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Parastriction: A new probe for quadrupolar interactions in rare-earth compounds
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We present a new method called parastriction for investigating the quadrupolar interactions in

cubic rare-earth intermetallic compounds. Parastriction measures the rare-earth quadrupolar

moment induced by an applied magnetic field through the anisotropic deformation of the lattice.
The magnetoelastic coefficients associated with the two principal strain modes (tetragonal and

rhombohedral) are thereby obtained. The quadrupolar exchange parameters may be evaluated

without any ambiguity for compounds with low magnetic-ordering temperature. Application to
the heavy rare-earth —zinc compounds is then given.

I. INTRODUCTION

Magnetoelastic effects and in a more general way

quadrupolar pair interactions have been extensively
studied over the last few years in cubic rare-earth in-

termetallic compounds. Due to the strong mixing of
the 4f wave functions by the crystalline electric field
(CEF), an anisotropic reduction of the multipolar
moments appears in addition to the anisotropy of the
energy'. Classical treatments such as those proposed
by Trammel' for the magnetization process and by
Callen and Callen for magnetoelasticity fail, and a
quantum treatment must then be developed.

In addition, the Hamiltonian must include the qua-
drupolar exchange interactions, which have been
found to be important in cubic rare-earth intermetal-
lics3: for instance, in TmZn (Ref. 4) and TmCd
(Ref. 5) they are strong enough to induce a pure
quadrupolar ordering which reduces the symmetry.
This change of structure is analogous to the magne-
tostrictive process, in which the spontaneous strain is
driven by the magnetic dipolar exchange interactions.

Starting from the full Hamiltonian, it is then possi-
ble (i) to diagonalize the Hamiltonian in the ordered
range to obtain the average value of the various mul-
tipolar moments, and (ii) to perform perturbation
calculations in the disordered range. This leads, for
instance, to the expression of the magnetic suscepti-
bility or the elastic constants.

To obtain additional information in the disordered
range, we derive expressions for the tetragonal and
rhombohedral strains induced by an applied magnetic
field (Sec. II). This parastriction method was out-
lined recently. It should be emphasized that the two
strain modes can be systematically studied, whilst
only the spontaneous strain may be achieved in the
ordered range due to the strong anisotropic effects.
In addition, for each symmetry, since the strains are
as sensitive to the quadrupolar exchange interactions
as to magnetoelastic coupling, the separation of the:
two corresponding coefficients is then possible.

In Sec. III, we present an extensive study of the
parastriction in the rare-earth —zinc compounds.
Indeed, in these cubic CsCl-type structure com-
pounds the quadrupolar (magnetoelastic and ex-
change) effects were found to be very large7: spon-
taneous strains up to 1% are driven by magnetostric-
tive processes for compounds from TbZn to ErZn
and result from the quadrupolar ordering4 in TmZn.
Our results allow the determination of both magne-
toelastic coefficients for each compound and quadru-
polar exchange parameters in some favorable cases.

Variation of the tetragonal and rhombohedral mag-
netoelastic coefficients will be discussed in Sec. IV.
They appear not to follow point-charge estimates in a
parallel way to the fourth- and sixth-order CEF
terms. As the latter ones they are strongly influ-
enced by the electronic structure, that will be dis-
cussed in a following paper, where a tentative estima-
tion of the magnetoelastic coefficients will be per-
formed from the modification of the electronic struc-
ture by the strain.

II. THEORY

A. The Hamiltonian

The interpretation of the magnetic properties of the
4f shell in a cubic surrounding is based upon the fol-
lowing Hamiltonian 3C, using the operator-equivalent
theorem and the molecular-field approximation:

WEF +~J ++Q +XME

+ (E,)+EJ + Eg)

KcEF=A4 (r ) pJO4+A$ (r ) yJO6

WxO 8'(I —~x~) OF 4 F 6

is the usual cubic CEF Hamiltonian expressed in the
fourfold-axes system.

xJ= gjpa(H+ngJI a—(J)) J
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—82(e P +cycl. ) (5)

the one-ion magnetoelastic coupling linear in strain,
where we neglect the strain modification of the
fourth- and sixth-order CEF terms as well as any
two-ions magnetoelastic coupling. ' Within the har-
monic hypothesis, the elastic energy E,[ is written

E,1
= —,

'
(C1'1 —C1'2)(e)+e)) +2C44 (~~2+cycl ).(6)

includes the Zeeman coupling and the Heisenberg ex-
change interaction, where n is the molecular-field
parameter.

X=—K1((Of ) 02 +3 (02 ) 02 )

—E2( (P~) P~+cycl. )

is the quadrupolar exchange Hamiltonian, and

%ME = —81(E302 +&3e20$ )

free energy Ft,t= —AT lnZ starting from the parti-
tion function Z (see Appendix)

F1ot=FcEp 2 Xp(H+nM) 2 X2(81t3+K1Q)1

—xp3(81s3 +K1Q) (H + nM) 2

4 x) (H+IlM) +
2 (C11 C12)+3

+ , nM'—+ , K1Q—', (10)

where four CEF susceptibilities may be defined
without any exchange interactions (their expressions
are given in the Appendix): Xp is the usual magnetic
susceptib'ility, X2 is the tetragonal strain susceptibility
occurring in the elastic-constant calculations, " Xpl is
a quadrupolar-field susceptibility, and XI1

3 a third-
order magnetic susceptibility. "

The equilibrium values for M, e3, and Q are given
by the conditions of minimization of the free energy

the Ck~'s being the background elastic constants
without magnetic interactions.

EJ = n(g—jpa(J) )

and

(7)

~~tot ~~tOt ~~tot

BM B~3 BQ

That provides a system of three linear equations, the
solution of which leads to the following expressions:

Eg —,
' K1((02——)'+3 (022 )')

+
2 E2( (P~) 2+cycl. )

M = XMH+XM"H',

Bi
11 Q

.Cl 1 C12

(12)

(13)

are corrective energy terms for, respectively, the di-

polar and quadrupolar exchange interactions originat-
ing in the molecular-field approximation: indeed
when summing over the whole crystal exchange aris-
ing from Eqs. (3) and (4), the energy relative to a
pair of rare-earth ions is counted twice.

B. Perturbation theory

In order to determine in the paramagnetic range,
the field dependence of the average values of the
second-order Stevens operators 02, 02, and Pk~, we
have to apply a perturbation theory for successively
the two cubic strain modes.

1. Tetragonal symmetry

The magnetic field 0 is applied along a fourfold
axis, e.g. , z, in the paramagnetic range. So
M gjpa( J, ) and Q = (Of ) are the only nonzero
average values and within the new tetragonal sym-
metry the Hamiltonian 3C must be written

X=%esp —gjpa(H + IlM) J —81t302 —K1QOf

+ —,(C11 —C12) (K3) +
2

nM'+ —,K1Q' . (9)

with

Q =XOH2, (14)

G= '"' +K1 p p
+ 1 ~

C11 C12
(18)

Note that we find again for the equilibrium value of
e3 [Eq. (13)) the expression derived not within any
perturbation theory. '

2. Rhombohedral symmetry

H is now applied along a threefold axis, e,g. , [11 1j.
This new symmetry (rhombohedral) implies that the
nonzero average values are

(J.) = (~y) = (J.) (19)

Xp
XM=

1 —nXp

xp (xp')'x"'= +26' , (16)
(1 —n Xp) 4 (1 —n Xp)'(1 —G1X2)

xp'
Xg=

(1 —n Xp) 2(1 —G1X2)

In Eqs. (16) and (17) the parameter G1 is defined"

The perturbation theory has to be carried out up'to
the second order for e3 and the fourth order for H in
order to derive the analytical expression of the total

and

(P )-(P ) =(P ) (20)
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and that the following relation is verified:

&xy &yz &zr (21)

H( pp gjpa(H + nM') J,

2»~k)—O2 ——„K2Q o2

In this case, it is more convenient to make a rotation
of the coordinates axes so that [111]is the new z
axis: in the new system only M' = gjp.a(J, ) and
Q'= (02 ) are nonzero, and the new Hamiltonian 3C'

is written

the parameter G2 being defined'

(&2) 2

o
+

4C4'4
(31)

(Pkl) = —,Q = —,X()H' (32)

3. 8ehavior of the magnetic quadrupolar susceptibilities

and the same remark can be made for the equilibri-
um value of ek) [Eq. (26)]. Returning to the four-
fold axes system we finally obtain

+ 6C404(kk))2+ nM—' +—K2Q' (22) a. 8'i thout CEF effects. The magnetic susceptibil-
ities are known to reduce to [Fig. 1(a)]

with kl =xy, yz, or zx and the primes referring to the
new system.

After carrying out the same perturbation theory as
in Sec. IIB1, we obtain the total free energy F,'„

CXo=-
T

C
T —0

(33)

(34)

F,'„=Fcp p
—

2 X()(H + nM') '

—
2 X2( 2 &2&k)+ —, K2Q')

—x["'(—,
'

Bzkk)+ —,', K2Q') (H + nM')'

, x( ) (H—+—nM')4

+6C404 kk) +
2

nM'2+
24

K2Q'2 (23)

where C =gj')(ka[
3 J(J +1)] is the Curie constant

and 0'= nC. In the same way, we obtain for the
strain and quadrupolar susceptibilities

x)2) = x'(2) = l g2 2 (2 (36)

x, =x,'= J(J+1)(2J—1)(2J+3)= ~, (35)5T T

(24)

Here Xo = Xo because of the isotropy of the (first-
order) magnetic susceptibility in cubic symmetry, but
the X2, X)"', and XI)3' values differ from the corre-
sponding nonprimed susceptibilities, according to the
new cubic CEF wave functions adapted to the rhom-
bohedral perturbation Hamiltonian (their expres-
sions, however, are the same as for tetragonal sym-
metry).

The new equilibrium coriditions for M', ok~, and
Q' are

~Ftot ~Ftot ~Foot
p

|)M ()k k) ()Q

Let us define

Hg = CgGi

Og'= C()( )2 G2)

/
/

(b) J
/

(38)

These lead to the expressions

M —XMH+XM 0
82

24Co

(25)

(26)

/

/
I'

e =e~

(2) 2 /

with

g'= xgH2 (27)

Xo
XM XM

1 —nXo
(28)

r(3) XI)"' (x(2) )2

(1 —nxo)4(1- —,', G,x,')
(29)

O
K
CL

LLj
K

/
{c) /

/

/
/

/

2

T EMPERATURE

x)"'
Xo=—

(1 —nxo)'(1 ——,', G2x2)
(30)

FIG. 1. Classical temperature dependences of the magnet-
ic dipolar and quadrupolar reciprocal susceptibilities for vari-

'

ous 0 and 8~ values.
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which correspond to the structural transition tem-
perature T,I defined by Kataoka and Kanamori" in
their elastic constants expression [Eq. (60), in Ref.
14]. The total quadrupolar susceptibility Xg [Eq.
(17)] is then given by

CgT
( 7' —8')'( 7' —80)

(39)

and the same expression for Xg with 80 changed into
8g'. As the reciprocal magnetic susceptibility [Fig.
l(a)l, Xg'I' exhibits a linear I'dependence at high
temperature; its extrapolation down to the T axis al-
lows to define a "paraquadrupolar temperature"

80 = 8'+
2

8t't [Figs. 1(b), 1(c), and 1 (d)] which

depends on both exchange parameters.

At low temperatures, Xg' deviates from the
linearity, according to the relative values of 0' and
88. From Eqs. (15) and (17) [or Eq. (30)], two or-
dering temperatures T~ and TQ associated with the
two coefficients n and 6; may be defined by the van-
ishing of, respectively, X~' and Xg' ' (or Xtt

' '), the
transitions being here continuous. Two cases appear:
(i) with 8"~ 88, the dipolar ordering occurs at
T~=8 the quadrupoles being consequently ordered,
this is the magnetostrictive process [Fig. 1(b)]. (ii)
with Hg & 0', the quadrupoles alone order at Tg = Bg,
below Tg, the dipole ordering may occur at a T~
value depending on both 8" and 8g [Figs. 1(c) and
1(d)].

b. In presence of CEF effects The same .high-
temperature behavior occurs; however, additional de-
viations may be induced at low temperature by the
character of the admixed CEF levels. In addition the
simple identities T~ = 0' or Tg = Hg are not correct
here: The relation between ordering temperatures
and corresponding exchange parameters are more
complex and depend on the exact CEF level scheme.

c. Parastrictiott formalism Under an ap. plied mag-
netic field, the total relative change of length A. can
be expressed including the isotropic bulk

anomaly e„as

= —a„+ a'3(3p3 —1) + e2(pt —p))

+2(a~PtP2+ay, p2p3+ azxp3pl)

(41)

For rhombohedral deformation [Eqs. (26) and (27)],
one obtains along a threefold axis

o ''/'
H

(iXti —Xt()'" (42)

As a consequence of Sec. II83, the high-temperature
slope of Hl(lail —Xtl)'I' gives the magnetoelastic
coefficient B; and the paraquadrupolar temperature
Hg the 6, parameter, 0' being known from the mag-
netic susceptibility. It is then possible to deduce E;
using Eq. (18) or (31). This parastriction method ap-
pears to be complementary with elastic constants
which in the cubic paramagnetic range also gives G;
and Ki, then i8;i.

III. PARASTRICTION RESULTS IN THE RZn SERIES

Our Rzn parastriction data have been obtained
with a capacitance dilatometer" under magnetic fields
up to 3.6 kOe with a sensitivity of 1 A and an accura-
cy of 1%; the size of our monocrystalline samples
(about 5 mm) limits the relative change of length to
2 && 10 '. At every temperature the quadratic field
dependence of the measured strain has been checked.
Rzn physical characteristics are reported in Table I.

(40)
where the P s are the direction cosines of the mea-
surement direction. In order to eliminate the e„ef-
fect, the magnetic field is successively applied parallel
and perpendicular to the measurement direction. So
for tetragonal deformation and according to Eqs. (13)
and (14), measurements along a fourfold axis lead to:

o o ''/0 2 1/4 Cll -C12
1/2

(iX —X f)'" 8,

TABLE I. Some physical characteristics in RZn ferromagnets: Curie temperatures, cubic CEF
parameters, and background elastic constants at room temperature.

RZn v'c e
(K) (K)

A4 (r4)
(K/at. )

A6(r6)
(K/at. )

(C&& Ci2)o
(105 K/at. )

(C44)o
(10' ~/at. )

TbZn
DyZn
HoZn
ErZn

TmZn

204
139

74 79
20 26
8.12 8.1
Tg =8.55

—41
—34
-14
—36
—38

—83
—33
—18
—18
—20

1.09
1.2
1.41
1.74
1.5

1.27
1.44
1.53
1.65
1.63
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5-

100

TEMPERATURE

200

(K)
300

A. Tetragonal strain

FIG. 2. Temperature variations of H/{ ~ X~~
—X&1'~ for

tetragonal strain in RZn. The full lines are calculated
dependences.

0"=8.1 K from magnetic susceptibility. Then the
quadrupolar susceptibility may allow the determina-
tion of GI from the experimental value of Hg =30 +2
K [Fig. 3(a)). Calculations show the sensitive depen-
dence of Og on G~. for 0'=8.1 K, the extrapolation
down to the Taxis of the high-temperature slope
gives 0' = 3 and 30 K for, respectively, GI =0 and 25
mK.

Note that GI =0 would lead to the vanishing of
X~' ' at a second-order magnetic-ordering tempera-
ture T~ =3.6 K, the curvature being negative. With
G~ =25 mK, the structural transition temperature as
we11 as its first-order character and the positive curva-
ture of Xg' ' are described. The magnetoelastic coef-
ficient is BI = —27 K, and the corresponding contri-
bution to Gt is Bt /(Ctt Ctp)p=4. 8 mK. Hence Kt
may be deduced to be about 20 mK; this indicates
that the structural transition is driven by the quadru-
polar exchange.

These coefficients are in fine agreement with other
determinations: (i) the spontaneous strain (c/a —1
= —9 x 10 3 at 4.2 K) has been fitted3 with

Bt = —25.5 + I K. (ii) The (Ctt —Ctq) mode soften-
ing has led to GI = 25 + 1 mK, K~ = 20 +1 mK, and
then ~Bt~ =28+3 K.

Figure 2 shows the temperature dependences of
H/([ ~)~

—Xt()'~ obtained from TmZn to TbZn. 2. ErZn

1. TmZn

This case is the best illustration of the wealth of
parastriction. In this compound the quadrupoles
tetragonally order at higher temperature (To =8.SS K)
than the magnetic dipoles ( Tc = 8.12 K). In Eq. (2),
8'and x are known from neutron spectroscopy,

For this magnetostrictive compound,
H/(~k~~ —Xt~)'~ cancels at Tc=20.5 K. The high-
temperature extrapolation leads to Og = 31 + 2 K.
The best fit is obtained with BI = —9.1 +1 K and
Gt =4 +2 mK [Fig. 3(b)1. Here too, they may be
compared to their determination from ultrasonic
data'6 ( Gt = 2.9 + 0.3 mK, It.'t ——2.1 + 0.2 mK, and

I 1-

/
l

I

I
I t

20
I

40
I

60 80 20
I:

30
I

40
I

50 60 70

TEMPERATURE

FIG. 3. Low-temperature variation of H/(X[[ —X~)' (tetragonal strain) ———:GI =0, and ~: high-temperature
extrapolation. (a) In TmZn GI =25 mK and (b) in ErZn GI =4 mK.
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lBt l
= 11 + 3 K). They allow a good description of

the magnetization processes at low temperatures'
TABLE II. Magnetoelastic arid total second-order coeffi-

cients associated with rhombohedral symmetry.

HDZn

The slope of H/( l limni

—h.il ) 'i is the strongest one
in the series, leading to the weakest magnetoelastic
coefficient Bt =3.6 +1 K [ 81'/(C» —Ci2) -0.1

mK]. The Gi contribution can not be precisely ob-
tained (Hg —8~ =75 K) Gt =0 +5 mK. The same
conclusions may be derived from ultrasonic data
when no softening is observed due to the weak mag-
netoelastic contribution. However the fit of the low-

temperature magnetization processes' had given
G] = —4+2 mK.

TbZn
Parastriction

Spontaneous strain'

DyZn
Parastriction

HoZn
Parastriction

Spontaneous strain'

a, (K)

(+12, +20)
11.6 + 0.8

-0.5, —1.5

(-4, -6.2)
—6.4 +0.4

a, (K.)

(0, -0.5)

(0, 0.1)
0.0

4. DyZn and TbZn

Increasing II" has two main consequences: (i) the
CEF effects, particularly spectacular at low tempera-
tures, are hidden. (ii) As the investigated range is

reduced, the high-temperature linear behavior, above
deviation effects near T~ [Fig. 1(b)], may be unob-
served, and the fit leads to only a relation between

Gi and K&. In DyZn the possible (Gt, Bi) couples
range from (Bi=10.4 K, Gi =0) to (Bt=7.2 K,
G1=25 mK). In TbZn, the corresponding limits are
(Bt =11 K, Gi =25 mK). In TbZn, the correspond-
ing limits are (Bt =11 K, Gi =0) and (Bi =8.4 K,
G|=50 mK).

B. Rhombohedral strain

The temperature variation of H/(Itic —kil)'i in

the five studied compounds is drawn in Fig. 4. The

ErZn
Parastriction not measurable not measurable

TmZn
Parastriction

'Reference 7,

(14, 34) (—0.02, —0.5)

TmZn

slopes are obviously steeper than for tetragonal
strains (Fig. 2), indicating smaller rhombohedral
changes of length. This necessitates a precise [111]
orientation in order to avoid any tetragonal contribu-
tion to the observed strain. A misorientation would
have introduced strong azimuthal variations of Xi
which were never observed. The investigated tem-
perature range is limited to the neighborhood of Tc
(deviations range as in Fig. 1) and only a relation
between B~ and G~ may be expected.

15

10"

rC
I

s-rC

Tmzn

DyZn

H II [111]

The possible couples (82, G2) range from (8~=14
K, G2 ———0.02 K) to (82=34 K, G2= —0.5 K). No
agreement was possible with positive G2 values; in

addition, G2 larger than 0.2 K would drive a rhom-
bohedral structural transition above Tg =8.55 K. Fit-
ting the magnetization curves3 along [110] and [111]
led to G2= —0.07+0.05 K; from magnetic excita-
tions experiments G2 was found" smaller than 0.04
K. The magnetoelastic contribution smaller than 1

mK is quite. negligible in comparison with the qua-
drupolar exchange one, explaining the absence of any
effect on the C44 mode.

2. Other RZn

300
I l

0 &00 200

TEMPERATURE ( K )

FIG. 4. Temperature variation of 0/(X]l —~j) ' (rhom-

bohedral strain) in RZn.

In ErZn, no measurements of the weak e strain
was possible. In HoZn, fitting the negative strain
leads to couples ranging from (82 = —6.2 K, G2 =0)
to (82 = —4 K, G2 =0.1 K). 82 is then in good
agreement with the determination from the strain in

the ordered range (Table II). The possible G2 range
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TABLE III. Magnetoelastic, total second-order, and quadrupolar exchange coefficients associated
with tetragonal symmetry.

8)
K

Gi
mK

Ki
mK

TbZn
Parastriction

Spontaneous strain'
(11.1-8.4)

15+1
(o-so)

DyZn
Parastriction

Spontaneous strain'
(1O.4-7.2)

16+2
(o-25)

HoZn
Parastriction

Magnetization processes
3.6 + 1 0+5

—4+2

ErZn
Par astriction

Elastic constants'
Spontaneous strain'

—9.0+1
+11 +3

—I. 1.6 + 0.6

4+2
2.9 +0.3

—0.5
2.1 +0.2

TmZn
Parastriction

Elastic constants
Spontaneous strain

Tg=8.55 K

—27+2
+28+2

—25.5+1

25 +1
25+1

25+1

20 +2
19+1

'Reference 7.
Reference 13.

'Reference 16.
Reference 4.

includes the value deduced from magnetization
processes' (+10 mK). In DyZn, 82 is weakly nega-
tive (0, —1.5 K), no accuracy may be expected on
G2. In TbZn, 82 ranges from +12 to +20 K for G2
variations from 0 to —0.5 K, As in HoZn, we found
again the 82 value obtained with G2 =0 from the
spontaneous strain, when the twofold axis is the easy
magnetization direction.

IV. DISCUSSION

A. Magnetoelastic coefficients variation
in the RZn series

1. B~ variation

The obtained magnetoelastic coefficients are given
in Fig. 5. As it will be interesting to discuss them as
CEF parameters, the B~/uJ variation is also drawn.
From Table III, some discrepancies appear with deter-
minations from the spontaneous strain. ' They ori-
ginate from the overestimation of the two-ion mag-
netoelastic contribution in Ref. 7. This exchange

coupling contributes to the tetragonal strain value by

63=+
o 0 (+2(J)2—(J)2—(J )2) . (43)

Cl 1 C12

The spontaneous strain observed in. GdZn (c/a —1
= —4.5 && 10 4 at 4.2 K; B~ =0) led to a D~ = —2.3-K
coefficient which was kept as a constant in the series.
But having the same origin as 0', the two-ion magne-
toelastic contribution must roughly vary as
(gj —1)'J(J+I) throughout the series for dominant
S s exchange interactions.

According to a de Gennes law, it contributes only
about 10% to the total tetragonal strain in TbZn,
where its effect is maximum (its relative contribution
falls down to 3 x 10 and 10 in ErZn and TmZn,
respectively). This two-ion magnetoelastic term is

also present in the parastriction and then leads to a
10% underestimation of the positive value here de-
duced in TbZn: however, its separation from the
one-ion coupling might be expected only at low tem-
perature from CEF effects on the total parastriction
temperature variation.

Neglecting this two-ion contribution in the formal-
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ism seems to be reasonable, keeping in mind that it
may shift a little the one-ion magnetoelastic coeffi-
cient value (about 1 K/at. in TbZn). The tempera-
ture variation of the spontaneous strain as well as the
parastriction is now described for each compound
with the same 81 value.

2. 82 variation

As said above, the same 82 values are obtained
from the parastriction as from the spontaneous strain
(Table II). The variation throughout the RZn series
is drawn in Fig. 5. If 8&/nJ remains negative, 83/A J
changes in sign, which would be not expected from
pure point-charge estimates. Since no reliable D2
two-ion magnetoelastic coefficient had been detected
in the ordered range of Gdzn, this variation of 32
cannot be explained by such a mechanism.

B. Conclusion

The application of parastriction to the Ezn com-
pounds for the two main symmetry lowerings shows
the possibilities of the method. Its quantum treat-
ment is necessary in the case of cubic symmetry due
to the wave-function mixing. It is particularly fruitful
in presence of weak magnetic interactions, allowing a
clear separation of the magnetoelastic coefficient and
the quadrgpolar exchange one. This may be success-

fully done for both the rhombohedral and tetragonal
symmetries, since the moment can be aligned in any
direction by an applied magnetic field.

In comparison with sound-velocity measurements,
a possible superiority is that parastriction may reveal
a small magnetoelastic term simultaneously with a
large quadrupolar exchange one, while no softening
appears on the corresponding elastic constant. How-
ever, there is a great complementarity between the
two methods, various measurements being necessary
for determining reliably these high-rank parameters.

Performed in the disordered range, it is then
developed under the same conditions as the neutron
spect'roscopy giving the cubic CEF parameters. In ad-
dition, the shortcomings of the exchange-interactions
model are not felt here in the temperature variation
of the dipolar and quadrupolar moments; thus para-
striction allows also the study of magnetoelasticity in
antiferromagnetic or more complex-magnetic-
structure compounds.

The two sets of magnetoelastic coefficients ob-
tained in Rzn lead to a result reminding us of the
analysis of the fourth- and sixth-order CEF parame-
ters': they do not follow any scaling law throughout
the series. This point is particularly emphasized by
the rhombohedral magnetoelastic coefficient. They
are strongly influenced by the anisotropic electronic
structure, the influence of which will be tentatively
discussed in a following paper.
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APPENDIX

As a first stage we define the eigenvalues E; and
the eigenvectors lik) corresponding-to the Hamil-

tonian 3CCEF alone

~cEFlik) = E(lik) (Al)

In each subspace i the Iik) have to be adapted to the
perturbation Hamiltonian. A perturbation theory up
to the second order for ~3 and the fourth order for 8
allows us to obtain the analytical expressions of the
perturbed energies Ek

&Q

0 0

-10- o

CQ

Q

C4o

4

E,„=E, + X E;t "& +

Then the partition function Z

Z ge ik

i,k

(A2)

(A3)
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FIG. 5. Variation of the magnetoelastic coefficients in the
RZn series.

can be calculated (with P = I/ks T, ks being the
Boltzmann constant and T the temperature); one ob-

tains

Z = ZcFF [1 + T'pXDH +
3 px2(8163)

+px"'8 ~ H'

+ —,'P[xg'+ —,
' P(XD)']0'+ . ) (A4)
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that leads to the expression of the total free energy

F«, = k//T lnZ, [Eq.(10)].

The expression of the four CEF susceptibilities Xo, X2, X2, and Xo
'

are given by

~0 gJ /kB Xfi 2 $ +
T I Jikik I

',ik, j&i i i j
2

ik, j &ii

(AS)

(A6)

Jik.iO. . J. . +'20ik iJ. . J
(E; —E,) (Ei —E,,)

I JikJI I Qikik +2,Qlk, jl~jl, ik Jik, ik

(E;—E,) E; —E,
'

k//T 2(k/iT)'
' '' ' (A7)

1 ik ji f /i/ /f/ //i// Jj//i//2kaT;, k
'

J&;i (E E/)(E; E )(E E. )
j wi i

I jik.jil'I J„.;I'+. 2Jik,/iJ, , 1, „Jik;k ',
(E; E,) (E; —E.,)—

j &i I

I Jikik I I ~ik,,jl I

(E, -E,) (E, —E) (E;—E,)kBT k T 6k//T
i

where

Jik,ji = (ik I &il j'I )

Qkji = (ik I
020 jII )

are the matrix elements of J, and 02 between the cubic CEF levels. For each degenerate CEF level i,

i e I/ e
ZcEF i,k

(As)

(A9)

(A10)

(A11)

is the Boltzmann population factor.
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