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Nuclear relaxation in a randomly diluted Heisenberg paramagnet
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The high (room)-temperature relaxation rates of those ' F nuclei which are not transfer hyper-
fine coupled to Mn spins in KMn„Mg~ „F3 are calculated as'a function of Mn concentration.
Good agreement with experiment is found for the theoretical results, which have been obtained
in the concentration range 0.02 ~x (1 (excluding values near the critical percolation concentration

x, =0.31). The time dependence of the nuclear-spin decay is found to be well represented by

exp[ —{t/r) "], with n varying smoothly from n =1 at x =1 to n =0.5 for x « 1. The second-
neighbor exchange constant between Mn spins needed for agreement with experiment is found
to be smaller than an independently, but also indirectly, measured value.

I. INTRODUCTION

Among the simplest and most studied of the insu-
lating antiferromagnets is KMnF3, a cubic perovskite
crystal with a Heisenberg superexchange between
nearest-neighbor Mn spins on the simple cubic lattice
sites, mediated by an F ion at the midpoint of each
cube edge. Thus each fluorine has two manganese
nearest neighbors, with each of which the ' F nucleus
interacts strongly by an isotropic transferred hyper-
fine coupling AT (St+S2). Above the Neel tem-
perature the resonance frequency of a ' F nucleus is
therefore shifted by an amount proportional to
A ( (St, ) + (S2,) ), where z is the direction of the ap-

plied static field. In a magnetically diluted crystal,
KMn„Mgt „F3, where a fraction (1 —x) of the man-

ganese ions have been replaced by nonmagnetic mag-

nesium ions, there is essentially no distortion of the
lattice and at room temperature three distinct ' F nu-

clear resonance lines are observed, ' corresponding to
fluorines missing two, one, or zero manganese
nearest neighbors and their accompanying hyperfine
fields. Borsa and Jaccarino, ' who studied the relaxa-
tion at room temperature of the ' F nuclei with no
Mn nearest neighbors observed a remarkably sharp
rise in the relaxation rates as the Mn concentration x
was decreased from unity. This rise implies a strong
increase in the low-frequency fluctuations of the di-

polar fields of the Mn spins, an effect which they at-
tributed to the increasing [with (1 —x) ] number of
Mn spins which are exchange isolated from their
(nearest) neighbors (see Fig. 1). These exchange-
isolated spins then decay only via the relatively weak
electronic dipolar interactions which remain —i.e.,
their fluctuation power spectrum extends only to di-

polar, rather than to exchange frequencies, and there
is much more spectral weight at the low frequencies
required to relax the "F nuclei.
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FIG. 1. Two-dimensional representation of types of
configurations and interactions arising (a) above and (b)
below the percolation limit. The solid lines denote nearest-
neighbor exchange interactions between Mn spins (solid cir-
cles) and the dashed lines second-neighbor exchange in-

teractions. Open circles represent nonmagnetic Mg atoms.
All spins, of course, are dipolar coupled. We show part of
the infinite cluster, as well as an "isolated" spin in part (a),
and in part (b) four isolated spins, a two- and a three-spin
cluster.

Here we explore this notion in detail. We calculate
the relaxation of ' F nuclear spins in KMn„Mg~ „F3
for manganese concentrations 0.01 (x & 1. The ex-
periments do not extend below this range, and, in ad-
dition, at lower concentrations nuclear-spin diffusion
starts to play an important role, requiring a different
theoretical treatment. ' Furthermore, we have not
been able to treat values of x very close to the critical
percolation concentration (x, =0.31 for a simple cu-
bic lattice), but experiment does not suggest any
dramatic behavior in the nuclear relaxation in that re-
gion, The experimental results have been reported in
terms of simple exponential decay rates. Although
the theory developed here predicts more complicated
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time dependence for the relaxation, appropriate ex-
ponential fits to the theory give results in good agree-
ment with experiment. However, the theory also
suggests that a more careful experimental study
would give interesting new results.

In Sec. II we discuss the general theory. Sections
III and IV are devoted to concentrations substantially
above and well below the critical percolation concen-
tration x„respectively, and the numerical results
and conclusions, including comparison with experi-
ment, 'are given in Sec. V.

II. GENERAL THEORY

The ' F nuclear spins being studied have only non-
magnetic nearest neighbors, and therefore they in-
teract with the Mn spins only through nuclear-
electron dipolar forces. The corresponding relaxation
times are far longer than the correlation times of all
Mn spins, even those which are isolated. Thus any
given ' F spin, at a position r„, will relax exponential-
ly, with a rate 1/Tt(r„) given approximately3 by
first-order time-dependent perturbation theory:

Pao'
= —(y, y„& ) Xrj„6 FJ(apy;u, pjyq) dt coscoot (SJ'(r)Sf(0) )

& -ao

Pao

+ ,
'

FJ'(n—py,n,p,y, ) „dr coscuor[(S,'(r)S, (0) ) + (S, (r) S;(0)) ] (2.1)

where the sum is over sites occupied by Mn spins, at
distances r&„ from the nucleus in question; Np = Q„Hp
is the nuclear Zeeman frequency; n, P, y are the
direction cosines of the external field with respect to
the crystal axes; and nj, PJ, y, are the corresponding
direction cosines of the vectors rj„connecting nuclear
and electron-spin sItes. The coefficients F~ and F&'

depend only on the direction cosines indicated; they
are the usual angular parts of the squares of dipole
interaction matrix elements. Because the experi-
ments were done on powder samples, we will average
over field direction (relative to the local crystalline
axes), and these coefficients simply become

Fj= 3 +2yj, FJ'=
3

+2(1 —yj) (2.2)

'fhe expression (2.1) neglects all terms involving the
correlations of two different Mn spins. In pure
KMnF3 the pair correlations between the two Mn
spins equally hyperfine coupled to a ' F nucleus con-
tribute about 20% to the nuclear resonance linewidth
or to the nuclear relaxation, at high temperatures. In
the present problem, exchange-coupled pairs contri-
bute appreciably to the relaxation only very near
x =1.0, where we may be making, at most, a 20% er-
ror by excluding them. Moreover, exchange-isolated
spins, which will turn out to dominate the relaxation
process in most cases, are much more weakly (di-
pole) coupled to other spins, and pair correlations are
correspondingly much smaller; we neglect their con-
tribution. We discuss the effect briefly when we con-
sider the influence of small exchange-coupled clusters
(particularly pairs), exchange isolated from the
remaining Mn spins, in Sec. IV.

The electron-spin dynamics appear formally in the
relaxation calculation [Eq. (2.1)] in the evaluation of
two-spin autocorrelation functions (SI (t) S/'(0) ),
where the time dependence of the operators is

governed by the Hamiltonian

X,= y,Ãp XS;+X J~S( SJ
r l)J

+y,'x[S; S, —3(S, r"„)(SJ r&)]r"„~
l)J

(2.3)

\

(~a) =Tr(~a)/Tr(1) . (2.4)

Even in this limit we cannot, in general, calculate
these functions exactly. However, we require only
their Fourier transforms at the nuclear Zeeman fre-
quency cup. Since electronic correlation times, of the
order of exchange or dipolar times, are orders of
magnitude smaller than cop', we can in fact take the
zero-frequency transform. We follow the standard
procedure5 of approximating the correlation function
by exponential extrapolation of its leading short-time
behavior

(S,'(r) SJ~(0) ) = 1 —yt" = exp( —yt") (2.5)

In the disordered system we must sum over all Mn

where the sums are over sites occupied by Mn ions,
and the three terms on the right-hand side represent
the Zeeman, exchange, and dipolar interactions.
Although there is a very weak exchange between
second-nearest neighbors, as discussed below, the
nearest-neighbor exchange strength is overwhelming-
ly dominant, and when we speak of "exchange-
coupled" spins below we refer to nearest neighbors
only, unless explicitly indicated otherwise.

The experiments with which we want to compare
this theory were carried out at room temperature, far
above the (concentration-dependent) ordering tem-
perature ( Tjy = 88 K at x = 1). We therefore calcu-
late the electronic autocorrelation functions at infinite
temperature
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environments of the nuclei and over all environ-
ments of each Mn spin in calculating its autocorrela-
tion function. Within the approximation (2.5) the
needed low-frequency Fourier transform of the auto-
correlation function is proportional to y

' "'. Rather
than attempting a configuration average of this, how-
ever, we will simply average y itself.

With configuration averaging the decay of the total
nuclear magnetization will'be a weighted sum of sim-
ple exponentials, resulting in general in nonexponen-
tial decay

(P( r) P(0) ) II 1 —$p [1 —e p(—

where k classifies the type of Mn spin according to its
dynamics (isolated spin, member of an exchange-
coupled pair, member of the infinite exchange-
coupled cluster, etc.) and pq is the probability of a

spin of type k occupying the site j (so that /pe =x).
The rate nJq is the contribution to 1/T~ in Eq. (2.1)
from a spin of type k at the site j. It contains the

factor y
' "', discussed above, appropriate to an elec-

tron spin of type k, and the coupling constant, angu-
lar factors, and r, from the electron-nuclear dipole
interaction. In the spirit of the assumption of ran-
domness of the alloy, we neglect any correlations
between the occupancies of different sites. All of
this, of course, presumes as adequate the approxima-
tion that the local environment of a spin (in particu-
lar, the size of the cluster of which it is a member)
determines its dynamics and its consequent contribu-
tion to the nuclear relaxation.

If k is limited to a single value, then pq = x and Eq.
(2.6) has two simple limits. If x 1 then Eq. (2.6)
becomes a simple exponential. If x « 1, then that
equation can be approximated by

1

(I'(r) P(0) ) = exp —x g [1—exp( —n, r)] . (2.7)
J

Furthermore, if we can ignore the angular factors in
o.„so that o.J = nr, 6, and if the sum over sites is ap-
proximated by a spatial integral, then

(I'(r)I'(0))/((I')2) = xep[ 3mNox—[p (~ '~ —1) +(uvrt)' erf(nt/p6)]} (2.8)

where No is the number of lattice sites per unit
volume, and p is the smallest distance in the sum
over sites j (or the lower limit on the corresponding
integral). At times for which nt/p6 » 1, Eq. (2.8)
predicts a decay of the form exp[ —(t/r)'~ ], a result
discussed and observed experimentally by McHenry
et al. 6 We expect it to be applicable for low concen-
trations, x « x, ;

III. HIGH CONCENTRATIONS: x & x,

(S,'(r)Sa(0)) =8.a(S;(r)S;(0)) (3.1)

for the infinite cluster, at least after averaging over
the environment of the site j (while maintaining it in

the infinite cluster). We can further usefully make

Above the percolation limit, x )x„ the nuclei in-

teract both with spins of the infinite cluster and with
'

finite exchange-isolated clusters. The corresponding
relaxation rates cx,q [see Eq. (2.6)] are determined
[Eq. (2.3)] by the spin autocorrelation functions on
site j, (S, (t)S,P(0) ). Here the time dependence of
the operators is governed by the electronic Hamil-
tonian II, of Eq. (2.3).

If S, is a member of the infinite cluster, then the
dipolar and Zeeman interactions in H, can be neglect-
ed in the calculation of the autocorrelation functions.
In this approximation, and in the cubic lattice and at
the high temperatures of interest here, those auto-
correlation functions are isotropic in spin space:

I

the standard approximation of a Gaussian decay of
the autocorrelation function, with a rate determined

by the second time derivative at t =0:
(Sf(t)SJ(0) ) = [—'S(S +1)] exp( —

2
~2J t2), (3.2)

where the "exchange frequency" at site j is

co„= [ 3
S(S+1)$ JJi = —S(S+1)z)J (3.3)

eJ

In the sum over nuclei we will encounter all possible
environments of an infinite-cluster spin at the rela-
tive position j; the proper configuration average is
therefore (1/co, ). However, at least away from the
percolation limit x =x„we do not seriously err in re-
placing this by 1/(o&, ) ~ x '~2 [note the similar ap-
proximation made following Eq. (2.5)]. Here we
have averaged the coordination number (z) =6x, as
if averaging over all spins, rather than just those in

the infinite cluster, but these averages are virtually
identical over the range of x near x =1 where this
infinite-cluster contribution is significant. If we take
seriousiy the expression (3.3) for co„ then in pure

In the final equality we have neglected all beyond
nearest-neighbor exchange constants, and z, is the
number of magnetic nearest neighbors to the spin at j
in the particular configuration considered. We re-
quire the Fourier transform of Eq. (3.2) at the nu-

clear Zeeman frequency coo « ~„ for the nuclear re-
laxation rate:
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exp( —y t); y (x) =990Jx sec ' (3.5)

KMnF3, using the value J/k =7.60 + 0.08 K from
inelastic neutron scattering results, ' we find
co,(x =1)=5.9 x 10"sec '. If, on the other hand,
we interpret co, as a measure of the low-frequency
spectral weight of spin fluctuations, through Eq.
(3,4), then the NMR linewidth of '9F in the pure ma-
terial implies o), =3.6 &10' sec '. The difference
in these values has its origin, of course, in the as-
sumption (3.2) of a pure Gaussian decay of the spin
autocorrelation function which neglects, for example,
the long-time diffusive behavior. The latter in-
terpretation is clearly more physically relevant to the
nuclear relaxation problem, and we therefore use the
smaller value of ao, in the numerical calculations
below. Again, with the exception of values of x very
close to x„we have for the probability p that any
site j is occupied by a member of the infinite cluster,
p =x. Then the infinite cluster contribution to the
relaxation of the ' F nuclei is approximately an ex-
ponential decay:

We note that this computed result appears to agree
well with the x 1 limit of the experimental values
reported in Ref. 1. We have computed this contribu-
tion somewhat crudely, not only in the configuration
averaging procedure already discussed, but also in ig-
noring the topological structure of the cluster, which
may develop' substantial numbers of linear strings
(locally one dimensional) or plates (locally two di-

mensional) and quite different long-time diffusional
behavior" than at x =1. This would alter the depen-
dence of the effective co, [see Eq. (3.4)) on concen-
tration x. But we will see that this infinite-cluster
contribution is of importance only very near x =1,
where the approximations made are certainly ade-
quate.

We turn now to the contribution to the nuclear re-
laxation from the isolated spins (with no exchange-
coupled nearest neighbors). To calculate their auto-
correlation functions, we treat the dipolar and
second-neighbor exchange parts of X, as a perturba-
tion X' within the interaction picture. A standard
lowest-order cumulant expansion' then gives

) (
'

) ( ( ) t( ) [ j 1

(StS, )
(3.6)

where

K =1, K+ =K + =2exp(+ice, t) (3.7)

tegral can be replaced by ~ and

(Sjt(t)Sg(0) ) = —,$(S+1)
and all other E ~=0; eo, is the electronic Zeeman
frequency. The interaction picture operators R (r)
and S(r) in the exponent have a time dependence
generated by the Zeeman and nearest-neighbor ex-
change Hamiltonians above. The commutators in the
exponent give four-spin correlation functions of the
form ($; (r)Sg(r) St"S/'), where i and tare explicitly
not equal to j. In this high-concentration range
(x & 0.45) fewer than 3% of the spins are isolated,
so it is highly unlikely for the isolated spin SJ to find
another isolated spin in its first few neighboring
shells. Therefore, SJ is almost certainly relaxed dom-
inantly by spins S; and St (in the above four-spin
correlation function) which are in the infinite cluster.
Then this correlation function decays in a time of or-
der co, ', the exchange time, and the isolated spin
operator S, (r) =St exp(inca, r) can be replaced by

SJ Further, SJ is only weakly coupled to SI and SI,
and for the dominant term (i = i) the four-spin func-
tion can be approximately factored

(S; (7)S (r)S,"S/') =g;, ($; (r)S/') (S,'S,") . (3.8)

The times t of interest in Eq. (3.6) are much longer
than exchange times, so the upper limit on the in-

(3.9)

where the sum is over those sites i which are occu-
pied by Mn ions. Here J2 is the second-neighbor ex-
change strength and al; & 0 only if i and j are second
neighbors. The constants a~; and a2; are of order
S(S+I), and D& measures the dipole strength
between spins at i and j. Since both J2 and D are
small compared to co„ these isolated spins decay
much more slowly than those of the infinite cluster.
Their low-frequency spectral power is of order
r»,'/( J2 +D') & 10' times as large as that of spins in
the infinite cluster, so they tend to dominate the nu-
clear re'laxation, although they are few in number, up
to values of x -0.7. We have only considered longi-
tudinal fluctuations (of the z component of S, alone).
From Eq. (3.6) we see that the spectral distribution
of transverse fluctuations is centered about the elec-
tronic Zeeman frequency co„with a width of order
(D'+ J$ )/cu, (( co,. Thus there is little spectral
weight at the low frequencies required for nuclear re-
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laxation, and the transverse fluctuations are ineffec-
tive in this process. This is, of course, a familiar ef-
fect in other contexts; for isolated spins there is no
exchange narrowing.

In this numerical estimate of the relative efficiency
of isolated spins, we required a value of J2. An
analysis' of inelastic neutron scattering data in pure
KMnF3 suggests a second-neighbor exchange there of
order J2 —0.03J. But direct studies' of pairs of Mn
spins in small concentrations in KMgF3 suggest a
much smaller value, J2 ——(0.01 +0.006)J, when the
intervening nearest-neighbor Mn ions are replaced by
nonmagnetic Mg ions. This smaller value, clearly
more appropriate to the present problem, is still
several times larger than the dipolar interaction
between second neighbors. In fact, we will discover
below that even this value of J2 appears to be some-
what too large.

IV LOW CONCENTRATIONS: x ( xc

Below x =x, all clusters are finite, with a distribu-
tion in size which is increasingly dominated by the
single isolated spins as x is reduced. We can con-
veniently treat only very small (and very large) clus-
ters, so we limit consideration to x (0.1, where the
fractions of spins which are isolated, members of iso-
lated pairs, or members of three-spin clusters are ap-
proximately 0.53, 0.21, and 0.10, respectively. As
noted in the Introduction, we also do not consider
x & 0.01, where nuclear-spin diffusion begins to play
a role (since the nuclear dipole-dipole interaction be-
comes comparable to the nuclear level separation as-
sociated with different local environments).

We consider first the dynamics of the isolated
spins, determined by the dipolar interactions with
other nearby spins. If those other spins belong to
large clusters then —just as with the infinite cluster
discussed above —their effects are reduced by the rap-
id fluctuations due to the internal exchange interac-
tions in the cluster. In fact, as we have just pointed
out, in this concentration range it is most likely that
the nearby Mn spins will themselves be isolated. If
so, they relax the reference spin in a time characteris-
tic of the dipolar interaction between the two:

(S;(t)S'(0) ) =exp —XDt"
where the sum is over the sites jof the isolated spins
relaxing S;, and D„" contains the dipolar coupling con-
stants, angular factors, and r„~. Because of the rapid
r„ falloff in the exponent, we can classify the
dynamics of S; according to the distance at which the
nearest Mn neighbor is found, with all relaxers
beyond the unoccupied shells accounted for only
within a configurational average. As in Sec. III, only
the z component (longitudinal) fluctuation of the

exchange-isolated spin are effective in nuclear relaxa-
tion.

The total spin S =S~+S2 of an exchange-isolated
Mn pair commutes with the exchange Hamiltonian;
the decay of S is governed by dipolar interactions,
both internal and external to the pair. The effective-
ness of the internal dipolar interactions is sharply re-
duced by the exchange-induced rapid fluctuations of
the spins, while that of the external interactions is
not; the latter fields become the major source of re-
laxation

2

(S'(t)S'(0)) = $ (S;(t)Sf(0)) (4.1)

A(t)(rt'+r ') +2P(t)rt 'r2 (4.4)

Thus, if r~ = r2, the pair acts effectively like two iso-
lated spins at that distance. We make this approxi-
mation throughout our numerical calculations; we do
no~xpect this to introduce appreciable error.

The description of exchange-isolated clusters of
three or more spins can be made along the same
lines, but the approximations clearly become worse as
the cluster size increases. Thus, to the extent that
internal dipole interactions can be neglected, the total
z component of spin [initial average square value

, nS(S +1) fo—r an n-spin cluster] decays in a time

characteristic of its external dipolar interactions.
Such a cluster relaxes nuclei at distances large com-

In this isolated cluster the strong exchange coupling
relative to external interactions leads to pair correla-
tions (i & j) as important as autocorrelations (i = j).
If the spins 1 and 2 have identical external interac-
tions, then

(S*(t)S'(0))=A(t), (S[(t)S&(0))=P(t),
(4.2)

with A (0) =
3
S(S+1) and P(0) =0. We have

A (t) +P(t) =constant until times long enough for
the dipolar interactions to be important. As spin in-
formation is communicated rapidly between the two
spins, after a characteristic exchange time, r„A (t)
and P(t) each tends to an average value of

6 S(S+1). Then both correlation functions (or
their values averaged over several exchange times)
decay in much the same way, as determined by the
external interactions:

A(t) =P(t) = [ —,'S(S+1)]exp(—
—,
' w't') (t » r, )

(4.3)
where ~ is a dipolar relaxation rate.

Let us consider the effect of an isolated pair on the
relaxation of a nucleus whose distances from the two
spins are r ~ and r2. The relevant terms contributing
to the relaxation rate are
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pared to cluster dimensions at a rate comparable to n

isolated spins at the same distance. Of course, the
contribution to the relaxation beyond a few lattice
spacings from the nucleus becomes negligible, so the
picture is of little utility for clusters larger than two
or three spins. We must again, therefore, not deal
with concentrations too close to the percolation limit
x„where larger clusters begin to play an important
role.

V. RESULTS AND DISCUSSION

The calculations described in the preceding sections
were carried out numerically for a nucleus in the cen-
tral cell of a cubic lattice 15 lattice spacings on a side.
The full angular and distance dependence of the di-

polar interactions was included, and configuration
averages were made as discussed in Sec. II [see, in

particular, Eq. (2.6)]. The results for the decay of
the net nuclear magnetization, as a function of time,
are shown for representative concentrations both
above and below the percolation limit in Fig. 2. The
(positive) curvature in all cases reflects the departure
of the decay law from pure exponential behavior,
with stronger departures for decreasing Mn concen-
trations X.

The curves were calculated with next-nearest-
neighbor exchange J2 set equal to zero. The justifica-
tion for neglecting J2, in spite of earlier estimates "
placing its value greater than the dipole interaction
between the same two spins, can be found in Fig. 3,
where we have plotted the calculated ' F nuclear re-
laxation appropriate to x =0.5 for ( J2/J) =0.01,

0.004, and zero, and compared these curves to exper-
iment. ' The first two values of (J2/J) were chosen
to represent Windsor's independent determination of
this quantity'2 by resonance on Mn pairs, as
0.01 +0.006. The form of the nuclear decay is seen
to be quite sensitive to the value of J2 in this range,
and although the experimental curve' has been arbi-
trarily normalized at t =0.1 msec, comparison with
theory decidedly favors a value of (J2/J) appreciably
smaller than 0.004. The remarkable agreement with
the J2 =0 theory is surely partly fortuitous, consider-
ing both the approximations which have been made
in the theory and the experimental uncertainties
( —+O.lx) in the concentration x. Nevertheless, the
comparison certainly suggests a value of (J2/J) small-
er than the lower limit of Ref. 12. We note that in
the isostructural compound RbMnF3, with nearly
identical transferred hyperfine interactions, ' a value
of Jonly about 10% smaller, and a lattice parameter
only 1% larger than that of KMnF3, the second-
neighbor exchange J2 is zero within experimental er-
ror. '4

The experimental results of Ref. 1 were reported as
values of I/Tt, characteristic of pure exponential de-
cay, exp( —t/Tt). In fact, what is given there is the
initial observed slope of the logarithm of the decay,
after an experimental dead time of about 50 p,sec.
For comparison with those results, then, we have
plotted the corresponding slopes of the theoretical
curves in Fig. 4, along with the experimental values
of Ref. 1. The agreement is good throughout the full
concentration range where we have results. We note
that, although there are no experimental results for
KMn Mg~ „F3 below x =0.1, there are reported in
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N
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0 2
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0 2
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FIG. 2. Calculated decay of the nuclear magnetization as
a function of time, with second-neighbor exchange J2=0.
Curves are labeled by Mn concentration x.

FIG. 3. Calculated decay of the nuclear magnetization for
three values of J2, at fixed Mn concentration x =0.5. The
circles are the experimental points, arbitrarily normalized at
t =0.1 msec,
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FIG. 4. Relaxation rate, defined as the logarithmic
derivative of the nuclear decay at time t = 50 p,sec, as a
function of Mn concentration x. Theoretical values (see Fig.
2) are indicated by crosses, experimental values (from Ref.
1) by error bars, The circles at x =0.5 are results for
J2=0.01J (lower circle) and J2=0.004J (upper circle); all

crosses are for J2=0.
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Ref. 1 some results for Mn„Zn~ „F2 down to
x =0.01, and it is suggested there that the results for
the two systems will be comparable. The value re-
ported for I/Tt at x =0.01 is 0.5 +0.3 (msec) ',
which appears roughly consistent with an extrapola-
tion of our theoretical predictions.

However, the curves in Fig. 2 clearly are not well

characterized by their initial slopes alone. In view of
the limiting cases of the decay at large times dis-
cussed in Sec. II [viz. , exp( —t/r) as x —1 and
exp( Jt /Wr) f—or x « 1], it seems reasonable to
look for long-time behavior, for general x, of the
form

I.O-
I

Q. I

Q.OI
I I I I I IIII

Q. I

I I I I IIIII
I.Q

t (msec)

I I I I I I II
~0.0

FIG. 5. The logarithm of the nuclear decay rate, as a
function of time, plotted so as to exhibit directly the
behavior (5.1). (a) concentrations x & x,; (b) x (x,. The
curves are labeled by values of x.

f(t) =—( —2 exp[ —(t/7. )"]
((p) 2)

(5.1)
I I I I I I I I

I

Then at times sufficiently long that
~
InA

~ && (t/7 ) ",

a log-log plot of —Inf (t) vs t should exhibit linear
behavior, with slope n. Such behavior is indeed seen
in Fig. 5, and the values of n and v so determined
are. plotted in Fig. 6. %e see the expected limiting
valu'es of n =1 as x 1 and n =0.5 for x &&1. The
passage from one to the other occurs largely above
the percolation limit x & x, =0.31. The dashed sec-
tion of the curve represents a smooth interpolation in
the region near x, where we were unable to make
adequate theoretical approximations. The relevant
rate, I/r, appears to peak in this region. Clearly, it
would be interesting to extend the experimental ob-
servations to compare in detail with the theoretical
prediction and to explore the region near x =x,.

]0.0—
It2

III
CI

h

].o

0.5

i.o—

o.ol
I I I I I I I I I

Q]
X

I I I I I I I

I.O

FIG. 6. Exponent n (solid line with dashed interpolation)
and effective rate ~ ~ (dot-dashed curve) characterizing nu-
clear decay in the form of Eq. (5.1).



21 NUCLEAR RELAXATION IN A RANDOMLY DILUTED. . . 1773

ACKNOWLEDGMENTS

We are indebted to Dr. V. Jaccarino and Dr. F. Borsa for discussions of their experimental work and interpre-
tations of it, and for supplying us with some of the original data. We are grateful to Mario Bosco for helpful dis-
cussions of some early preliminary calculations he carried out on this problem. This work was supported in part
by the NSF Grant No. DMR78-05926.

'F. Borsa and V. Jaccarino, Solid State Commun. 19, 1229
(1976).

H. E. Rorschach, Jr. , Physica (Utrecht) 30, 38 (1964).
3T. Moriya, Prog. Theor. Phys. 16, 23 (1956).
4D. W. Hone and B. G. Silbernagel, J. Phys. {Paris) 32, C1-

761 (1971).
5R. Kubo and K. Tomita, J. Phys. Soc. Jpn. 9, 888 (1954).
M. R. McHenry, B. G. Silbernagel, and J. H. Wernick,

Phys. Rev. B 5, 2958 {1972).
7S. J. Pickart, M. F. Collins, and C. G. Windsor, J. Appl.

Phys. 37, 1054 (1966).
R. G. Shulman and K. Knox, Phys. Rev. 119, 94 (1960).
J. E. Gulley, D. W. Hone, D. J. Scalapino, and B. G. Silber-

nagel, Phys. Rev, B 1, 1020 (1970).
' Near the percolation limit in two dimensions such effects

are observed in computer-generated random networks:
H. E. Stanley, R. J. Birgeneau, P. J. Reynolds, and J, F.
Nicoll, J. Phys. C 9, L553 (1976). See also R. J. Bir-
geneau, R. A. Cowley, A. Shirane, and H. J. Gug-
genheim, Phys. Rev. Lett. 37, 940 (1976).
R. E. Dietz et al. , Phys. Rev. 'Lett. 26, 1186 (1971);P. M.
Richards and M. B. Salamon, Phys. Rev. 8 9, 32 (1974),

' C. G. Windsor, Ph. D. thesis, Oxford, 1963 (unpublished),
referred to in M. B. Walker, Proc, Phys. Soc. London 87,
45 (1966), and in Ref. '7.

' Original experimental data kindly supplied by the authors
of Ref. 1.

~4M. B. Walker and R. W. H, Stevenson, Proc. Phys. Soc.
London 87, 35 (1966).


