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Gravitational and magnetic field effects on the dynamical diffraction of neutrons
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This paper examines in detail the effect of an external force field on the diffraction of neu-

trons by a perfect crystal. The theoretical connection of this problem with the propagation of x

rays in a strained crystal, and with the motion of band electrons in a crystal under the influence
of an applied electric field is described. Two methods of solution are utilized: (a) an eikonal
(WKB) approach which is analogous to the method used by Kato in discussing the x-ray strain

problem, and (b) a coupled-partial-differential-equation approach, which is analogous to the
Takagi-Taupin method of solving the x-ray strain problem. Extensive numerical examples are
given.

I. INTRODUCTION

Since the first observation of the Pendellosung
fringe structure in neutron diffraction about 10 years
ago by Shull, ' interest in the application of the
dynamical theory of diffraction to the neutron-
scattering case has continuously increased. ' In recent
years this interest has been considerably enhanced as
a result of the successful application. of the Bonse-
Hart x-ray interferometer' to neutron inter-
ferometry. This device has been used to carry out
precision measurements of neutron-scattering
lengths, 5 to observe gravitationally induced quantum
interference, to observe the change of sign of the
neutron wave function in a 2m precession, ' and to
detect the effect of Earth's rotation on the quantum-
mechanical phase of the neutron. No attention has
yet been directed to the effect of gravity (or of a
magnetic field) on the propagation of neutrons within
the perfect, single-crystal silicon slabs from which the
in'terferometer is constructed. It is the purpose of
this paper to examine this problem in detail.

In order to focus on a specific problem, we consid-
er the symmetric transmission-Laue geometry shown
in Fig. 1. Generalizing to asymmetric geometries is
straightforward. A nominally monoenergetic beam of
neutrons of wave vector ko is incident on the crystal
oriented at the Bragg-reflection condition for a given
reciprocal-lattice vector G. The incident beam is de-
fined in space by a slit which is small in comparison
to the crystal thickness T, but large in comparison to
the neutron wavelength. In addition to the periodic
potential V( r ) of the crystal lattice which gives rise
to the Bragg-scattered beam, the neutron is acted
upon by the gravitational potential mg r (where m

is the neutron mass, and g is the acceleration due to
gravity). From the standard results of the dynamical
theory of diffraction, we know that under conditions
of Bragg reflection the incident neutron wave splits
up into two new coherent wave fields Q and Pp in-
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FIG. 1. Symmetric Laue-transmission geometry. The in-
cident plane wave, of wave vector ko, is restricted laterally

by a narrow slit. The triangle ABC is the Borrmann triangle.
Diffracted intensity originates from only this region of the
crystal, This figure also shows the neutron density corre-
sponding to the o. and P branches of the dispersion surface
at the exact Bragg condition.

side the-crystal. At the exact Bragg condition the
neutron density corresponding to Q has nodes at the
atomic planes, while the neutron density correspond-
ing to Pa has nodes between the atomic planes, as
shown in Fig. 1. This perfect registry of these wave-
fields with respect to the atomic planes leads to the
anomalous-transmission effect9 (Borrmann effect)
familiar in x-ray diffraction. However, with the addi-
tion of the gravitational potential mg r to the Ham-
iltonian, we know that the phase (wave vector) of the
neutron wave must be continuously shifted as the
neutron moves through a macroscopic crystal, thus
spoiling the perfect registry of the neutron wave
function with the crystal lattice.

Qualitatively, one can understand that there are
some important effects. For example, in an absorb-
ing crystal the shift of phase of the standing-wave
pattern corresponding to g in Fig, 1 resulting from

1774 C'1980 The American Physical Society



21 GRAVITATIONAL AND MAGNETIC FIELD EFFECTS ON THE. . . 1775

the gravitational field will lead to increased absorp-
tion of this wave field-. That is, one expects that
"turning on" the gravitational field will induce
enhanced neutron-nuclear absorption of Bragg-reflecting
neutrons. In addition, incident neutrons having wave
vectors ko oriented slightly off the exact Bragg condi-
tion at the entrant surface of the crystal will be shift-
ed either closer to, or farther away from, the Bragg
condition as they propagate deeper into the crystal
under the influence of gravity. This effect will tend
to increase the diffracted beam intensity, while the
dephasing of the perfect registry of the wave field
with the lattice will tend to decrease the diffracted
beam intensity due to absorption. From these quali-
tative remarks it is clear that a quantitative calcula-
tion is necessary to even predict the sign of the effect
of gravity on the diffracted intensity.

We remark at the outset that the problem we are
considering here is directly analogous to two other
fundamental problems in solid-state physics:

(i) The motion of band electrons under the influ-
ence of an external electric field E: In addition to the
periodic potential of the crystal lattice, the term

defect = eE r

must be added to the Hamiltonian. Thus, there is a
close connection of the gravitational problem under
consideration here and the Stark-Wannier ladder ef-
fect, considered first by Wannier. '

(ii) The effect of strain on the propagation of x
rays in perfect crystals: This problem has been con-
sidered in considerable detail by Kato. " In a uniform-
ly strained crystal the phasing of the x-ray (neutron)
wave fields relative to the lattice is progressively
changed by moving the lattice plane (due to strain)
relative to the x-ray wave field. For neutrons pro-
pagating through a thick crystal under the influence
of gravity, the relative phasing is shifted by a gradual
change of the period of the neutron wave itself. On
the basis of these considerations orie might expect
that the mathematical problem for these two, physi-
cally quite different situations, is similar. We find
that this is, in fact, the case.

If a neutron propagates in a perfect crystal lattice
under the influence of an external magnetic field
having a constant gradient, the neutron will feel a
uniform force given by

F,g= 9(p,„B) (2)

where p, „ is the neutron magnetic moment and B( r )
is the magnetic induction field. It is clear that the ef-
fect of a gravitational field on the dynamical diffrac-
tion of neutrons must be similar to the effect of a
gradient magnetic field if we replace g by F,g/m. A
magnetic-field gradient of 170 G/cm produces an ac-
celeration equivalent to g =980 cm/s . Of course,
care must be exercised in keeping track of the two
spin states of the neutron.

II. NEUTRON SCHRODINGER EQUATION

and

k2 2fn E0 ~2 0 (4)

we can write Eq. (3) as

V2Q —uQ —
2 p+ko tp=0 (6)

In the absence of the gravitational potential, the
standard method of solution of Eq. (6) involves ex-
panding the periodic potential in a Fourier series

u(r) = Xvoe'o'"
6

and the neutron wave function in Bloch functions

Q(r) = $ Q oxe(pi K Or +iG r)
(0)

'
The vectors 6 are the reciprocal lattice vectors.
Physically, it is clear that the main effect of adding the
gravitational potential to the Hamiltonian will be to
cause a gradual change of the internal wave vector Ko
as a function of position within the crystal. It is rea-
sonable to assume that Eq. (8) will be a solution of
Eq. (6) locally.

Under conditions in which only one reciprocal-
lattice vector 6 is on, or near, the Ewald sphere of
reflection, only two wave amplitudes, namely $0 and
PG, will be large. Thus, we expect that the solution
of Eq. (6) must be of the form

A=4oe ' +AGe

where

KG =Ko+G (10)

In the absence of the gravitational field, the wave
amplitude $0 and QG, and the wave vectors Ko and
KG are constant, independent of position. With the
addition of the gravitational potential to the Hamil-
tonian, it is apparent that this can no longer be the
case. There are two approaches which can be fol-
lowed:

The Schrodinger equation for the neutron inside a
crystal, acted upon by the gravitational field of the
Earth, is

[ (—lt'/2 m ) '7' + V( r ) + m g r ]P =Eog, (3)

where Eo is the incident kinetic energy of the neutron
at point A in Fig. 1, and V( r ) is the periodic interac-
tion potential energy of the neutron with the lattice.
We have set the gravitational potential energy equal
to zero at point A. Defining
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III. EIKONAL METHOD

In a local region of the crystal (large in comparison
to the unit cell dimensions) we assume that the gra-
dients of the wave vectors and wave amplitudes are
small ~ Under this assumption, we find that substitu-
tion of Eqs. (7) and (8) into the wave equation (6)
requires

t

kp —(Kp+G')—
G A2

-t till-t t
G —G G

a. Eikonal method. This is the method followed by
Kato" in treating the x-ray strain problem. The basic
ideas of the technique were first developed by Pen-
ning and Polder. ' The gradual shift of phase of the
wave function P is obtained by allowing the wave
vector Ko to be weakly spatially dependent, and ig-

noring the gradients of Qp and QG locally.
b. Coupled par-tial dhff-erential equ-ation method Th. is

method was developed by Takagi" and Taupin' to
analyze the effects of strain in the dynamical diffrac-
tion of x rays. In this approach, the wave vector Ko
is set equal to the index-of-refraction-modified value
of the incident wave vector ko, and the wave ampli-
tudes Qp and QG are allowed to be locally position
dependent.

In the next section we will pursue the eikonal ap-
proach to understand the basic features of the effect
of gravity on the dynamical diffraction of neutrons.
Then in Sec. IV we will derive and solve a pair of
coupled differential equations analogous to the
Takagi- Taupin equations.

The wave amplitudes Qp and QG will also depend
upon position. At first sight, this would appear to
contradict our original assumption. However, the ap-
proximation involved here requires only that
'7$G «KGQG. We will see that this condition is

generally easily satisfied.

A. Dispersion surfaces

For a nontrivial solution of Eqs. (12) to exist, the
determinant of the coefficients of gp and QG must be
equal to zero, namely,

(Q Kp)(Q KG) =vov G

where

vG= vG/2kp

(14)

(IS)

In writing Eq. (14) we have made the approximations

Q+Kp 2kp and Q+KG=2kp (16)

which we can easily justify numerically. Equation
(14) gives the locus of the allowed values of the
internal wave vector Ko. In the absence of absorp-
tion, Kp will be real, and the solutions of Eq. (14)
can be constructed geometrically in k space, as is well
known. This procedure gives rise to two hyperbolic
dispersion surfaces as shown in Fig. 2. The diameter
D of these hyperbolas (distance between them) is
very small compared to the incident wave vector ko.

Although, strictly speaking, the asymptotes of these
surfaces are spheres of radius Q about the origin 0 of.
reciprocal space and the reciprocal-lattice point 6,

If we further assume that the external incident wave
vector ko is oriented very close to the Bragg condition
for only one particular reciprocal lattice vector (call it

G), only two wave amplitudes pp and QG will be
large. Thus, the above infinite set of equations
reduces to a pair of linear algebraic equations:

and

(Q Kp)pp v —GQG 0 (12a)
ntO

vGAp+(Q KG)IG (12b)

where for simplicity in notation we have dropped the
vector sign over G in the subscripts. The internal
diffracted wave vector KG is given by Eq. (10), and

Q =k —v-2= 2 2mg r
0 0

These equations appear to be the standard two-beam
dynamical-diffraction equations, except that here the
wave vectors Ko and KG depend upon position r.

FIG. 2. The diagram shows the dispersion surfaces at the
entrant point A (solid hyperbolas) and the shifted dispersion
surfaces at a point r (dashed hyperbolas). At r =0 (point A

in Fig. 1), the dispersion surfaces are asymptotic to spheres
1of radius K = ko 2 (vo/ko) drawn with centers at 0 and G.

At a point r &0, these surfaces are asymptotic to spheres of
radius 0 = E —m g r /h ko drawn with centers at 0 and G.
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B. Tie points and tie-point migration

When a neutron of incident wave vector ko first
enters the crystal at point A, the incident plane wave
given by

P;„,= @exp(i ko r ) (Ig)

splits up into two new wave fields Q and Ps corre-
sponding to the n and P branches of the dispersion
surfaces. The excited internal waves will have wave
vectors Ko and Ko, which differ from ko by a wave
vector directed along the normal N to the entrance
surface, namely,

strongly diffracted waves will only occur for wave
vectors Ko near the center C of these dispersion sur-
faces, and the asymptotes can be represented by
planar surfaces in this region. Because the radius Q
of the asymptotic surfaces depends upon position
within the crystal, as given by Eq. (13), the center of
the dispersion surfaces will move as a function of po-
sition r. However, the diameter D and the shape of
the disperison surfaces will remain constant to very
high order of approximation. The net effect of gravi-
ty on the dispersion surfaces is to shift them "rigidly"
in the direction CC' toward the reciprocal-lattice vec-
tor G. This shift is given by —m'g r /koh', as shown
in Fig. 2, since

Q =ko — —m'g r/A'ko . (17)
2ko

m2g r
h kocos8~

(20)

where 0~ is the nominal Bragg angle. The tie point is
now b', and the local direction of propagation is nor-
mal to the dispersion surface at this point. As the
neutron propagates a differential distance d r further
into the crystal, the dispersion surface moves a dif-
ferential distance dI' to the right (in Fig. 3), so that
the new tie point is b". It is clear from this diagram
that the neutron trajectory is curved. The differential
equation describing the trajectory. , will be (at least) of
second order. We need first to write an expression
for the local normal to the dispersion surface at each
tie point b as it migrates. This is most easily done by
first writing the equation for the dispersion surface
[Eq. (14)] in the orthogonal coordinates xk,yk shown
in Fig. 3. The coordinates of a given tie point are
specified by the scalar wave-vector differences
Q —Ko and Q —KG. By geometry we can derive the
transformation equations between these variables.
The results are

spondirig to a given initial tie point. Consider first an
initial tie point b at r =0 on the P branch of the
dispersion surface as shown in Fig. 3. The neutron
follows some trajectory given by the local direction of
the current density j, which is normal to the p
branch of the dispersion surface at point b. At some
point r, the dispersion surface has shifted to the
right (in Fig. 3) by an amount

Ko = kp+No (19)
Q KG (xk —I ) cosHs +yk sin0s (21a)

(Here y means either n or P.) This condition must
be met in order to achieve phase matching of the
neutron wave function across the entrance surface.
Two tie points (shown as points a and b in Fig. 2) are
selected for each incident wave vector ko, one on the
n branch and one on the P branch. As the neutron
propagates into the crystal to a position given by the
vector r, the dispersion surfaces shift due to the in-

fluence of gravity, and the tie points must also shift.
The question then is: How do the tie points migrate?
It is clear that the change in the internal wave vectors
can only occur in a direction normal to the planes of
constant gravitational potential, that is along g.
Thus, the tie point a moves to a', and the tie point b
moves to b'. However, how do we know the position
r of the neutron which entered the crystal at point 3
as a plane wave of wave vector ko? We can answer
this question using differential geometry.

I3-branch

C. Neutron trajectories

We will now derive the differential equation
describing the neutron trajectory corresponding to a
given incident wave vector ko, or equivalently, corre-

FIG. 3. P branch of the dispersion surface showing the
orthogonal k-space coordiantes x~,yk. This diagram shows
how a given tie point b migrates due to gravity as the neu-
tron moves from the entrant point A ( r =0) to a new point
r, and then finally a differential distance d r further.
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and

Q —Kp = (x» —I') cosHs —
y» sinHs (21b)

Using Eq. (24), the dispersion relation Eq. (22), and
the definition of p [Eq. (27)], we can write

Substituting these results into Eq. (14) gives the
equation for the dispersion surfaces in orthogonal
coordinates: and

x„—r=+ ' (1 —p') '~'
cos0g

(29)

(x» —I )'cosHs —y»'sin'Hs = v', (22)

where for convenience we have defined v'=—vGv G.

Strictly speaking v' will be a complex number for an
absorbing, noncentrosymmetric crystal. We will deal
with this problem separately in discussing the effects
of absorption in Sec. III E. Here, 'then, the symbol v2

is the real part of vgv g.
The slope of the dispersion surface is then obtained

by differentiating Eq. (22); we obtain

y =+ .
' p(1 —p') '"

sin 0g
(30)

In these equations, the upper sign applies to the P
branch and the lower sign to the o, branch. The
derivatives on the right-hand side of Eq. (28) can
also be expressed in terms of the normalized slope p
using. the differential geometry shown in Fig. 4, the
expression for the unit vector jgiven by Eq. (25),
and the definition of I' [Eq. (20)]. We find that

dy»
m] = = cot'0&

dxk yk
(23)

dI tan0a m
g 'yp

dx dx cos0& f kp
(31)

m2=-
m&

tan 0g
xk —I

(24)

A unit vector j along this line, which is the direction
of the local neutron current, is therefore given by

The slope of a line normal to the dispersion surface is

therefore

and

m2g y
h'kpcos0~

(32)

Substituting these results and the expressions (29) and
(30) into Eq. (28), we have the differential for the
trajectory which we have sought

x +m2y

(1+m2 )'~'

—=+tanHs, —(1 —p ) ~dp mg y1 23/2
dx hkp v

(33)

(x» —I') cos Hsx —
yi, sin'Hay

[(x» —r)'cos4Hs+ y»'sin4Hs]'~2

A unit vector t along the direction tangent to the
dispersion surface is given by

x + m~y m2x —y"

(1+m')'' (1+m )''
(x» —I ) cos'Hay +y» sin'Hsx

[y„'sin'Hs+ (x„—I )'cos'Hs]'~'

(25)

(26)

The upper sign (—) is for the P branch and the lower

sign (+) is for the n branch. Using the definition of
p given by Eq. (27), this equation can be written as a
second-order differeritial equation for the y coordi-
nate of the trajectory as a function of x. %e note
that if the acceleration due to gravity g is perpendicu-
lar to the reciprocal-lattice vector G = Gy", then the
trajectories are straight lines, unaffected by gravity.

In Eqs. (25) and (26), x and yare unit vectors along
the x and y directions of Figs. 1 and 3, Note that the
slope mq is the local slope dy/dx of the neutron tra-

jectory in real space. It will be convenient to define a
normalized slope

p= m2 1 d
tan0q tan0q dx

(27)

Using Eq. (24) we can calculate the rate of change of
p with depth x into the crystal,

dp (dy»/dx ) ( dx„/dx ) —( d I'/dx )—= —tan 0~ —
yk

dx xk I

(28)
FIG. 4. Differential geometry used in deriving Eqs. (31)

and (32).
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~ =——2 sin8~
fPl g 'P
fkp

and to write Eq. (33) as

(34)

The differential equation (33) is precisely of the
same form as the one derived by Kato" for the tra-
jectories of x rays in a strained perfect crystal. It will

be convenient to define the parameter

In summary, the main result of this section has
been to find that the trajectories of Bragg-reflecting
neutrons inside a perfect crystal medium acted upon
by Earth's gravitational field are hyperbolic. We
schematically show typical trajectories for currents
corresponding to the o, and P branches in Fig. 5.

D. Wave amplitudes

d
dx (1 —p') 'i' 2 cosmos

t

(35)

This equation can easily be integrated to give the nor-
malized slope p as a function of depth x,

p Pp

(1 —p ) (1 —po) 2vcos0s2 12 2 l2 x . (36)

The initial normalized slope of the trajectory at the
entrance point A is denoted by pp. Solving this equa-
tion for p and integrating again over x, we obtain the
equation of the trajectory, which can be put in the
form:

(y —y, )' (x —x,)'
s&n H~ cos 08

(37)

which is the equation for a hyperbola.
There are two sets of coordinates (x„y,) for the

center of the hyperbola given by

2v cosOg pp

(1-po )'"
and

2v sining lyc=+
(1 2)&/2

(3S)

(39)

Xi/
ams

The upper signs refer to the p branch and the lower
signs to the o. branch.

Q = $0 exp(iKp ' r ) + QG exp(i KG r ) (40)

and the corresponding current density is calculated
from the usual formula:

7= . (4''70+4&4')
2ml

(41)

We find, then, that the local current density corre-
sponding to a given branch is given by

( I Aol'so +
I &G I'sG)

m
(42)

I

where sp and sG are unit vectors along the incident
wave vector Kp and the diffracted wave vector KG,
respectively. We have again neglected terms involv-
ing the gradients of the wave amplitudes and wave
vectors.

If the incident beam is of width wp and height hp,
the beam corresponding to a given branch will be of
width ~ and height hp inside the crystal. This is
shown in Fig. 6. The cross-sectional areas of the two
beams are related by

ap

cosO

Np cosHg

where 0 is the angle which the initial current vector
j makes with the x axis, that is cos0 =x j. Using
Eq. (42), we can write an expression for j, and we
find that the total current flow associated with a
given branch is

We will now derive expressions for the wave ampli-
tudes Qo and QG corresponding to each branch of the
dispersion surface. The method ised is similar to the
one used by Kato" for the x-ray strain problem. The
wave function for either branch is of the form

J=
I Jla =a,

1

( I +0 I
+ I +G I )

t

(44)

inc iden
Beam Aside from absorption, which we will discuss

separately in the next section, this total current flow
will be maintained along a given trajectory inside the
crystal. However, the relative contributions from Po
and QG to this current flow will depend upon position
r . The ratio of the wave amplitudes at any point r

for the branch y = n or P is given by
FIG. 5. Schematic diagram of typical hyperbolic neutron

trajectories (under the influence of gravity) for the n and P
branches of the dispersion surface.

(Q —&0')
(45)
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where we have used Eqs. (12a) and (16). We can
express this ratio in terms of the local normalized
slope of the trajectory using Eqs. (12b), (29), and
(30). The result is

ientrance

C"(r) =+
V G

1/2
' ' 1/2
1+p, — branch (46)

+P branch
t

For continuity of the wave function across the en-
trant boundary, we require

and
yp(0) +ALII(0) = c

y;(0)+yg(0) =0 .

(47a)

(47b)

For the symmetric Laue geometry, the initial tie
points on the n and P branches will have equal, but

opposite, normalized slopes, namely,

Po = PP— (48)

Using Eqs. (46) —(48), we can express the initial

values of the wave amplitudes in terms of the initial

normalized slopes p~o of the trajectories for each
branch (y = n or P) and the amplitude of the in-

cident plane wave:

FIG. 6. This diagram shows the change in the beam
cross-sectional area at the entrant surface of the crystal.

condition corresponding to po" can be found from Eq.
(30) and the geometry of Fig. 2,

and

AF(0) = —,
' (1 —po )@ (49a)

+2v Pf
ko sin20s (1 —pg2 ) '~' (54)

I yg( r ) I'+
I
ea" (r ) I' =

I OE(» I'+
I @8(»I' (50)

Using Eq. (46) again, we find

(51)

S/2

Qo(0) = —,
' [(1—Po')(1+Po')]'" q . (49b)

V G

Since the total current flow corresponding to a given
branch is independent of r, we must have

E. Absorption

The total current flow along a given trajectory will

be attenuated due to absorption. Because the absorp-
tion coefficient depends upon the tie point and the tie
point migrates with position r along the trajectory,
the calculation of the absorption factor A~ appropri-
ate to a given branch y(= n or P) will depend upon
pI]' and x. The current at a given position r will be
related to the current J(0) at the entrant surface by

and

(52)

J„(r)= w, J,(0) .

The absorption factor is given by

(55)

We have taken vG/v G to be equal to 1. From Eq.
.(36) we can express the normalized slope p at a given

depth x in the crystal in terms of the initial norrnal-

ized slope po, the result is

p&(x)
+ e/(2 coses) x +po' [1 —(po )']

(1+ [+ e/(2cosgs)x vapo" [1 —(pg)'] '~']')'~'

1 =exp — p,, ds (s6)

where p,, is the probability for absorption per unit
path length along the trajectory (linear absorption
coefficient); that is, along the vector j . An expres-
sion for IM,, in terms of the normalized slope of the
trajectory is derived in the Appendix [Eq. (A16)]. A

differential line element along the trajectory is

(53)

Thus, given an initial tie point, which is specified by
po~ we have explicit expressions for the wave ampli-

tudes at any point along the trajectories. The angular
deviaton ~0 of the incident ray from the exact Bragg

ds = dx(1+ p'tangos)' '

Thus, using Eq. (A16) we have

f+ T

A =exp — "'
i [1+Co(1 —p')'"] dx

cosy

(s7)

(58)
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6
g(u)
Qio)

0
0 5

-2

FIG. 8. This figure shows the effect of increasing gravity
[as expressed through the parameter n Eq, (60)] on the in-

tegrated intensity of the n branch [& (a)/& (0)], the P
branch [s&(n)/8i (0)1, and on the sum of the integrated in-

tensities for the n and p branches s(a)/s(0)
= [& (n) + sa(a) l/ [& (0) +&s(0) ). This figure is drawn

for zero absorption (p,o =0}.

FIG. 9. This figure shows the influence of gravity on the
total integrated intensity for values of absorption
ppT/cos8& =0 and 1.

results are identical to the results of Kato" for the
strain problem as shown in his Fig. 5 if we identify
our parameter a with his parameter JA.
These results can be qualitatively understood simply
on the basis of the migration of the tie points result-
ing from the influence of gravity which in turn ef-
fects the wave amplitude ratios $6~/g. However, a
qualitative understanding becomes more difficult with
the addition of absorption. We show in Fig. 9 results
of numerical calculations of the integrated intensity
for the case when p pT/cosHs =1.0. We see that the
total integrated reflectivity (s +sa) is no longer
symmetric in the parameter o.. Increasing o, from
n =0 initially decreases the reflectivity; however, at
o, =1, the integrated reflectivity begins to increase
again. For negative a, the integrated reflectivity in-
creases rapidly with ~al.

The effect of gravity on the integrated reflectivity,
for other values of ppT/cosHs is shown in Fig. 10.
The behavior is clearly complicated. These results
support our original intuition that it is even difficult
to predict the sign of the effect of gravity on the re-
flectivity.

0
I I i i i

2 4

FIG. 10. The figure shows the relative change in integrat-
ed intensity due to gravity for various values of absorption.
U =ppT/cossa.



GRAVITATIONAL AND MAGNETIC FIELD EFFECTS ON THE. . . .1783

IV. COUPLED-PARTIAL-DIFFERENTIAL-
EQUATION METHOD

following pair of coupled differential equations:

(Q2 —E2)gp+2iK OPp —v ohio =0 (69a)

(65)

In the last section we did not consider the effects
of interference between the u- and P-branch wave
functions which leads to the Pendellosung fringe
structure. In order to include this interference term
we must evaluate the phase integral for each branch:

@=~IKo dr

where Q is defined by Eq. (13). In these equations

and

K =ESp

and
v—oQp+2iKo "7fo +(Q —K~o)po =0, (69b)

where qh is the phase, and the integral is taken along
the trajectory. This integration can in fact be carried
out as has been demonstrated by Kato in his work on
the x-ray strain problem. " However, there is an al-
ternative approach which incorporates the Pendello-
sung interference structure in a natural way. It is
directly analogous to the methods first described by
Takagi' and Taupin' to analyze the effects of strain
on the dynamical diffraction of x rays.

A. Basic equations

KG =K+G=ESG

Thus, if we make the approximation

Q+K=Q+Ko =2E =2kp,

we can write Eqs. (69) in the form

v-o ~ 04o
(Q E)fo Q = i

2E BSp
and

UG 8$-
Qp+ (Q —K)Q- = i—

2K G.

(71)

(72)

(73)

P(r) =Xgo(r) exp(iKp r +i6. r)
G

(66)

We begin with the wave equation (6) and again as-
sume that the solution is a Bloch function

The position of a given -point r inside the crystal is
given in terms of the nonorthogonal coordinates
(Sp,Sg) shown in Fig. 1. These equations can be put
in simpler form by writing

However, here we fix the value of the internal wave
vector Kp at the index-of-refraction-corrected value
of the external incident wave vector, that is

cond

f804o=e Uo

Po =e Ug
-I86

(74)

(74)
ypKp=K= kp ———Sp

2 kp
(67) where

+2/(K+6 ) ' 7Q i= gv (68)

We again assume that the incident wave vector kp is
oriented close to the Bragg condition for only one
particular reciprocal-lattice vector G. Thus, only two
wave amplitudes Qp and Pg will be large, and the
above infinite set of coupled equations reduces to the

A

The unit vector Sp is along the incident beam direc-
tion as shown in Fig. 1. A unit vector along the
diffracted-beam direction is SG as shown in Fig. l.
Thus, the spatial dependence of P resulting from the
spatial dependence of Kp in the eikonal approach is
now incorporated into the wave amplitudes Qg( r ).
In substituting Eq. (66) into the wave equation (6),
we will therefore need to keep terms involving the
gradient of the wave amplitudes. However, we
neglect terms involving '72go which can be shown to
be numerically small compared to K V'Po.

Within the scope of this approximation, we find
that the wave equation requires

y-, [ko —(m'g r /t') —(K+6')']

1 2 A
"

1 mge, =[g s,—s2+g s,(-s)+s,s,)]2 2 t2kp
(75a)

BUG
vg Up exp( i espSg) =i—

BSG
(77)

where e is defined by Eq. (34) and vg is given by Eq.
(15). These equations are precisely of the same form
as the Takagi-Taupin equations as written down by
Katagawa and Kato. ' We identify our parameter e
with their strain parameter f:

0 G
(7g)

where U(r) is the atomic displacement field resulting
from strain.

and
mHg= [ g Sg —Sg+g. Sp( —So +SpSg)] . (75b)

2 2 A2kp

Substitution of Eqs. (74) into (72) and (73) gives

. BUp
v gUgexp(iespsg) =i

0

and
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B. 8-function incident beam

We consider now the problem where the incident
beam is a plane wave [Eq. (18)l with a slit of infini-
tesimal width placed in front of the crystal at point 3
as shown in Fig. 1. This slit will diffract the incident
beam, such that over the angular acceptance range of
the crystal, the beam incident on the crystal will ap-

pear to be a monochromatic spherical wave. There
are a number of mathematical techniques that can be
used to solve Eqs. (76) and (77) for this geometry.
The technique used by Katagawa and Kato was to
solve these coupled partial differential equations
directly using Laplace-transform methods. An alter-
native technique is to write these equations in in-

tegral form and then solve the resulting integral
equations. We find this method easy to apply in this
case. For a distributed incident beam (finite-width
entrant slit) it is probably easier to utilize power-
series-expansion techniques or Riemann-function
techniques.

Integrating Eq. (76) from 0 to Sp, we have

i [ Up(Sp, Sg) Up(O, Sg) ]
Sp= J v gUg(Sp, Sg) exp(ieSpSG) dSp

0

and integrating Eq. (77) from 0 to Sg, we have

(79)

(80)

and
Ug(Sp, 0 ) =0

Up(O, SG) = 45(SG)

(81)

(82)

where 5(SG) is a Dirac 5 function. Substituting Up

from Eq. (79) into Eq. (80) and using the boundary
conditions Eqs. (81) and (82), we have an integral
equation for Ug(Sp, SG):

i [ Ug(Sp, Sg) —Ug(Sp, 0 )]
f SG= J vg Up(Sp, Sg) exp( i e—SpSg) dSg
0

The symbol "0 " means infinitesimally negative. For
a 5-function incident beam, we have the boundary
conditions

~G f'0
Ug(Sp, Sg) = vga —v J dSg J dSp exp[i eSg(Sp Sp) ] Ug(Sp, Sg)

0 0
(83)

Define Wg(q, SG) as the Laplace transform of
Ug(Sp, Sg); that is

Woo —qS0
Wg(q, SG) = Ug(Sp, SG) e dSp

~J 0—
(s4)

Since vg@/q is a constant (independent of the vari-

able of integration), application of the operator
(1 —v2L +v4L~ — v2"L") in Eq. (86) gives a sim-

ple power series

where q is the Laplace-transform variable. Using this

definition and the standard rules for the Laplace
transform of a convolution integral we obtain from

Eq. (83) the linear integral equation for Wg(q, SG)

vGC 2 ~ i 1
Wg(q, SG) = —v' J dSG, Wg(q, SG)

q 0 q + I CSG

(8S)
This equation is of the Fredholm type, and the solu-

tion can be written as a Born series, namely,

Wg(qSG) =(1—v L+v L — v "L"''')
q

(s6)
where the operator L is defined by

~(qS ) g( )nv2n I x vC' z

q „p (ie)" n! q

where

Iv ItESG
ln 1+

q

If we define

P=

then 8'G can be written as
( 1 P

(90)

(91)

(92)

g dS, f(q.SG)

q +ieSG
(87)

(93)

x=ln 1+—SG
IE

q
(88)

then this operator takes the simple form

Lf = ——t dx'f(q, x')
~ Jp (89)

and L"means to apply this operator n times to the
function f. If we let

Using the binomial theorem, this can be rewritten as

W'g(q, SG) = X (P)„(i&SG)",vGC' 1

n-0 q &'
(94)

where (P)„ is the Pochammer symbol

(P).=P(P+1)(P+2) (P+.-I); (P),=1 .

(9s)
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The inverse Laplace transform of Eq. (94) can
easily be calculated using the rule

SG
qm+1 m f

(96)

Kato's results aside from an unimportant multiplica-
tive phase factor (i).

C. Small e/v

Finally, then we have the diffracted wave amplitude

Ug(SOiSg) = vga X (p) z (/eSOSg)"1

„p n!2

In the limit when the gravitation potential is small
compared to the crystal potential, that is, e/v' is
small, it is easy to show that

= vg@M(P, l, i eSOSg) (97)
0

(P)„(I~)"=(-)"v'" I '(n --I)-n—"+
2 V2

. (98)

The function. M is Kummer's hypogeometric func-
tion. ' This formula agrees with Katagawa and Substituting this into Eq. (97), we have approximately

- oo [2 (S S )I/2]2n
Ug(SO, Sg) = vga $ ( ) 22"n!n! V n-0

= vg@[Jp(2v(SpSg) ) —
2

i aSOSg J2(2v(SOSg) ) ] (99)

where J„are the ordinary Bessel function of the first
kind. Thus, in the absence of gravitational effects
(a=0), we see that the diffracted intensity is given
by

Ig lvgl I@I Jo (2v(SOSg)' ) (100)

for the case of zero absorption. This result agrees
with Kato's original result' for the dynamical diffrac-
tion of a spherical incident wave.

D. Intensity distribution along the exit surface

We will now confine our attention to the symmetri-
cal Laue case for a crystal of thickness T. Along the
exit surface

Thus p ranges from —1 to +1 across the Borrmann
fan. The total diffracted intensity at a given value of
p is given by

Ig Ivgl'IC I'IMI'exp( —poT/cosH, ) (105)

where M is given by Eq. (97), and the absorption fac-
tor exp( —po T/cosHs) enters here because the wave
vector K in Eq. (67) will have an imaginary part due
to the fact that v0 will be complex for an absorbing
crystal. For an explanation of the origin of the
Ic/os Hsin the exponent see the Appendix. Since M

depends upon the variable S0SG as given by Eq.
(103), a plot of Ig vs p will be symmetric about p =0
(or y =0). The intensity distribution across the
Borrmann fan on the exit surface depends on three
dimensionless parameters

and

1 TSp=- +
2 cosH~ sinH~

1 T 3'SG=—
2 cosH~ sinH~

(101)

(102)

X) =Re PT
cosHg

L2 = Im vT
cosHg

(106)

(107)

The variable which occurs in the result Eq. (97) is
the product S0SG. We can write this in terms of a
variable p, similar to the variable used in the eikonal
theory; we get

and

6T
cos Hg

(108)

Thus the parameter n defined in Sec. III [Eq. (60)] is
S0SG =

where

(I —p'),
2 cosHg

(103)
L3

2X)
(109)

y/Tp=
tanHg

(104) The parameter X~ is proportional to the neutron-
nuclear interaction potential, X2 is proportional to the
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1
t

IG 0

(b)
X3= 80

X3= 0

The effect of the gravitational potential on the dif-
fracted intensity profile is shown in Fig. 11 in the
case of zero absorption (Xq =0) with X~ ——20. In
part (a) of this figure the X3 =0 (no gravity), while
in part (b) the parameter X3 ——80 (which corresponds
to cx X3/2Xt = 2) . We see that the effect of gravity
is to reduce the contrast in the Pendellosung interfer-
ence structure and to substantially shift the positions
of the minima. Increasing the absorption tends to
wash out the Pendellosung interference structure and
make the effects of gravity much more important.
These effects are shown in Fig. 12.

E. Integrated intensity

I

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
p -~

linear absorption coefficient, and X3 is proportional to
the gravitational potential. For a centrosymmetric
Bravais lattice

POTXp=—
2 cosOg

(110)

FIG. 11. (a), (b) Diffracted-beam profile across the
Borrmann triangle on the exit surface (between points 8 and

C in Fig. 1), The parameter X& =0 for the drawing, which

means zero absorption. The parameter Xt =20; it is propor-

tional to the neutron-nuclear interaction potential [see Eq.
(106)]. The parameter X3 is proportional to the acceleration

g due to gravity [see Eq. (108)]. We see that gravity in-

creases the diffracted intensity, but reduces the

Pendellosung fringe contrast.

The integrated intensity is obtained by integrating
the diffracted intensity IG across the exit surface
from point B to point C (Fig. I). This is equivalent
to integrating over the variable p. To place this in-

tegrated intensity on the same scale as in Sec. III, it
should be written as

f +1

cosOg

The effect of gravity (as expressed through the
parameter X3) on the integrated intensity is shown in

Fig. 13 for various values of absorption (as expressed
through the parameter Xq). We again see that the
effects of gravity are much more important for an ab-
sorping crystal. These results are in agreement with
the numerical calculations of the integrated intensity
given in Sec. III when presented in the normalized
fashion shown in Fig. 13.

10
X1- 20 (Xy

4{o)
10

IG 6

-0.8

10 20 30
X3

-0.6

0
0 0.2 0.4 0.8 1.0

--0.2

FIG. 12. Diffracted-beam profiles for a case of strong ab-
sorption X& =5. Here X& =20. We see that when g -y is

negative, the intensity increases; while when g y is posi-

tive, the intensity decreases due to gravity.

FIG. 13. Relative change in integrated intensity resulting
from gravity (X3) for various values of the absorption
parameter (X~). Here X~ =20. This figure is the result of
numerical (computer) calculations based on the coupled-
partial-differential-equation method.
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0
TABLE I. (222) reflection in InSb. Wavelength A. =2.5 A. Absorption cross section o-, =266 b.

0
Absorption coefficient pa=3.97 cm . Lattice parameter =6.45 A. Bragg angle 8~ =42.17'.
Scattering lengths: bt =(0.39+0.0123i) &10 ' cm, bsb=0. 56 &10 cm. Structure factor

~222 4(bI bsb) = (—0.68+0.0492I) x 10 cm. Re(&) =Re(&222) =—63.4 cm

Im(~) =1m(I 222) =4.59 cm '. m g/0 ko=9.837 cm, g=980 cms

Crystal thickness

T (cm) g y (cm2)
p,oT

cosHg
X2

1.0
2.0
5.0

+1
+1
+1

-13.21
-13.21
-13.21

+0.141
+0.282
+0.705

5.36
10.72
26.8

—85.5 6.19 —24.05
—171.1 12.38 —96.18
—427.7 30.97 —601.1

1.128
1.233
0.982

1.0
2.0
5.0

—1
—1
—1

+13.21 +0.141
+13,21 +0.282
+13.21 +0.705

5.36
10.72
26.8

-85.5 6.19
—171.1 12.38
—427.7 30.97

24.05 0.875
96.18 0.722

601.1 0.254

V. DISCUSSION AND CONCLUSIONS

In the partial-differential-equation method of solu-
tion, the concept of the n and P branches of a disper-
sion does not arise. It therefore appears that the
eikonal approach has no direct connection with this
method, even though the fundamental equation in
both cases is the Schrodinger equation. This connec-
tion has in fact been made in the paper by Katagawa
and Kato" in which they show that the inverse
Laplace-transform integral of Eq. (90), when evaluat-
ed by the method of steepest descents, gives precisely
the eikonal solutions in which the branch structure is
recovered.

We have carried out a number of specific numeri-
cal calculations on the expected magnitudes of the ef-
fect of gravity and a magnetic-field gradient on the
dynamical diffraction of neutrons from various crys-
tals. We are planning to carry out various experi-
ments using Gd garnate, Si, CdS, InSb, and quartz.
As an example, we display results in Table I for the
integrated intensity for the (222) reflection in InSb in
the symmetric Laue geometry for various crystal
thicknesses. The predicted effects are large. The
magnitude of the effect is dependent upon the ratio
of the acceleration due to gravity ( g ) to the
neutron-nuclear potential.

One, of course, has no direct control on the magni-
tude of g. However, as we mentioned in the Intro-
duction, a magnetic field gradient of 170 G/cm
creates an acceleration of a polarized neutron
equivalent to g =980 cm/s'. A field gradient of 10
times this magnitude is easy to achieve. Under such
conditions very large effects on the profile of the dif-
fracted beam and on the integrated intensity are
predicted to occur. An interesting experiment has re-
cently been carried out by Zeilinger and Shull' in
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APPENDIX: ABSORPTION COEFFICIENT pi

For an absorbing crystal, the neutron-nuclear
scattering lengths b„are complex. Therefore the
structure factors

Fo = gb„exp(iG r„) (AI)

which they have observed the effect of the Zeeman
splitting in a uniform magnetic field on the dynamical
diffraction of neutrons in Si. The small shifts in
wave vector resulting from the magnetic field results
in significant intensity differences.

In conclusion, it should be pointed out that essen-
tially no systematic experimental work has been car-
ried out on the effects of strain in the dynamical dif-
fraction of neutrons. There is a large theoretical and
experimental literature on the effects of strain in x-
ray diffraction. We have shown in this paper the inti-
mate connection between the effects of gravitational
and magnetic fields on the dynamical diffraction of
neutrons with the effects of strain on the dynamical
diffraction of x rays. Future work in this area will

certainly benefit by this connection.
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and the Fourier components of the potential

vo =4Fo/V„))

—+/ ~//
Ko = Ko + i Ko (A3)

will also be complex. The internal wave vector Ko
must therefore have an imaginary part; we write it as

where the isotropic absorption coefficient, when the
crystal is oriented far from a Bragg condition, is

p, o
= —2 Imvo. If the absorption is not too strong, we

can neglect the term go'(o' in Eq. (A7). Then our
results for Q —Ko=(0 and Q —KG=(G in Sec. III
are valid if we replace (0=(o and gG = (G. Using
Eqs. (21a), (21b), (29), and (30), we have

In order to satisfy the boundary conditions at the en-
trant surface to the crystal, the imaginary part of Ko
must be normal to the surface. In general, Ko'/Ko
will be very small, even for strongly absorbing ma-

terials, thus

Ko= (Ko —Ko' +2/I7p. Kp)'

(A13)

vj=v'(x i) (A14)

g,'+g,'=+2Re(v')(I —p')-'" .

The absorption coefficient p,, along the trajectory is
related to p, „by

Ko +iKo cos88

If we define

(A4) Using Eq. (25), we have

x j=(p'tan'Os+I) ' ' (A1S)

and
(0= 0 —Ko= fo+18o' (AS)

Therefore, the probability for absorption per unit
path length along the trajectory is

(G 0 KG CG +1(G

the dispersion relation Eq. (14) takes the form

(A6) 1

I +
Imv I (1 — ')'/

cosOg Rev go

and
(o(G —(o'(G' =Re( ~') (A7)

(Ag)

x (p~tan~g +I) (A16)

Re(v') and Im(v') are the real and imaginary parts
of vGv G, respectively. From Eqs. (A4), (AS), and
(17), we have

vG = vG+ I vG (A17)

The upper ( —) sign refers to the P branch, and the
lower (+) sign refers to the n branch. Writing

Ko' = (Ko' cosHs +Imvo)

and clearly

(G 40

(A9)

(A10)

we have in general

2= / / // // o/ // / // /
v = VGv G

—vGV G vGV G + It, vGv —G+v —GvG~

mv Imvo
0

(gp+$G) coses cosmos
(A11)

Placing Eqs. (A9) and (A10) into (Ag) and solving
for Ko', we have Thus, for a Bravais lattice, the ratio

C = Imv
0 2

-1
po Rev

(A18)

(A19)

2

Pn= 0
'm' +

((0+(G) cosHs cosmos
(A12)

Thus, the absorption coefficient along the normal is
These results are well known in the case of the
dynamical diffraction of x rays (see, for example, the
article by Batterman and Coles).
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