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Piezobirefringence analysis in an opaque region
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We report a new method to analyze the piezobirefringence coefficient in an opaque region in which the
stress-induced changes in both the real (h6&) and imaginary part (b,a,) of the dielectric constant are
properly taken into account. New coefficients, which determine the fractional contributions of Ae, and he,
to the piezobirefringence coefficient, have been derived from an analytical point of view. The experimental
data on Si and ZnSe reported recently have been analyzed by using the present result. Good agreement
between the experiment and calculation has been found. The present method provides a guiding principle
for analyzing the piezobirefringence coefficient in an opaque region.

I. INTRODUCTION

We recently reported the spectral dependence
of the photoelastic constants Pyy Py2 andP, 4 in
various semiconductors in the region below the
lowest direct gap (E,gap) determined from the
Brillouin-scattering measurements by introducing
the intrinsic piezobirefringence analysis. ' ' We
have also shown that the dispersion of the photo-
elastic constants depends strongly on a lifetime
broadening of the electronic states in solids. In
the analysis, however, we have disregarded the
contribution from the imaginary part of the dielec-
tric constant to the photoelastic constant assuming
that its contribution is negligibly small in the
photon-energy region of transparency. Recently,
Chandrasehkar, Grimsditch, and Cardona' de-
veloped a new method to measure stress-induced
birefringence in an opaque region which employs
the Raman-scattering technique as a probe. Us-
ing this new method, they have measured the
magnitudes of the piezo-optical (photoelastic)
constants in Si (0.5-3.38 eV)' and Gap (1.0-2.6
eV)' above the fundamental absorption edges. In
their analysis, the contribution from the imaginary
part of the dielectric constant has also been ne-
glected, although they have pointed out that its
contribution should be taken into account in order
to discuss the spectral dependence of the piezo-
optical constants in the region above 3.0 eV in Si.

In this paper, we report a new method to analyze
the piezobirefringence effect in the opaque region
of solids, where the stress-induced changes in
both the real and imaginary parts of the dielectric
constant are properly taken into account by intro-
ducing new fractional coefficients. From the
present analysis, we again find that a close re-
lation exists between the piezobirefringence (or
Brillouin scattering) and modulation spectros-
copy, "where the fractional coefficients in the
former are very analogous in their behavior to
the Seraphin coefficients in the latter. We will

apply the present result to the analysis of the
experimental data on Si (Ref. 5) and ZnSe (Ref. 1).

r/d=2w(n -n, )/x. (2)

In the [001] stress direction, for example, the
photoelastic constant (P„-P») or the piezo-

II. MODEI.

When a uniaxial stress is applied to a crystal
having diamond or zinc-blende structure the
crystal becomes birefringent. The piezobire-
fringence is usually measured with linearly po-
larized light which propag3tes along a direction
perpendicular to that of the applied stress. ' Two
linearly polarized waves with amplitudes E~~

(parallel to the stress direction) and E~ (per-
pendicular to the stress direction) will propagate
through the crystal. The electric fields of these
waves, as functions of the position x in the crystal,
can be written as

E„(x)= E,exp[i(2wn, pt/A. —et)] exp( —2w kg/X),

(1a)
E, (x) = E,exp[i(2wn, x/Z —(ut)] exp(- 2w k,x/x),

(1b)
where E, is the amplitude of the incident wave,
and + and X are the angular frequency and the
wavelength in vacuum, respectively. n]*, =n~~+ik~~

(n~ =n~+ik, ) is the complex refractive index for
light polarized parallel (perpendicular) to the
stress axis. n is the real refractive index and 0
is the attenuation index called the extinction co-
efficient. Equation (1) represents a wave traveling
in the x direction with velocity c/n (c is the light
velocity in vacuum) which is attenuated by
exp( —2wkx/X). In the piezobirefringence experi-
ments, one measures the phase difference be-
tween the components of the light polarized paral-
lel and perpendicular to the stress axis. The
phase difference per unit path length (d) is given
by'
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optical constant (w» —w») is related to ni -n,
through

an=-n(, -n, = -2n30(S„—S„)(P„—P„)X (3)

0.15—

or

e, =n -k'

e2 = 2nk. (sb)

The change in the refractive index 4n can now be
given by (first order in stress)

An=- X= a„(e„c,) 'X+P;(e„e,) 'XBn B62

with

= Q„(E'i» E2)kf i+p;(6i, E2)66 i, (6)

-1/2

a„= Il+ ~e, +e2gBc, 4 2

(7a)

1 1 2 ~2+62 -1/2~ 7b
Be2 4

, The first and second terms of Eq. (6) are con-
tributions from the stress-induced changes in
the real and imaginary parts of the dielectric con-
stant, respectively. The coefficients n„and P;
are functions of photon energy, and their sign
and relative magnitude determine the fractional
contributions of Ac, and Ae2 to the piezobire-
fringence effect.

The change in the real part of the dielectric
constant with applied stress can be expressed by
(E,-gap contribution) '

3IAn=n i—n~ = —wno(w„i —w, ~)X,

where n, is the refractive index at zero stress,
S11 and S» are the components of the elastic com-
pliance tensor, and X is the applied stress. The
optical constants n and k are real and positive
numbers and can be determined by optical mea-
surements. They are related to the dielectric
constant (c =e, +ie,) by the following equations:

O.OS—

O.OO
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FIG. 1. The fractional coefficients n„and P; in Eq.
(6) for Si.

III. RESULTS AND DISCUSSION
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First, we consider the contribution from the
imaginary part of the dielectric constant to the
piezo-optical constant of Si in the region of the
E, transition (-3.3 eV) where the sample is opaque.
Figure 1 shows the spectral dependence of the
fractional coefficients o.„and P; for Si, calculated
from experimental values of the optical constants
reported by Philipp and Ehrenreich. ' A low-en-
ergy region (below 3.0 eV), which contains the
fundamental absorption edge, is dominated by u„.
The n„dominance in this region makes it easy
to analyze the piezobirefringence effect using a
conventional technique which employs transmis-
sion of light through the sample. ' The fractional
coefficient P; increases at photon energies above
3.0 eV, and the rising P, and falling o„produce
a crossover at about 4.1 eV. In this region, the
piezobirefringence. analysis becomes very diffi-
cult because the fractions of the contributions from
h~, and A&2 should be exactly taken into account.
Figure 2 shows the changes in the dielectric con-

BX;=~,a,c 8M~
' B&s. ")

where M= (((P~) (' is the squaredP-matrix ele-
ment, E„. is the band-gap energy, and the sum-
mation indicates that contributions from the three
valence bands (A, 8, and C) must be included.
The stress-induced change in the imaginary part
of the dielectric constant, Ae„ is also given by
replacing e, of Eq. (8) by e,.

"%00 —.

I
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FIG. 2. The stress-induced changes in the real 4'Ef
{solid line) and imaginary part &e2 |,'dashed line) of the
dielectric constant for Si. The curves were obtained
by numerically differentiating experimental data of the
dielectric constant with respect to the photon energy.
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and

&

stant b,f y and Af z as functions of photon energy.
In order to calculate be, and bc, [Eq. (8)], we
have used the following approximations:

(9)
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where E& is the E,-gap energy and E is the inci-
dent-photon energy. Such approximations have
been used by Cardona and co-workers" "to
analyze their Raman-scattering data. We have
calculated the first derivatives of E'y and cz with
respect to E according to Eqs. (9) and (10) by
numerically differentiating experimental data of
Philipp and Ehrenreich. ' The obtained results
are shown in Fig. 2 by solid (be,) and dashed
lines (be,). The changes in the dielectric prop-
erties under strain have also been calculated by
Tsay, Bendow, and Mitra' in terms of a full
band-structure approach to estimate the Bril-
louin-scattering efficiencies of Ge and Si. Piezo-
birefringence measurements in the opaque region
have been recently reported in Si, ' and GaP, '
along with the new method employing the Raman-
scattering technique as a probe. Now we com-
pare our theoretical model with the data on Si.'
Figure 3 shows the theoretical curve calculated
from Eq. (6) along with the experimental data
(Fig. 7 of Ref. 5). The data below 1.5 eV are
obtained from Ref. 8 (conventional method) and
those above 1.5 eV from Ref. 5 (new method).
The filled circles are plotted on the scale in-
dicated in the figure, while the open circles are
replots of the same values on an expanded (4x)

3.5
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'4 2.0

1.5
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FIG. 3. The theoretical dispersion of the piezo-optical
constant for Si calculated from Eq. (6). The experiment-
al data are obtained form Ref. 5. The filled circles are
plotted on the scale indicated in the figure, while the open
circles are replots of the same values on an expanded
(4x) scale and the square is plot of the data at E=3.38 eV
on a reduced (~~x) scale.

FIG. 4. The fractional coefficients Q.„and p; in Eq.
(6) for ZnSe.

scale. The theoretical curve was calculated us-
ing the fractional coefficients and the changes in
the dielectric constant given in Figs. 1 and 2,
respectively. It is evident from Fig. 3 that the
experiment and calculation are in quite good
agreement.

Chandrasekhar, Grimsditch, and Cardona'
also reported the experimental value at E = 3.38
eV in Si measured by their new method. The
square in Fig. 3 is the data point at E = 3.38 eV,
where it is plotted on a reduced (~»x) scale. Due
to the lack of points at intermediate photon ener-
gies they have not been able to infer the sign of
the effect at E=3.38 eV. They have suggested
that in the photon-energy region close to the
critical point real transitions occur and the exact
linewidth, including the imaginary part of the
stress-induced dielectric constant, is required
for an accurate description of the piezobire-
fringence phenomena. By virtue of the present
model, we can estimate the sign of the data at
E = 3.38 eV to be negative because the signs of
a„and P; are positive in this photon-energy region
but those of pf y and Aez are negative.

Next we consider the contribution from the
imaginary part of the dielectric constant to the
piezobirefringence coefficient in ZnSe determined
from the resonant-Brillouin-scattering experi-
ments. ' Figure 4 shows the spectral dependence
of the fractional coefficients o.„and P; for ZnSe,
calculated from experimental values of the optical
constants reported by Aven, Marple, and Segall. "
The stress-induced changes in the dielectric con-
stant, b,e, and Ae„as functions of wavelength for
the case of [001] stress direction are shown in
Fig. 5 by the solid (be,) and dashed line (be,). In
the calculations, we have replaced rv by ~
+i(I'/k) in Eq. (13) [or Eq. (14)] of Ref. 1 and cal-
culated the real and imaginary parts of this. equa-
tion using the numerical parameters given in Ref.
1, where ~ is the angular frequency of the light
and I" is the lifetime-broadening energy. It is
important to point out that the change in the
imaginary part (be,) has considerably large value
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and p,. is very similar to that for the modulated
reflectance spectroscopy proposed by Seraphin
and Bottka":
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in the region very close to the fundamental ab-
sorption edge (3.68 eV= 463 nm). However, the
fractional coefficient P; is very small in the pho-
ton-energy region compared with a„. It is clear
from this fact that the contribution from the
imaginary part of the dielectric constant to the
piezobirefringence effect is much smaller than
that from the real part of the dielectric constant,
and therefore we can disregard the imaginary-
part contribution for ZnSe in the region below and
near the lowest direct gap in a good approxima-
tion. From these considerations, the photoelas-
tic constant Pyy P)2 becomes proportional to
a„b,e, [see Eqs. (3) and (6)]. We have, therefore,
fitted our experimental data' on the photoelastic
constant P» -P» to the calculated curve (solid line)
by taking into account the constant term which
arises from the higher-gap contributions (i.e.,
E» E,+h„and E, transitions), where we have
assumed that o.„ is nondispersive in the measured
wavelength region (see Fig. 4). The plotted data
points are obtained from the Brillouin-scattering
measurement. (Note that the Brillouin-scattering
intensity is proportional to the square of the
photoelastic constant. }"'"lt is clear from the
figure that the calculated curve shows an excel-
lent agreement with the experimental data. From
these discussions, we conclude that the photo-
elastic constants in the region of transparency
can be safely determined only by the stress-in-
duced change in the real part of the dielectric
constant, and therefore our previous results' '
can be used without any modification.

It can be found from Figs. 1 and 4 that the spec-
tral dependence of the fractional coefficients o,„

I I I I I I I

YSQ 720 $$0 $40 $00 5$0 520 40 440 400
NAVRLRNOTH t nm )

FIG. 5. The stress-induced changes in the real ~&q

(solid line) and imaginary part 4~2 (dashed line) of the
dielectric constant for Znse along with the experimental
data on the photoelastic constant p~~-P~2.

nA/8 = A(C» E2)AE ~+ p(E» E2)EEp,

where the coefficients o. and P, which are obtained
by differentiating Frespel's formula, are func-
tions of photon energy, and their sign and relative
magnitude determine the fractional contributions
of Ae, and he, to the modulation spectroscopy.
From the spectral dependence of E'y and e, for
semiconductors such as II-VI compounds, we
have o. »P in the region of the fundamental ab-
sorption edge, i.e., only the first term of Eq. (11)
is important, and therefore bR/A is determined
predominantly by the nature of the fraction Ae, .
In the case of piezoreflectance spectroscopy, "
the change in the dielectric constant Ac, in Eq.
(11) is given by the same expression as Eq. (8).
We recently studied a relation between resonant
Brillouin scattering (piezobirefringence) and
first-derivative modulation spectroscopy such as
piezoreflectance, thermoreflectance, and wave-
length-derivative spectroscopy, and compared
the experimental Brillouin spectra with the first-
derivative modulation spectra obtained in some
semiconductors. ' The obtained results have
clearly suggested a close relationship between
them. This is of course to be expected from the
expressions of Eqs. (6) and (11).

In conclusion, we have obtained a generalized
expression of the piezobirefringence effect by
taking into account both the stress-induced changes
in the real (b,e,) and imaginary part (Ae, ) of the
dielectric constant. The coefficients n„and P;,
which are functions of photon energy, have been
calculated from an analytical point of view. Such
coefficients determine the fractional contributions
of sc, and ~e, to the piezobirefringence response.
The present model has been demonstrated for
Si and ZnSe in the opaque photon-energy region
(E, edge) and in the transparency region (E, edge),
respectively. Good agreement between the ex-
periment and calculation has been found. When
the present method is adopted, it is possible to
extend the piezobirefringence analysis to a large
number of opaque materials.
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