cd) = ep (QJ) + i go/co (6.1)

or, equivalently, as in Eq. (3.17), which emphasizes
the analogy to a charged plasma. The function
eh+(cu) comes from bound pairs, and has the approxi-
mate spectral representation,

e'( )=1+' dr
'" '

( )4 ap dr —i cu + 14Dr

where e(r) is defined in Appendix D and (+( T) is

understood to be infinite belo~ T,. The quantity 7p,
which measures the rate at which supercurrents relax
above T„ is

Bishop and Reppy, ' and may be summarized in
terms of the frequency-dependent dielectric function
e(co) defined by Eq. (3.1). This quantity contains
contributions from both free and bound vortices, and
may be written

(6.6)

The quantity A ( T) behaves like x( T) just below the
critical temperature, and, precisely at T„ there are
logarithmic corrections to Eq. (6.4).'

It seems worth emphasizing, in passing, a universal
amplitude ratio uncovered in I. If one describes the
divergent correlation length (+( T) above T, by

(p( T) = a exp(b'/[I —T/T, ~' 2) (6.7)

depend on temperature, substrate, film thickness, etc,
Although A ( T) can only be estimated, x( T) is given
exactly in terms of the areal superfluid density p, ( T),

2mt2p, ( T)
x(T) = —4+

m AT
A consequence of the universal jump prediction is
that x( T) goes to zero with a square-root cusp' as
T Tc,

2 '
pDp,

k, T
"'=' (4.3) it is a universal consequence of the Kosterlitz recur-

sion relations5 that

The average power dissipated in an Andronikoshvili
experiment is then given by Eq. (3.4), and the period
shifts by Eq. (3.6). A fit of these formulas to the
data of Bishop and Reppy has been discussed by Am-

begaokar and Teitel. 2'

It would be interesting to extend this analysis to
the quartz microbalance experiments of Webster
et al. , who studied the universal jump prediction in

films of 'He- He mixtures. The generalization of our
results to allow for a conserved 'He concentration ap-
pears straightforward. When applied to a simple
model of mixture-film dynamics, ' the analysis of
Sec. V produces an additional diffusive mode both
above and below T„without strong anomalies near
the critical temperature.

The analysis of the nonlinear decay of superflow
below T, (Sec. IV) overlaps with the work of McCau-

ley, and Myerson, Huberman et at. "2 It is

perhaps most similar in spirit to the McCauley paper,
which examines a two-dimensional Coulomb plasma
in an electric field at low temperatures using
Langevin equations similar to ours. Our principal
result follows from combining the discussion of two-

dimensional vortex nucleation by Langer and Reppy
with the Kosterlitz static-scaling theory. ' At any
fixed temperature below T„we find that the decay of
a uniform supercurrent u, (t) may be expressed, for
small u„as

g ( T) u 3+(1/2)x( T)

dt
(6.4)

We have, for simplicity, set v„—= 0 in Eq. (4.20),
and approximated the solution of the two coupled Eqs.
(4.14) and (4.16) which must be solved in this case.
The quantities A (T) and x(T) are positive, and

b'=2m/b (6.8)
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APPENDIX A: DISORDERED SUBSTRATE

The static theory developed by Kosterlitz and
Thouless4' considered helium on a smooth substrate
or equivalently planar spins on a regular two-
dimensional lattice. However, most experiments, so
far, have been performed on disordered substrates
such as Mylar. It is therefore important to ask
whether substrate disorder will change the results of
the Kosterlitz-Thouless theory, or of the dynamic
theory of the present paper. Dash" has argued, in

fact, that on a smooth substrate the superfluid transi-
tion in a very thin film will always be masked by a
first-order transition between a dense liquidlike phase
and a dilute two-dimensional vapor. However, it is
clear that substrate irregularities will couple very
strongly to density fluctuations in the helium adsor-
bate, and it seems plausible to us that frozen-in mi-

croscopic disorder may suppress the liquid-gas phase
separation. It may actually be necessary to use a
disordered substrate in order to see the Kosterlitz-
Thouless transition in the thinnest films (i.e., for T,
much less than the bulk value).

Let us recall the Harris argument44 for the influ-
ence of a distribution of critical temperatures on a
phase transition. The root-mean-square fluctuations
5 T, in T, averaged over a block of size the correla-
tion length scales like BT, —g "2. The disorder
should be irrelevant if 5T, is much less than the dis-
tance of the averaged T, from T, i.e., if
( ~2/(T —T, ) && 1. Since the correlation length is
so strongly divergent near the Kosterlitz-Thouless
transition, this criterion is evidently well satisfied. If
a component of the disorder had a characteristic size
Lp much greater than an interparticle or lattice spac-
ing a, then it would only begin to get averaged out
after In(LO/a) iterations and the transition would ap-
pear broadened for g & Lp/a. A substrate such as
Mylar with only short-ranged disorder might well ap-

0
pear more "ideal" than an assemblage of 200-A micro-
crystals very close to T,. Pinned vortices will be
screened below T, and could in principle be integrat-
ed out along with the thermally excited pairs.
Although they should not affect the thermodynamics
they will be seen, in'ways very hard to quantify in a
dynamic measurements.

A substrate, disordered or otherwise, will make

p, /p less than unity even at zero temperature. An
explicit example may clarify this point. Consider a
weakly interacting Bose system on a periodic substrate.
The energy and average momentum for a particle in
a Bloch state with crystal momentum k near the bot-

here m' is the effective mass and m is the free-
particle mass. Suppose that there are n particles per
unit area of substrate condensed in the state k. Then
the energy and momentum densities of the system
are obtained from Eq. (Al) by multiplying by n.

Comparing with the hydrodynamic forms (for v„=0,
and v, is small)

E=
2 ps&s
1

(A2a)

g = BE/Bv, = p, v, (A2b)

where E and g are the energy and momentum densi-
ty, one finds

m hk
p, =, n, v, = (A3)

Note that the relation between v, and the gradient of
the phase of the order parameter involves the bare
mass m.

We remark that on a fundamental level, the form
of Eq. (A2b) is dictated by the principle of Galilean
invariance; i.e., one requires that if v, and v„are
both changed by an infinitesimal constant dv, then
d g = p d v and dE = g d v. One also uses the fact
that for any given v„ the energy must be a
minimum at v„=0. Equation (A2a) may be taken as
the definition of p, .

We would like to emphasize that the relation
v, = (f/m) "7$ can also be proven more generally,
using superfluid hydrodynamics and the Galilean
transformation properties of the N-particle
Schrodinger equation. Its validity is not restricted to
periodic substrates or to weakly interacting bosons.

APPENDIX B: DIFFUSION CONSTANT

The Fokker-Planck equation, satisfied by the distri-
bution of vortices I', . implied by Eq. (2.6) is

+$ V; (r;I' —D'7;r) =0

where r stands for the right-hand side of Eq. (2.3).
We claim that when v„ is time independent and we
work in a frame where v„ is zero, a static solution to
Eq. (Bl) is given by

r, =exp( —H/ks T)

~here

(B2)

2~ps'e
'

H= $—n, n, G( r;, r, ) —Xn, (z xu, ) r;m;&, m

(B3)
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It is readily verifed that

p, 2. h-DV, rp=nD [z x v, (r;)]I'p
ka Tm

(B4)

center of gravity R. This leads to the approximation,

Jt (I'( r, R, t) I'(r', R', 0) ) r;r' d~r'

= —S;.S(R —R')rp(r)r~ '"'D/', (ag)

where v, (r;) is given by Eq. (2.8). Equation (B4)
will cancel the term in Eq. (Bl) coming from the first
term of Eq. (2.3) for r;. The second term in r; is just
(1 —C) v, according to Eq. (2.3). It is readily shown
from Eq. (2.8) that '7; v, (r;) =0. Thus Eq. (Bl)
reduces to

(1 —C)v, (r;).0,1'p ——0 . (B5)

It follows from (B4) that this last equality is satisfied.
To estimate D, note that for a film which is several

atoms thick, the microscopic parameters available are
h, m, ao, and kaT. Bose condensation requires that
the thermal de Broglie wavelength at T, be of the
same order as the interparticle spacing. Thus AT is
not an independent quantity. From the remaining
three microscopic quantities there is only one combi-
nation with the dimensions of (length' / time),
namely lt/rn.

A crude, though we believe correct, argument can
now be given for why the diffusion constant D
remains finite at T, rather than diverging or vanish-
ing, as is common in the dynamic critical behavior of
various systems.

Let us estimate the contribution to the diffusion of
a test vortex, due to the velocity fields of the other
vortices in the system. At any instant of time, the
induced velocity v of the test vortex is proportional
to the local superfluid velocity v „according to Eq.
(2.3). (We assume v„=0.) Thus we may write

t

v(t) cc d'r J d'R I (R, r;t)(r '7R)
R )2r

(B6)

5D = —, Jf (v(t) v(0)) dt (B7)

which may be related in turn to the correlation func-
tion (I'(R, r;t)I'(R', r ';0) ). We shall estimate this
correlation function by ignoring the effects of the test
vortex on the pair, and by ignoring the motion of the

where I'(R, r;t) is the density of pairs with separa-
tion r and center of gravity at point R, relative to the
test vortex as origin. We have restricted the integral
in (B6) to R ) 2r, so that we may make the dipole
approximation for the velocity field of the pair. (The
contribution from pairs with R & 2r must be comput-
ed separately. )

The contribution of Eq. (B6) to the diffusion con-
stant may be written

where I'p( r ) is the equilibrium distribution of vortex
pairs, and we have used the results of Ref. 22 for the
time dependence. With this approximation, one ob-
tains the final result

BD ~ Jt I p(r)r~d~r (a9)J ao

Since I'p(r) falls off as (r in~r) ', at T, this integral
con verges.

The contribution of vortex pairs with R (2r leads
to a contribution to D of the same form as Eq. (B9).
Center-of-mass motion, and the polarization of the
dipole gas by the test vortex will tend to reduce 5D by
an amount comparable in magnitude to Eq. (B9).
The net result, therefore, is that SD is finite at T„
and 5D will, moreover, be small if the vortex fugacity
yo is small.

The authors are grateful to Annette Zippelius and
Rolfe Petschek for very helpful discussions on these
points. Dr. Zippelius, in particular, was the first to
argue that SD is determined by an integral of the
form (89).

APPENDIX C: SUPERFLUID TRANSITION
IN FILMS OF FINITE THICKNESS

The Kosterlitz-Thouless transition is often
described as a vortex unbinding which occurs with in-
creasing temperatures in strictly two-dimensional sys-
tems. In experimental situations, however, films are
of finite thickness, and it is often possible to vary the
film height at fixed temperature. One then expects a
dissociation of vortices with decreasing thickness h.
In this appendix, we argue that the universal jump
predictions and other consequences of the Kosterlitz-
Thouless theory should hold for films of arbitrary
thickness, provided one is sufficiently close to the
transition temperature. Of course, the lateral dimen-
sions of the film must always be large compared to h.
Finite-size scaling theory then describes the cross-
over from bulk behavior for large h, in terms of a
universal crossover scaling function.

A thick film of superfluid 4He should behave like
an infinite system, provided that the bulk superfluid
coherence length is much less than h. This coher-
ence length diverges in bulk as T approaches T&, and
will eventually reach the film thickness in finite sam-
ples. At this point, the Kosterlitz-Thouless analysis
becomes applicable. In terms of the bulk transverse
correlation length gq( T) used by Hohenberg et al. ,

5p

one requires that

m2k T
(C1)

g2 (b) T
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in order for the film to be effectively two dimension-
al. Here p,tb~(T) is the bulk superfluid density mea-
sured in units of gm/cm . Near T&, we may write"

(.(T) =CD(T.—T)/T. ] '
~

where v = —is the correlation-length exponent of a
3 0

three-dimensional superfluid, and (to = 3.57 A for
pure He at its vapor pressure. "

The phase diagram in the temperature-reciprocal-
film-thickness plane is shown in Fig. 4(a). The bulk
X transition is an isolated point at h = ~ connected to
a line of Kosterlitz-Thouless transitions. The reason-
ing sketched above would lead one to expect a
universal-jump discontinuity in the areal superfluid
density p, (T,h) for att finite film thicknesses.

Two possible experimental paths of approach to a
point (T„h, ) on the critical line are shown in Fig.
4(a). It is easy to convert theoretical predictions
made for path 1 into the corresponding result for
path 2 by invoking a universality or "smoothness" hy-
pothesis. " For example, if it is known that the two-
dimensional correlation length

(+( T, h) = a exp(27r/bt' 2) (C3)

on path I, where t = ( T —T (h) ]/T (h), it follows
that:

NORMAL (+( T h ) = a exp(27r/b 5't2)

where
dT, (h)

dh h-h

(C4)

(CS)

C (x)

on path 2.
The crossover from bulk to Kosterlitz-Thouless

behavior should be describable by a universal scaling
function for large h. Indeed, a straightforward appli-
cation of finite-size-scaling theory suggests that for
thick films, the areal superfluid density has the form

p, ( T, h ) = h p, b ( T)4 [(q( T) / h ] (C6)

2x /v--
C

FIG. 4. (a) Phase diagram for a superfluid slab or "film"

of thickness h in the z direction, and infinite in the remain-

ing two directions. Long-range superfluid order exists only

on a line at h =0, below the bulk A. temperature T„. The

remainder of the region labeled "superfluid" is characterized

by algebraic decay of the superfluid order parameter. Exper-
imentally, one can reach the normal region either by de-

creasing the film thickness or increasing the temperature to

cross the line T,{h) of Kosterlitz-Thouless transitions, Two

possible paths of approach to the transition point ( T, ,h, ')
from the normal phase are shown by the arrows 1 and 2.
The shaded region is the region where two-dimensional fluc-

tuations predominate, and the Kosterlitz-Thouless theory is

applicable. (b) Sketch of universal scaling function 4{x)
describing crossover from three- to two-dimensional

behavior in the superfluid density. This function is equal to
unity at x =0, and exhibits a jurnp discontinuity at a point

x„ from a value 2x, /m to the value 0. The jump is preced-

ed by a square-root cusp,

(c7)lim 4(x) =2x, /m
X~X

C

Of course, C (x) should have a square-root cusp5 as
x x, . The form of 4(x) is sketched in Fig. 4(b).

One consequence of the crossover scaling analysis
is that for large h, 4'

T, (h) = Tg(l —A/h't") = Tg(l —Ah '5), (CS)

where W = ((',/x, )"".

APPENDIX D: KOSTERLITZ-THOULESS THEORY

Here we collect a few results from Refs. 5 and 9
which have been used repeatedly in the main text. In

where 4(x) is a universal crossover function. Clear-
ly, C(x) I, for x 0, and Eq. (C6) is consistent
with the condition (Cl) for deviations from bulk
behavior, provided that 4(x) begins to deviate signi-
ficantly from unity when its argument is of order unity.

In order for &b(x) to describe the Kosterlitz-
Thouless transition, it must jump discontinuously to
zero at some finite value x, of its argument.
Furthermore, Eq. (Cl) implies the universal values
of the jump and
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—[K(l)] '=4m'y'(I)
dl

y(l) = [2 —mK(I)]y(l)d
dl

(Dl)

(D2)

where E(1=0)= Kp and y(1=0) =yp. In fact the
integrated form of Eqs. (Dl) and (D2) is precisely
the mean-field approximation of Kosterlitz and Thou-
less4 9

[K(I)] '=Ko' +4m' dl'y'(I')

I

y(l) =yoexp 21 —1r ) dl' E(l')

(D3)

(D4)

our work, we have relied heavily on analogies with
macroscopic electrodynamics. In the static limit, this
is the point of view taken in the original paper of
Kosterlitz and Thouless. As Young has em-
phasized, the "iterated mean field" or dielectric ap-
proximation of Ref. 4 is precisely equivalent to the
real-space renormalization-group equations of Ref. 5
if an unnecessary simplifying assumption made in
Ref. 4 is avoided.

The scale-dependent dielectric constant e(r) intro-
duced by Kosterlitz and Thouless is determined self-
consistently in terms of three microscopic parameters:
Kp =—(t/m )2( po/ktt T), the core diameter ap, and yp,
related to the vortex core energy Cp by

yp =exp( —Co/ ktt T) or to an equivalent chemical po-
tential by yp= exp( tt p/ktt T) The ef.fect of pairs on
length scales smaller than ape'can be absorbed into
new parameters y(l) and K(I) which obey the Kos-
terlitz recursion relations.

I~ ape' into the new coupling constants K(l') and
y(l')

The scale-dependent dielectric constant is defined by

E( r) = Kp/K (I = In(r/ap)) (D6)

x(l) = —,x(T) coth( —,x(T) I+coth '[2 x/px(T)]],

4vry(l) =
2 x(T) csch( —,x(T)I+coth '[2xp/x(T)]j,

t &0, (D7)

x(1) =
z x(T) cot(2x(T)I+cot '[2xp/x(T)]],

4vry(l) =
z
x(T) csc(2x(T) I+cot '[2xp/x(T)][,

t )0, (D8)

where t —= (T —T, )/T, and x(T) = b((t()'t2. Below
T„e(~) is finite and the renormalized superfluid
density is given by p, (T) = po/~(~). Using Eq.
(D7) and definitions given above, one finds

p, ( T) = p, ( T, ) [1 + —,
' x ( T)], (D9)

where p, ( T, ) refers to the value at the transition,
namely (m/II) 2(ktt T) (2/7r).

The correlation length ( is defined' by writing for
&&0

6( r) = ~( ~) (1 —
2

x ( T) exp [—In( r/ap)/ In( g /ap) ] [

The vortex-depairing transition temperature T, is
determined by K(~) = (2/m).

Near the transition we write K(1) = (2/m) [1+—,x(l) ].
Then the Eqs. (Dl) and (D2) are solved by

From Eqs. (D3) and (D4) one sees how smail pairs
can be absorbed into the scale-dependent coupling
constants. These equations show that from which it follows, using Eq. (D7), that:

(D10)

K(I Kp,yp, ap) =K(IK(l'),y(I'), ape')

y(l Ko.yo. ao) =y(I K{I')y(l'), aoe')
(D5)

for any I' & l, so that by rescaling Ep, yp, and ap we
may absorb the screening effect of pairs of separation

g =apexp[1/x(T)] (D11)

(+——apexp[27r/x( T) ] (D12)

Above T„Kosterlitz' has defined a correlation length
(+ as the scale at which y(l) becomes comparable to
yp. From Eq. (D8) we find that
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