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This paper presents calculations on xenon at high pressure. We have employed recent developments in
electron-band theory and the theory of fluids to demonstrate that the experimental solid isotherm, liquid
shock compression Hugoniot, and high-energy atomic-beam-scattering data are all consistent and in
agreement with theoretical predictions. Electron-band theory predicts that xenon will transform from an
insulator to a metal at a pressure in excess of 1.3 Mbar.

I. INTRODUCTION

Two static-compression experiments on solid
xenon have been reported recently that yield the
85-K pressure-volume isotherm up to 110 kbar, '
and indicate an insulator-to-metal transition at
about 330 kbar. ' These new results —combined
with previous shock-wave data on the liquid to 500
kbar, ' and unpublished high-energy atomic-beam-
scattering data, ' make xenon the simplest con-
densed material for which there is so extensive
an overlap of experimental data bearing on its
high-pressure behavior.

Each of these experimental methods provides a
unique set of results on the behavior of compres-
sed xenon. The high-energy beam experiments
determine the repulsive interatomic potential be-
tween pairs of atoms at very small separations,
as will occur in the extremely hot fluid. With a
modest theoretical effort, the low-temperature
static-compression data can be used to verify an
interatomic potential for the solid, that is relevant
for much larger atom-atom separations than
probed by the beam studies. In shock-wave experi-
ments, the densities and temperatures achieved
in the liquid extend from conditions similar to the
solid up to energies and atom-atom separations
comparable to those achieved in beam experiments.
Besides permitting study of the interatomic poten-
tial, the temperatures achieved in shock-wave
experiments are sufficiently high to excite elec-
trons and provide information as to the locations
of the unoccupied electron bands at high compres-
sion. However, the extraction of information about
the microscopic processes in a shock-compressed
dense fluid at high temperature requires a much
more sophisticated theoretical analysis than for
the static data.

In this paper we employ some of the recent de-
velopments in electron-band theory and the theory
of fluids to demonstrate that the static isotherm,
shock compression, and beam data are all consis-
tent and in agreement with theoretical predictions.
Our results indicate, however, that the metallic

transition in solid xenon occurs in excess of 1.3
Mbar.

II. CALCULATIONS

Two types of calculations have been carried out.
ln one, the augmented-plane-wave (APWj electron-
band-theory method was used to compute the zero-
K pressure-volume isother~- The results were
found to be in fairly good agreement with the
static-compression measurements. These elec-
tron-band calculations also yield the energy gap
between the top of the full 5P valence band and the
bottom of the empty conduction band, thus locating
the insulator-metal transition which is the volume
where this gap goes to zero. In the second set of
calculations, fluid-perturbation theory employing
an interatomic pair potential, and generalized to
permit electronic excitation across a band gap,
was used to calculate the shock-compression
curve for comparison with the shock data. The
interatomic potential used in the. present paper
fits the shock data, but it is independently tested
by comparison with the beam data and with the
static 0-K isotherm. In both cases there is good
agreement with experiment. The shock-wave data
put constraints on the choice of the volume-depen-
dent energy band gap, which are consistent with
expectations for this gap based on the APW results
and the known experimental value at zero pres-
sure. These calculations are discussed in more
detail in the remainder of this section.

The self-consistent APW method with the muffin-
tin approximation has been described at length
elsewhere. ' The present nonrelativistic calcula-
tions were carried out with the Hedin-t. undqvist
exchange-correlation potential, ' for an fcc lattice
with the equivalent of 256 points in the full Brillou-
in zone. Such a relatively small number of points
in the zone should be adequate before closure of
the valence-conduction band gap, i.e. , in the ab-
sence of band crossing at the Fermi level. ' In-
deed, in this region even calculations with 32
points in the zone yield pressures larger by less
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TABLE I. APW Hedin-Lundqyist results for fcc T=0
xenon. Zero-point pressure is not included.

Wigner-Seitz
r adlus
(bohr)

Volume
(cm3/mol)

Pressure Band gap
(kbar) (eV)

4.6
4.4
4.2
4.0
3.8
3.6
3.5
3.4
3.3
3.2
3.1
3.0

36.38
31.84
27.69
23.92
20.51
17.44
16.03
14.69
13.43
12.25
11.14
10.09

-3.5
1.4

14.2
43.1

102.6
220.0
314.7
448.0
632.0
882.0

1224.0
1646.0

6.23
6.36
6.08
5.49
4.73
3.76
3.18
2.53
1.80
1.00
0.12

-0.80

4.0 {X'n, n=0.69962) 50.0 5.44

than 10%. On the basis of both our 32- and 256-
point results, as well as past tests of zone samp-
ling sensitivity, "we judge the present 256-point
pressures for xenon to be numerically accurate
to within a few percent below the gap closure,
and about 5% above. Results for the valence-con-
duction band gap agreed to within 0.03 eV for the
two cases. On the basis of free -atom calculations, '
we estimate relativistic corrections to this gap to
be less than 0.5 eV. Judging from comparison
with the static experiments, relativistic correc-
tions to the pressure in the case of xenon are of
less importance than the uncertainties due to
choice of the exchange-correlation potential,
which will be discussed. The 5s, 5P, and high-
lying states were treated as bands, whereas all
lower states were treated in a self-consistent
atomic fashion. The pressure was computed from
the virial theorem, both by separate computation
of kinetic and potential energies as previously
described, ' as well as by evaluation of the Liber-
man-Pettifor surface integral" over the muffin-
tin sphere with the correction for the interstitial
volume integral. The two methods generally
agreed to within a few kbar or better. Results of
the 256-point APW calculations are given in Table
I.

Comparison of the APW calculated T = 0 is isotherm
(open circles) to the static data of Syassen and
Holzapfel' (labeled SH), reduced by those authors
from 85 to 0 K, is shown in Fig. 1. Also shown are
some of the APW results of Worth and Trickey"
(closed circles) who used the X exchange-correla-
tion potential. The curve labeled SW was compu-
ted from the atom-atom pair potential to be dis-
cussed shortly. All curves have been corrected
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for zero-point pressure. Using the same Xa ex-
change-correlation potential (n =0.69962) as Worth
and Trickey, we have reproduced their results to
better than 1 kbar in a test calculation at a volume
of 24 cm'/mol. The difference between the two
sets of APW calculations is thus due solely to the
choice of exchange-correlation potential, and
within this latitude, there is reasonably close
agreement with experiment. The percentage dif-
ference in pressure as computed using the two
different exchange-correlation potentials is ex-
pected to decrease rapidly with compression, as
is apparent in the figure.

The present APW-isotherm calculations were
carried out to 1.65 Mbar, as shown over this ex-
tended pressure range in Fig. 2. While the Hedin-
Lundqvist (HL) exchange-correlation potential
used to obtain these results is known to be ap-
propriate for ground-state properties such as
pressure, it does not accurately compute highly
excited electronic states. A better approximation
for this purpose is the Slater (S) exchange poten-

FIG. 1. Experimental and theoretical 0-K isotherms
for xenon. Curve SH is the experimental result of Syas-
sen and Holzapfel (Ref. 1). SW was calculated using the
shock-wave potential [Eq. {5)]and includes zero-paint
pressure. The open circles are the present APW results
using the Hedin-Lundqvist exchange-correlation potential
and the closed circles are similar Xn calculations by
Worth and Trickey using n = 0.699 62. The APW results
have been corrected for the zero-point pressure as corn-
puted by the SW potential.
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FIG. 3. APW conduction band gap results versus com-
pression. I'~ —I'~& is smallest gap between 6g-like con-
duction band and 5p-like core state, I'~ —I'&& is smallest
gap between 5'-like conduction band and 5p-like core
states. S and HL refer to calculations using Stater and
Hedin-Lundqvist exchange-correlation potentials, re-
spectively. The S results were extrapolated to zero gap
(dashed portion of curve).
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FIG. 2. 0-K theoretical xenon isotherm to 2 Mbar.
The solid curve labeled SW was calculated using the
shock-wave potential [Eq. (5)]. The dashed curve is the
present APW result using the Hedin-Lundqvist exchange-
correlation potential. The dash-dotted curve labeled
Beam was computed using the high-energy atomic-beam
results (Ref. 4).

tial (o. = 1), which was used in previous papers" "
to calculate the valence -conduction band gap for solid
xenon as a function of volume. These results for the
band gap as well as those obtained in the present HL
calculations are shown in Fig. 3. At large volumes,
the bottom of the empty conduction band (1",state) is
of 6s character. The gaps in the figure are refer-
red in energy from the top of the full 5P band (I'»
state). The Slater exchange potential predicts the
gap at normal density, V=34.7 cms/mol, to be
8.24 eV as compared with the experimental 9.28
eV. As volume is decreased, the bottom of the 5d
band (X, state) becomes the lowest level in the
conduction band, and is the state that first crosses
the filled 5P band at which point xenon becomes
metallic. Calculations using HL and 8 potentials
are in approximate agreement as to the volume
where this occurs, predicting 11 cm'/mol (1.3
Mbar) and 9 cm'/mol (-2 Mbar), respectively.
For comparison, Herzfeld's theory of metalliza-
tion predicts 10 cm'/mol. "" On the basis of these
theoretical results, we conclude that 1.3 Mbar is
the lowest pressure at which xenon is likely to
become metallic.

Calculations of the xenon shock-compression
curve have been carried out using a model in which

E(V, Y) =Z .(V, 7 ) +r F(V)X.(V, 7 )+E,(V, T),

P(V, T) =P, (V, T) — N, (V, T) +P, (V, T),

where

(2)

2mkT~,(T, V) =2(gvg, )'", (m+m+)'"

AEV V
(3)

Here, F. and I', are the atomic properties
treated as an insulating fluid and computed using
a dense fluid-perturbation theory described at
length elsewhere. " This theory uses the inverse
twelfth-power potential as a reference system.
The properties of the reference system are ex-
pressed in terms of hard-sphere packing fractions

the atomic and electronic degrees of freedom are
treated independently. A model similar to the one
that will be discussed below has been used in pre-
vious work on xenon. " In that work the Lennard-
Jones-Devonshire model was used to calculate the
atomic-fluid properties, and the Wigner-Seitz
electron-band theory was used to get the volume-
dependent energy band gap. In the present treat-
ment we use a recently developed, more accurate
fluid theory and the more rigorous APW results
for the band gap determination. The qualitative re-
sults and conclusions, however, remain unchanged.
The total molar energy and pressure of the fluid
are written
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——+g +—iNk'T,
2 2) (4)

where q = (m/6) pd', and A, = [(4q -3q')/(1 —q)']NkT
In Eq. (4), A, is the Carnahan-Starling approxi-

mation to the excess free energy of the hard-
sphere fluid, g „(r,d) is the Percus- Yevick hard-
sphere pair distribution function, d (or q) is the

hard-sphere diameter chosen to minimize A~,
and p is the density. Equation (4) is formally
identical to the well-known hard-sphere variational
formulation of fluids" except for the third term on
the right-hand side that was entered in order for
the theory to reproduce exactly the properties of
the inverse twelfth-power potential. The pressure
(P») and energy (E») were obtained by taking the
numer ical der ivatives

PP» 1
BPA»

I

p Bp

by using a modified form of hard-sphere varia-
tional theory. As a result of this "bootstrapping, "
a variational procedure may be followed that em-
ploys the inverse twelfth-power system as a refer-
ence and uses the hard-sphere packing fraction q
as the scaling parameter with which to minimize
the Helmholtz free energy. The excess Helmholtz
free energy for the insulating fluid may then be
written

A. =A. (q)+' f g,„(,, d)~(rgb

influence of the s-like F, band was found to be
negligible.

For an interatomic pair potential we have taken
the exponential-six form. Specifically,

6 x't' o. r*
y(r) =eI exp o. 1-—

Iin —6 r& o —6

(5)

where ot =13.0, e/k=235 K, and r*=4.47 A. k is
the Boltzmann constant. These parameters were
originally chosen by applying corresponding-
states rules to an argon pair potential that cor-
rectly predicted both the Hugoniot to 0.91 Mbar
and the atomic-beam data for that liquid. The
present function (SW potential) is also in good
agreement with the high-energy atomic-beam-
scattering data for xenon, as shown in Fig. 4. In
zero-temperature calculations for an fcc lattice,
Eq. (5) predicts a 0-K isotherm in good agreement
with the static work as shown in Fig. 1 and the
APW results in Fig. 2. The potential predicts that
at 0 K the 1-bar volume is 34.8 cm'/mol as com-
pared to the 34.7-cm'/mol experimental value.
Also shown in Fig. 2 is an isotherm computed using
the beam potential. Again the agreement is good.
The fluid calculations based on this potential pre-
dict the initial Hugoniot pressure (P, =26 bar) at
the normal liquid density (V, =44.36 cm'/mol) in
satisfactory agreement with exper iment.

The present model for shock-compressed xenon

10'

where P = I/&kT. This theory has been tested by
comparison with exact computer results for Len-
nard-Jones systems and yields better than 1%
agreement in pressure and energy for densities
up to 2.5 times greater than the triple point and
temperatures 100 times larger (kT/e =100).

The remaining contributions to the total energy
and pressure represent thermal electronic excita-
tions. These are treated by a semiconductor mo-
del [Eq. (3)] since the highest temperature achieved
in the shock-compression experiments is never-
theless still a relatively small fraction of the band

gap. Thus N, is the number of electrons/atom ex-
cited into a conduction band which lies above the
initially full valance band by hE(V), the volume-
dependent gap. The E, and P, are the thermal
energy and pressure, respectively, of the free
electrons and holes. The effective masses, m„*,
m,*, are taken to be m„ the free-electron mass.
The band degeneracies, g„and g„are, respec-
tively, 3 for the 5P valence band and 5 for the 5d

conduction band. In the present calculations, only
the K,-I"» gap (5d-5P) needed to be included. The
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FIG. 4. Xenon intermolecular potentials. V as a func-,
tion of interatomic separation R, divided by k, in degrees
Kelvin. High-energy atomic-beam results (Beam) versus
shockwave (SW) potential. Indicated also is approximate-
ly the regime probed by the shock data.
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E(U, T) —E, = —,'[P, +P(V, T)](V, —V) . (6)

In the present calculations we take the energy and
pressure in this expression to be given by Eqs.
(1) and (2), respectively. The zero-subscripted
variables are initial conditions, V, =44.36 cm'/mol
at room temperature, according to which the fluid
theory gives E, = -98 kbar cm'/mol and P, =26
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FIG. 5. Xenon Hugoniot calculations and experiments.
The bars are experimental results from Ref. 3. The
curves are theoretical results discussed in text. A in-
cludes band gaps obtained from APW results and vary
with volume. B includes only the band gap of the normal
density solid and C does not include any electron excita-
tion (the pure insulator). In the dashed curve, the pair
potential used to compute A was increased by 10k.

assumes that any temperature dependence of either
the interatomic pair potential or of the valence-
conduction band gap may be neglected. It should
be emphasized that the degree of electronic excita-
tion encountered in the Hugoniot calculations is in
fact relatively small, less than 0.2 electrons/atom,
out of a possible 6 in the full P shell, at the high-
est temperature. The effect of such thermal ex-
citation on both the one-electron charge density
and on the band structure has been studied pre-
viously in fully self-consistent, finite-tempera-
ture APW calculations for compressed monatomic
iodine. ' The study determined that even for tem-
peratures of nearly 2 eV, where 0.22 electrons/
atom are thermally excited into the previously
empty 5d band, the self-consistent charge density,
and the I'»-to-X, energy difference, varied from
the corr esponding T = 0 res ults by no more than
0.5% and 0.02 eV, respectively.

The shock-compression pressure-volume curve,
or Hugoniot, is the locus of all points satisfying
the relation

TABLE II. Model calculations of xenon Hugoniot with
APW-Slater result for energy gap. Table corresponds
to curve A in Fig. 5.

V
(cm3/mol)

T~ I (V, T~) AE N~
(eV) (kbar) (eV) (electrons/atom)

26
24
22
20
18

0.293
0.615
1.022
1.320
1.587

97.0
177.0
284.0
402.0
556.0

8.20
7.89
7.43
6.81
6.02

10 ~

0.000 74
0.023
0.089
0.207

kbar. At each volume, Eq. (6) is solved for the
Hugoniot temperature T„(V), energy E(V, TH),
and pressure P(V, TH). The latter is plotted in
Fig. 5 versus compression and compared with the
shock data of Keeler et al. ' The Hugoniot curve A
was computed using the Slater exchange band gap
shown in Fig. 3, and is in good agreement with
the data. More detailed numerical results for
curve A. are given in Table II. For comparison,
calculations including no electronic excitation
(the pure insulator case) are shown by the upper-
most curve C. Calculations neglecting the volume
dependence, and including only the band gap of
the normal-density solid, are shown by the inter-
mediate curve, B. Above 250 kbar, curves B and
C start to deviate strongly from curve A, and are
in poor agreement with the experimental results
near 500 kbar. The present theoretical analysis
shows that at this pressure the temperature is
approximately 18 000 K (-1.5 eV), and the band
gap is predicted to have decreased tg about 6 eV.
As in the case of argon, " the combination of high
temperatures and narrowing band gap leads to a
measurable softening of the Hugoniot. By absorb-
ing some of the shock energy, the excited elec-
trons act as thermal sinks keeping the tempera-
ture, and thus the pressure, down. The narrowing
band gap, through the second terms in Eq. (2), also
makes a negative contribution to the total pres-
sure, lowering it further. Had xenon remained an
insulator with negligible electronic effects, it
would have achieved a final pressure of 1.5 Mbar,
nearly three times larger than observed. The
dashed curve in the figure, also based on the
Slater-exchange band gap, shows the sensitivity
of these calculations to an arbitrary 10% increase
of the interatomic potential. This modified poten-
tial predicts a 0-K isotherm that lies above the
static data by about as much as the present SW
curve lies below. Thus we conclude the shock and
static data agree to within their joint experimental
error.

Figure 6 further demonstrates the manner in
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Their pressure-volume curve is in close agree-
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ly larger leading to the higher predicted metalliza-
tion pressure. ]
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FIG. 6. Xenon Hugoniot calculations for several as-
sumed band-gap closures versus experiment. The bars
are experimental results from Ref. 3. The solid curves
are theoretical calculations for band-gap closures (in-
sulator-metallic transitions) at the indicated volumes in
units of cm3/mol.

which the shock-wave data may be used to infer
information about the xenon band gap by carryirig
out calculations for different volumes for the band-
gap closure. These calculations assume a quadra-
tic dependence for the band gap with volume, ap-
proximately the behavior seen in Fig. 3. The band
gaps are adjusted to give both the known normal-
density value, and the metallization volumes
indicated in the figure. Along each curve no more
than 0.2 electrons-atom become thermally excited,
so that the present semiconductor treatment and
use of the interatomic potential [Eq. (5)] should
remain valid. The results show that metallization
volumes of 12 cm3/mol or greater are not consis-
tent with the shock data. On the basis of our 0-K
isotherm (dashed curve), metallization at 330 kbar
under static compression would imply gap closure
at about 16.2 cm'/mol. As may be seen from the
figure, such a possibility appears to be insignifi-
cant disagreement with the shock data. We esti.—

mate, however, that above 350 kbar the band gap
will drop below 5 eV, and at higher pressures
could be detected in a diamond-anvil apparatus
as a faint coloration.

[Since this work was completed we have become
aware of two other band theory calculations of the
xenon metallization pressure, both unpublished.
J. P. Worth and S. B. Trickey have extended their
Xo.-APW calculations (Ref. 12) up to gap closure
also at 1.3 Mbar. J. W. Wilkins and A. R. Williams
have performed augmented-spherical-wave (ASW)
calculations indicating metallization at 1.5 Mbar.

III. SUMMARY

The results shown in Figs. 1-5 suggest that the
static, dynamic, and beam experiments for xenon
are internally consistent and can be satisfactorily
reproduced using current theoretical methods.

In the shock-wave experiments the temperatures
range up to 18 000 K and, as a result of these high
kinetic energies, xenon atoms can (as indicated
in Fig. 4) probe the pair potential at separations
down to approximately 2.6 A, thus overlapping the
beam studies reported to be valid for separations
from 2. 15 to 3.14 A. The good agreement between
the shock-wave-derived potential (SW) and beam
potential indicates that many-body forces are
relatively unimportant to the xenon equation of
state at these temperatures and separations.
Syassen and Holzapfel' have argued that many-
body attractive forces are important at the larger
near-neighbor separations, 3.67-4.35 A, probed
in their static compression experiments. Since
the phenomenological SW potential given by Eq.
(5) does accurately reproduce these static data,
it may be viewed as an effective two-body inter-
action in this region which incorporates these
many-body effects.

It has been found in Sec. II that the APW method
predicts xenon will remain an insulator up to at
least 1.3 Mbar, i.e. , that the valence-conduction
band gap will go to zero in the range 9-11 cm'/
mol. We also conclude that the shock data near
500 kbar are consistent with metallization in the
region 9-11 cm3/mol in agreement with the APW
results. These results are in conflict with the
recent work of Nelson and Ruoff, who predicted on
the basis of electrical resistivity measurements
that xenon becomes metallic at 330 kbar, or,
from Fig. 2, atavolumeof about 16.2 cm'/mol. New,
more accurate shock-wave studies extending the
pressure range to 1.25 Mbar, are soon to be under-
taken and may throw additional light on the xenon
metallic transition. "
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