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Calculations are presented of diffraction intensities for the scattering of *He from graphite basal plane.
The potential employed is a corrugated hard wall plus attraction. The choice of parameters is made by
modeling a more realistic potential derived by pairwise summation of He-C interactions. These pair
interactions are taken to be of either Yukawa-6 or Lennard-Jones 6-12 form, with coefficients derived by
comparison with experimental data of Boato et al. (differing in value from those used traditionally). The
computed linewidths, positions, and splittings are in good overall agreement with the scattering results. The
role of inelastic effects is explored using a complex potential with a constant imaginary part for small atom-

surface separation.

1. INTRODUCTION

Recent advances in the analysis of scattering
of monoenergetic beams of light atoms from
crystals have made this a valuable technique for
studying surfaces.! This paper makes use of data
obtained in recent experiments®™ on *He scattering
from the basal (1000) plane of graphite to eluci-
date the nature of the He graphite interaction po-
tential V(r). The potential-energy function is an
essential ingredient for understanding the intri-
guing properties of *He and *He films adsorbed
on graphite.> Moreover, the determination of
v(r) permits one to appraise calculated forms
of the potential.’ Since V(r) depends on the elec-
tronic properties of the surface, information about
the latter can be gleaned from this analysis.

A variety of potentials will be discussed in this
paper and therefore it is important to establish
their interrelation. The scattering calculation
will be performed with a model potential

V(;) =0, Z < g(ﬁ) ) (13)
v(r)=-D, tR)<z<8B, (1b)
V() =V,(z), z >B. (1c)

Here = (R, z) is the atomic position and z the
coordinate normal to the surface., This potential
represents a corrugated hard wall, bounded by
the surface z =Z(R), which has the periodicity of
the graphite basal plane, shown in Fig. 1.. The
function V,(z) represents a long-range van der
Waals attraction; its form is discussed in Sec.
II1.

Such a corrugated hard wall plus long-range

attraction has been used previously to treat He
scattering from alkali-halide surfaces.!*?+8"10

The values of D and the functions £(R) and V (z)
are chosen by comparison with more realistic
potentials discussed in Sec. III. .Although the
model form (1) is adopted primarily for computa-
tional convenience, it does incorporate the quali-
tative behavior of a real potential. In particular,
Eq. (1) is capable of yielding rather good agree-
ment with the bound state resonances, the band-
structure splittings“’12 and the diffraction inten-
sities observed experimentally.?™*'™® In fact, as
we shall show in Sec. III, both the realistic poten-
tials and the model Eq. (1) are capable of reveal-
ing inconsistencies in the preliminary experimen-
tal data (especially weakly bound states and be-
havior near threshold'*™5),

1428+
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FIG. 1. Hexagonal symmetry of the graphite lattice,
showing rhombic unit cell. Carbon atoms lie at the ver-
tices. Also shown are the six smallest nonzero recip-
rocal-lattice vectors.,
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This paper is organized as follows. Section II
presents the method®® used to calculate the dif-

fraction intensity for the model potential (1). Sec-

tion III discusses more realistic potentials, based
on ab initio calculations or on the assumption that
V(F) can be written as a pairwise sum of He-C
interactions:

V(T :Z; Ur-Ry), @)

where ﬁ, is the equilibrium position of the ith C
atom. This form was assumed by Chow'® in a
recent calculation of He scattering from graphite.
Both the latter calculation and many previous
ones assumed a pair potential which is rather in-
consistent with the subsequent experimental
data.?™ Section IV presents the results for the
diffractive scattering intensity and provides a
detailed analysis of lineshapes, resonance widths,
and splittings. Our conclusions are presented in
Sec. V.

II. SOLUTION OF THE SCATTERING PROBLEM

Since Ref. 10 reports the technique used here
for determining the diffractive scattering inten-
sity we restrict the present discussion to a sum-
mary of the relevant results. With the Rayleigh
hypothesis, ™% the incident wave (modified by the
attractive potential) can be evaluated at the cor-
rugated hard wall®’:

(R, Z(ﬁ))zz Bge! €+

x5 (R0 Rk e ™S4 ]. (3)

The summation is over the set of two-dimensional
reciprocal-lattice vectors G. The incident wave
vector kK= (K, - kj,), has a projection K on the
surface plane. The periodic corrugation couples
K to the set of vectors

-

K'=K+G. (4

The wave vector k%, depends on the strength of
the attractive potential:

kg, =k, +2mD/n?, (52)
Bae=k - (R+G)?. (5b)

In Eq. (3), the coefficients R(kg,) denote the re-
flection coefficients!® for a wave incident (from

z <) upon the attractive potential V,(z) of Eq. (1).

The coefficents Bg are obtained using the pro-
cedure of Ref. 10 and the GR numerical method.®
These are directly related!’ to the scattering
amplitudes Ag for various diffraction channels:

et ®Ag = (kg./ka) (1 - |R(kg) |*11/[1+ R(RE,)]
xBﬁ_R*(kék)éG.O’ (6)

where R* is the amplitude of the specularly re-
flected wave in the potential V (z). Knowledge
of the phase factor ¢ is not necessary because
the intensity of diffraction to a final state K'=K
+Gis given by

Pg=(ka/k) | As|?. W)

Because flux is conserved, the sum of Pg over the
open channels (k%,> 0) is one, within numerlcal
accuracy.

Garcia, Celli, and Goodman® have used this
method successfully to treat He scattering from
LiF. Since the corrugation of the hard wall is
found here to be smaller for the graphite case
than for LiF, we expect the Rayleigh method to
work well here,'™1®

We note in passing that the present method!’ can
be generalized to the case of a variable potential
in the region £(R) <z <B. Such a computation is
worth performing after more experimental data
become available. Alternatively, an “exact” cal-
culation could be used combining a hard wall with
more general attractive potential.®

III. CHOICE OF POTENTIAL V' (})

Several options are possible for choosing the
well depth D, corrugation function ¢(R), and long
range attraction V(z) specified in Eq. (1). One
such procedure is based on the assumption of a
pairwise sum potential*® [Eq. (2)], using a judi-
cious choice of pair potential U(r). This method
is described in Sec. IIIA. An alternative approach
is to model the result of an ab intio calculation
of V(T) performed by Freeman.?! As discussed in
Sec. III B, this potential is not sufficiently realis-
tic to warrant its use in the scattering calcula-
tion,

Before presenting a discussion of specific alter-
native potentials, we should comment on their

~ relation to the bound state resonance values €,.

Because the potential V(r) is periodic with re-
spect to translation parallel to the crystal surface,
it can be written in the form

1463) =Z:’Va(z) exp(i'é ‘R) , (8)
&

where G is a two-dimensional reciprocal lattice
vector appropriate to the graphite symmetry.
The term V(z), corresponding to G=0, is the
lateral average of v(r). To lowest approxima-
tion,l""12 the observed levels €, are eigenvalues
of the Schrodinger equation for a “He atom in the
potential V(z). Thus their experimental deter-
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mination imposes a restriction on the parameters
entering any assumed form of V(r). We utilize
this in the discussion of V() below.

The data of Boato, Cantini, and Tatarek® were
interpreted as indicating the presence of four
bound states for *He on graphite. The eigenvalues
€, are presented in Table I. Their results for
specular scattering intensity as a function of in-
cident angle show other minima, which were at-
tributed to “threshold” resonances (labeled by a
T in the figure). Our preliminary study, how-
ever, suggested®® that at least one additional
bound state should be present, at €,=-0,3 meV.
Furthermore, scattering calculations®®'16?2 of the
behavior near threshold imply that a jump in in-
tensity is expected there, rather than a minimum.
These arguments, supported by further results
below, indicate that a reinterpretation of the data
is plausible. Very recently, results confirming
this hypothesis have been obtained by Derry et al.’
and by Boato et al.! A small disagreement with
the previous work® can be attributed®® to a minute
error in the experimental determination of scat-
tering angle.

We address next the problem of choosing a model
potential function for the scattering calculation by
considering more realistic potentials.

A. Pairwise sum potentials

It is frequently assumed!**¥" that V(r) can be
written in the form of Eq. (2), i.e., as a sum of
interactions U(T - R;) between the adatom at T and
the substrate atoms at {R;}. Implicit in this as-
sumption is the neglect of many-body interactions
and any displacement of the substrate atoms from
their equilibrium positions. The latter could be
included by averaging over the atom’s motion, but
this motion is temperature dependent and such a
procedure is probably not justifiable in an elastic
scattering theory. With these limitations in mind
we address the problem of choosing an appropriate
form for the pair potential.
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(1) A common choice is a Lennard-Jones 6-12
interaction,

Ulx) =4el(o/%)? = (¢ /x)%], (9a)
x=|r-R,|. (9b)

For this potential, Fourier transformation of Eq.
(2) yields®

47r€ 202 o°
Volz) = Z (—msz - ?), (10a)
c m=0 m m

where A, =5.24 A? is the area of the surface unit
cell and d=3.37 A is the spacing between basal
planes of graphite. The G+0 Fourier components
of the potential are®

5b0"2G® 5b0*G
Va(z) = < 1105.22 SKS(GZ 122 2 KZ(GZ)>Y5 .

(11)

Here b =127¢* €/5Ac, K, is a modified Bessel func-
tion, and yg= exp(iG - Rl) + exp(iG * Rz) where R,
and RZ are the positions of the two C atoms in a
unit cell. Depending on G, vg=-1or +2.

The parameters € and o are chosen by comparing
the observed bound state resonances {e,,} with the
eigenvalues of the Schrodinger equation using the
potential (10). We have solved this equation by the
Numerov method®® for a range of parameters € and
o. Figure 2 of Ref. 13 shows the domain of
parameters which yield eigenvalues which agree
with the {€,} reported by Boato et al.? within ex-
perimental error. Optimal agreement in the least
squares sense occurs for € =1.34 meV, 0=2.75 A.
Tables I and II present the resulting eigenvalues
for the two isotopes of He.

We note that previous calculations®*!¢'?® using
this form of potential have assumed a value ¢
=~2,98 A, This estimate represents the arithme-
tic mean of the graphite layer spacing (3.37 A)
and the He—He interaction hard core parameter.
Such a high value of ¢ cannot yield good agree-

TABLE L 4He—graphite bound-state energies, computed with various model potentials, and

the asymptotic coefficients of those potentials.

€, Experiment ? Z (6—12) Z (Yukawa—6) Modified Freeman Flat bottom
n

0 -11.75+0.10 -11.73 -11.76 -10.80 —-11.83
1 —-6.13+0.10 -5.94 -6.12 -3.9 -6.10
2 -2.65+0.08 -2.64 —-2.64 -1.10 -2.62
3 —0.86+0.03 -0.99 —-0.88 -0.24 -1.02
4 unobserved -0.29 -0.20 -0.03 -0.28
5 unobserved —~0.06 —-0.02 ~=9,2x107* —0.06
C; (meV A% 138.0 84.0 173.0 166.0

2 From Ref. 2, Ref. 3 reports eigenvalues approximately 2 percent higher in magnitude.
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TABLE II. °He-graphite bound state energies (meV).

T Flat
kn (6—12) Yukawa—6 Modified Freeman bottom
n

0 -11.17 -11.24 —-9.90 —10.90
1 -4.98 —-5.14 —2.90 —4.87
2  -1.85 -1.79 —0.60 -1.79
3  —0.53 —0.42 —0.08 —0.44
4 -0.10 —-0.05 ~—3.2X1073 —0.09
5 —0.01  —~0.002 ~—1.5%107¢ —0.01

ment with the scattering data?'® (which is consis-
tent with the thermodynamic data®'?). The best
it can do is with € =1.07 meV, which yields *He
bound states |E,,l =11.4, 6.0, 2.85, and 1.2 meV.
These do not fall within the uncertainty of the
data? and the deviations exhibit a suspicious sys-
tematic trend (-0.3, -0.1, +0.25, +0.3 meV).

The origin of this inadequacy of the choice ¢
' =2.98 A is either a violation of the combining rule
or its improper application to He-graphite (e.g.,
takine oc.c =3.37 A). Experience?® with the ¢
combining rule for collisions between individual
atoms suggests that it works reasonably well
(slightly underestimating the ¢ of the mixed sys-
tem, in contrast to the present case). By elimi-
nation, we are led to suspect that one cannot apply
the rule directly to the graphite case. Indeed this
is not particularly surprising because the inter-
layer spacing is not equal to a C—C hard-core
diameter, since the spacing is determine in part
by the weak van der Waals attraction between
lz:tyers.27

(2) An alternative form of pair potential is sug-
gested by the fact that interparticle repulsive for-

4 T T T T T T T T

2+

Vo (meV)
©
i

—IGI— | | ' | | 1 ' |

FIG. 2. The lateral average potential V;(z) for the
pairwise sum of 6 — 12 potentials (curve A) and Yuka-
wa-6 potentials (B).

ces in the region of electronic overlap are more

-accurately described by exponential variation with

distance than by a power law. We consider, there-
fore, a “Yukawa-6" pair potential:

Ulx) =(A/x) exp(—ax) - B/x°, (12)
The corresponding Fourier coefficients are
Vo(e) =p exp(-a12) - 3Cd 5 (4, 2/d) (13)
Valz) :(Poq[l - exp(;?’lozl)] exzp[“_z(otz1 +GY)M2]
aj +G*)
- §C—;§-£2K2(Gz)>ya, (14)

A=A, a1~ exp(-a;d)](o/4m),
B=3A,dC,/7.

Here £(4,z/d) is a Riemann zeta function®®; it
appears also in Eq. (10a) through the sum of 27;;
terms. Note that there are three parameters ap-
propriate to this potential, whereas the Lennard-
Jones 6-12 potential has only two. A least-
squares best fit to the data of Boato et al.? gives
@;=3.27TA"Y, p=29.4 eV, and C;=84 meV A%,
The eigenvalues resulting from this choice are
shown in Tables I and II and V() is shown in Fig. 2.

We note in passing that we have considered also
an exp-6 form of pair potential. This differs
from Eq. (12) only in the absence of the ™ factor
in the repulsive term. Not surprisingly, the
results are not qualitatively different so we do not
report them here.

B. Ab initio potential

Freeman®! has derived a He graphite potential
by a density functional method?® which uses as in-
put the computed®® electronic charge density of a
single layer of graphite. The result, which we
call Vr(r), possesses too weak an attraction (by a
factor of about 2) because the method does not
yield the long range van der Waals attraction. A
very simplistic way to incorporate the latter is
to add its known asymptotic form to Vg(r):

V() = Vi(r) - Cgz™2. (15)

The coefficient C; =173 meV A® has been computed
by Watanabe® from the frequency dependent pola-
rizability of He and anisotropic dielectric function
of graphite. Although Eq. (15) is naive, its form
is analogous to treatments of dispersion by other
workers.2 As can be seen in Tables I and II, this
“modified-Freeman” potential is in fair agree-
ment with the scattering data. One might guess
that the presence of higher order terms in the
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dispersion interaction might remedy the remaining
deficiency. We do not know their form, however;
in any case the dispersion must be modified for
very small z in some unspecified way.

Although this modified- Freeman potential is of
interest in the context of understanding the origin
of the atom-surface interaction, it is not suffi-
ciently accurate to justify its use in the present
scattering calculation.

£(R) =&y +25,{cos(27S ) + cos[2n(s, - S,) ]}

C. Model potential

1. Hard-wall corrugation

We choose our model potential Eq. (1) to be
computationally convenient while retaining the
qualitative features of the more realistic pairwise
sum potentials. The hexagonal symmetry of the
graphite basal plane imposes the following form
on the hard-wall corrugation function:

+ 28 cos[27(S; +8,) ]+ cos[2m(2S; ~ S,)] + cos[27(S; - 25,) ]}
+2&,[ cos(4rS) + cos(47S,) + cos(4n(Sy — S))] + -+ . (16)

Here S;=x/a, S;=y/a, and a=2.465 A is the lat-
tice constant. The coordinate system has its ori-
gin at the center of a hexagon and the x and y axes
are directed toward the midpoints of a C-C bond.
The Fourier amplitudes ¢; are chosen by making
reference to the pair potentials of Sec. IIIB. In
particular, we identify the surface z =¢(R) as the
locus of classical turning points for a particle of
incident energy E. As can be seen in Tables III
and IV, these are only weakly energy dependent
because the repulsive barrier rises very steeply.
For the scattering calculation we adopt the value
£, =-0.023 A as an intermediate value between the
low-energy results for the two potentials con-
sidered in Tables I, IV, and V. Since the higher
Fourier components are an order of magnitude
smaller than £;, we neglect them. Furthermore,
the value of g does not affect the diffraction inten-
sity, so we take it to be zero henceforth.

We note that the same value ¢£; =-0.023 A was
found in an eikonal analysis?'*® of the diffraction
intensity, which should be relatively accurate be-
cause of the small corrugation. An alternative
procedure for generating the corrugation ampli-
tude is to utilize!’*!? the measured band splittings.?
Finally we mention that this He-graphite corruga-
tion strength (crest to trough range Az=9/|¢,|
~0.21 A) is intermediate between the very smooth
metal case (Az ~0.1 A)* and the relatively bumpy
alkali~halide case, (Az=0.6 A).

2. Attractive well

As described in Ref. 10, a form of attractive
potential which is convenient for the scattering

TABLE III. Values of &; (j\) for the sum of 6—12 po-
tentials.

E (meV) £ &y P &3
20 2.229 —0.020 -7.2x107% —1.2x107°
60 2.114 —0.021 -8.9x107% -1.6x1073
120 2,020  —0.023 -1.2x10"3 —2.0x1073

U . R
calculation is

V(2)=-D, z<8,

17
V(2) :_D<a +B>3, z=P.

a+z

As can be seen from Table I, the parameters
D=14.4 meV, @=1.33 A, and B=0.93 A fit the
bound state resonance data quite well, The coeffi-
cient of the z™® asymptotic behavior is C;=D(«a
+B)® =166 meV A3, This is closer to the theoreti-
cal value®® of 173 meV A® than either of the pair-
wise sum potentials, which predict 138 (84) meV A’
for the 6-12 (Yukawa-6) cases. Thus the large

z form of V(r) and weakly bound states should be
more accurately described by this model potential
than by the pairwise sum potentials. A possible
origin of this deficiency is that a pairwise sum
representation does not incorporate screening.

A recent study® of dispersion forces for a metal
indicates how screening causes the pairwise sum
approximation to err at large z.

IV. DIFFRACTION INTENSITIES

Having chosen the form and parameters of the
model potential, we compute intensities of the
diffraction channels using the procedure of Sec. II
for incident wave vector £ =6.51 A™, Figure 3(a)
shows the experimental data of Boato et al. for
the specular intensity as a function of polar angle
of incidence for azimuthal angle ¢ =0. This is to
be compared with Fig. 3(b) which gives our cal-
culation of the specular intensity. In addition Fig.
3(c) presents our calculated nonspecular diffrac-
tion intensities. The calculated and experimental
specular intensities agree on all major resonance
structures and the calculation for the (01) diffrac-
tion intensity agrees qualitatively with unpublished
results of Boato and Cantini.?® Because of numeri-
cal difficulties, giving rise to nonunitary results,
the region near the € resonance is not included
in these figures.
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TABLE IV. Values of &; (A) for the sum of Yukawa-6
potentials

E (meV) & &y & &3
20 1.624 -0.026 -0.001 -0.001
60 1.447 -0.029 -0.0015  —0.0015
120 1.286 -0.033 -0.002 -0.002

Before discussing in detail the resonance struc-
tures in the intensities we consider the reasons
for the higher overall intensity in the calculated
specular intensity than in the experiment. Naively
one might expect the specular intensity to depend
on temperature through a Debye-Waller factor (as
in x-ray scattering),

Iyy/I,, = exp[-2W (cos?6 + D/E)], (18)

where Iy, is the specular intensity computed for a
rigid lattice (i.e., that shown in Fig. 3(b) and W
is proportional to the mean square atomic dis-
placement perpendicular to the surface.’® The
D/E term assumes that the relevant wave vector
is that of the particle in the well. A fit to this
form at 6 =30° yields 2W =1.40 when the latter
correction is neglected and 2W =0.75 if it is in-
cluded with D=14.4 meV. These give very simi-
lar results; the specular intensity computed with
the latter correction is shown in Fig. 4. The
experimental trend shown in Fig. 3 does not agree
well with this and, indeed, a simple reduction of
the theoretical intensity by a factor of 1/3, inde-
pendent of ©, does better than any standard Debye-
Waller correction.

Some of the disagreement between theory and
experiment is due to scattering by imperfections
of the graphite crystals used in the experiments,
and some is due to energy broadening of the inci-
dent beam? (AE/E ~0.04). Previous disagreement
with Eq. (18) has been seen in a careful study of
scattering from alkali halides.*” While electronic
excitation has been invoked to interpret the dis-
crepancy present for scattering from a metal, 3?40
that is much less likely to explain the semimetallic
graphite case. The scattering correction for
thermal motion thus remains a mystery.®

Our calculations do describe successfully the
resonance positions. It is these resonance struc-
tures in the specular intensity which are used to

TABLE V. Values of ¢; (&) for the modified-Freeman
potential.

E (meV) ) £
20 2.320 0.018
60 2.199 0.020
120 2,101 0.022.
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FIG. 3. Scattered beam intensities normalized to in-
cident intensity as a function of polar angle 6 for ¢=0.
Specular intensity measured by Boato et al.? (a) and
computed (b). Part (c) shows diffracted intensity for
(1) or (0,I) beams (full curve) and (10) beam (dashed
curve). (See text in relation to the omitted region.)

determine the bound-state energies. We note that
unitarity is preserved by our calculation at all
angles, including at resonance. That is, a mini-
mum in the specular intensity gives rise to maxi-
mum in one of the nonspecular diffraction chan=
nels, generally one which is strongly coupled to
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FIG. 4. Specular intensity computed with a Debye-
Waller-like connection, using the well depth D =14.4
meV.

the resonant state. For instance, the sharp dip
in specular intensity at 6 ~72° is accompanied
by a sharp rise in the (T1) and (01) diffraction in-
tensities. In addition to reproducing the main
features of the experimental data, our calculations
also indicate much fine structure associated with
resonances coupled by higher Fourier components
of the potential which may become experimentally
resolvable,

Reference 12 has derived an expression for the
width of an isolated resonance 7, corresponding
to a closed-channel reciprocal-lattice vector 'I:I,

. ofd0\™ S
PQZZ(&)G"[I" IS(N7 N)l], (19)

where S(N, N) is the matrix element for transition
from channel N to N, and 6 is the phase of the
reflection coefficient R(klﬁz) due to the potential
V(2), for waves incident from the left. For the

corrugated hard-wall potential,
- 1 - e -
S(F, N =7 f exp{i[R* (F -N)
c YA,

+ @) (ks + ko) 1R (20)

This matrix element represents the eikonal ap-
proximation to the scattering matrix equation. As
noted in Ref. 12, the linewidths are determined
largely by d6/de, which is inversely proportional
to the semiclassical approximation to the level
spacing. A more careful analysis includes the
dependence on lS(ﬁ, N) l, which increases with

quantum number, This may explain why 1"(010)< I"(lw,
[Fig. 3(a)]; other widths have the same order as
the derivatives of Table VI.

A striking discrepancy between the calculations
and the data of Boato et al.? is the absence of
sharp structure predicted here, especially near
threshold. Partly responsible is the fact that the
beam is not monoenergetic and perfectly colli-
mated. The disagreement, however, is somewhat
worse than in the alkali-halide ‘case, for which the
experimental broadening factors are comparable.
A possible explanation is a higher probability of
inelastic losses for graphite than for alkali hali-
des. The difference may arise from the graphite
elastic anisotropy, associated with the weak in-
terlayer binding.“1 Alternatively, the semimetal-
lic electronic structure®® may be responsible be-
cause of the possibility of low-energy electronic
excitation®? in the collision. The latter has been
proposed®® recently to explain data for He scatter-
ing from the (001) surface of Cu.**"*’ It would
be of considerable value to explore these alterna-
tives with ab initio inelastic calculations of the
atom-surface interaction. Lacking such calcula-
tions, we pursue a phenomenological model of
inelastic effects. Assuming the loss mechanism
to be of short range,*® we employ an optical poten-
tial form!®

Vep(2) =V (2)[1+ i(Doy/D)O (B - 2)], (21)

where V(2) is given in Eq. (17) and ©(8-z) is a
step function. The calculation proceeds as in the
elastic case, except that k%, is complex so that
unitarity is not satisfied.®® Figure 5 exhibits
results for the case D, =0.75 meV, an arbitrary,
but not unreasonable, choice.

For comparison, Fig. 5 shows also-the’ results
calculated without taking into account inelastic
effects. The general shape of the computed reso-
nance structures is much closer to those observed
when inelastic effects are included. However,
the positions of the resonance minima appear to be
unaffected by the inclusion of inelastic effects.

A more complete calculation of this effect should
be performed, along with simulation and convolu-
tion of experimental broadening factors to dis-
criminate between alternative origins of the reso-
nance line shape.

As previously mentioned, the positions of the

TABLE VI. Values of d6/de€ for the flat-bottom poten-
tial, Eq. (17) (meV), evaluated at the bound-state ener-
gies €,.

n 0 1 2 3 4 5

do\™
= 0.81 0.80 0.44 0.16 0.11 0.03
de €=€p




21 “He INTERACTION WITH AND SCATTERING FROM GRAPHITE 1643

0.8

0.6

0.4

0.2~

0.0

Specular Diffracted Intensity

04

0.2

T 1 1 T

! I 1 1
0.0 3
8 (degq)

FIG. 5. Computed specular intensity showing the
role of inelastic effects. Full curve employs a real
potential; dashed curve uses Eq. (21). Arrows indicate
positions of unperturbed levels.

resonance structures are used to determine the
eigenvalues of the laterally averaged atom-sur-
face potential. The loci of the resonances in the
K plane, as observed by Boato et al.? are shown
in Fig. 6. As can be seen, the resonances fol-
low free-particle-like circles very well except

in regions near degeneracies (e.g., the K,, ¢
=30°, axis) where they deviate due to band struc-
ture effects. Figure 7 shows experimental data
for the crossing of the 0(10) and 0(01) resonances,
indicating the deviation from the free-particle
positions. As noted by Chow,''* a particle inci-
dent at ¢ =30° couples only to the symmetric
combination of the two unperturbed states. Hence

0.4 : s,

51
pA
*

T

-
)

1

0.2

1

Ky/k |

FIG. 6. Loci of the obserY.ed23 resonance positions as
a function of the projection K of the incident wave vec-
tor.
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FIG. 7. Experimental data from Ref. 2 for the res~
onance structure near the crossing of 0(10) and 0(01)
states. The unperturbed level positions are noted by
vertical bars.

only one resonance is seen at ¢ =30°, shifted
from the position expected from the free-atom
circle. Our calculation for » =0 is shown in Fig.
8 while those for the higher resonances are shown
in Fig. 5. The experimental and calculated angu-
lar shifts in the resonance positions are plotted
as a function of binding energy in Fig. 9. It can
be seen that the calculated shifts agree reasonably
well with those determined experimentally except
for the deepest level, which is underestimated.
Note, furthermore, that the asymmetric shape

of the experimental resonances is reproduced in
the calculation, This originates from the ima-
ginary part in the integral (20), which is quite
large for the graphite case.

These shifts in resonance positions are band-
structure effects arising from the mixing of un-
perturbed states caused by the surface corruga-
tion. If the corrugation is sufficiently small, the
band gaps are given by second order perturbation
theory as

By =x2($4(2) | Va(z) | ¢,(2)), (22)

where ¢, is an eigenfunction of the Schrodinger

T T T T
0(10)

o o(on l ¢=30° -
8 .
oo, 4
8- -
5+ . -

1 1 ] ]

52 55 56 57
8 (deg)

FIG. 8. Computed structure at ¢ =30° associated with
the crossing of 0(01) and 0(10) levels. Vertical bar de-
notes unperturbed resonance position.
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equation for the potential V(z). While this assign-
ment cannot be made with the corrugated hard-
wall potential (for which the matrix elements
vanish), it can be evaluated from the more realis-
tic pairwise sum potentials of Sec. III. The ma-
trix elements are approximately proportional to
the angular shifts shown in Fig. 9, according to
the relation

21K’ V3
Ay= fjnk Aeu[sin6+(§—%}é§-) cosO].

While it appears that the data of Fig. 9 exhibit
a nonzero limit as €; tends to zero, this is mis-
leading. In particular, the normalization con-
stant C of the wave function for a weakly bound
state satisfies in the quasi-classical approxima-
tion®

2/Ct~ ;a(%, (23a)
2/C? = % ag‘—g’l , (23b)

where the integral in Eq. (23a) is over the classi-
cally allowed domain of z. The derivative of
quantum number with respect to energy can be
evaluated®®*” for long-range attractive potentials
of the form —Cyz™3, yielding an/d0Ec |E|™/5, The
overlap integral of Eq. (22) will have only a weak
dependence on energy, apart from a factor C?,
yielding A;;cc Clx |E|5’s. Thus the matrix ele-
ment should indeed become small as |E| -0, be-
cause of the increasing spread of the wave func-
tion for large ». The discreteness of the spec-
trum, of course, could, in principle, preclude
the existence of states satisfying this limiting
behavior. Figure 9 indicates, however, that the
argument is indeed relevant to the *He case.

The original work of Boato et al.? reported only

0.5 T T
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0.3 Y B
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FIG. 9. Angular splittings between minimum positions
for various levels j coupled by the lowest nonzero
Fourier component of the potential, as a function of
binding energy |¢, | .

four energy levels. The weak minimum labeled
T in Fig. 3(a) was identified as a threshold effect
in part because no splitting of that level was
present in the data. As the preceding analysis
indicates, this splitting is simply very small.
Our calculations clearly indicate the presence of
at least » =4 (which has recently been determined
by Derry ef al.) and n =5 eigenvalues. Figure 10
shows these resonances at ¢ =0.

V. CONCLUSIONS

We have found the corrugated hard wall plus
attractive potential to represent rather well the
scattering data of Boato et al.? for *He incident
on basal plane graphite. The hard-wall corruga-
tion has a range Az =0.21 A (maximum to mini-
mum) which is intermediate between alkali-halide
surfaces and compact metal surfaces. Its origin
can be understood in terms of a pairwise summa-
tion of pair potentials U(r - R;). The He-C inter-
action U(r - R,) can be represented by either
Yukawa-6 or Lennard-Jones 6-12 forms., In the
latter case, our optimal parameters differ signi-
ficantly from those employed in earlier studies
of the He-graphite system?® and give good agree-
ment with recent thermodynamic measurements
for both *He and *He.®

We have confirmed the prediction of our prelim-
inary study13 concerning the existence of the n =4
and 5 bound states. The behavior near threshold
is particularly difficult to deduce from the experi-
ment because the resonances tend to be smeared
by both experimental problems and inelastic ef-
fects. The recent observation by Derry et al.?
of the state €, ~-0.2 meV is consistent with our
predictions. : R

Our study, following the method of Ref. 12,
shows how the line shapes and splittings can be
understood in terms of the phase-shift derivative
dd/de. The latter is especially appealing when
analyzed using semiclassical theory because of its
simplicity. In particular, these features permit

0.8
-
2
2 06
£
04 1
FONES TN SO T T N T W N N N I A
435 44 445
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FIG. 10. Predicted specular intensity near threshold
as a function of incident polar angle for ¢=0.
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deduction of relative linewidths from the bound-
state resonance positions.

Inelastic effects seem to be important in this
system. Our model calculation of their role is
intended primarily as a stimulus to future analy-
sis, using microscopic theory, of the loss proces-
ses. It is not certain whether the elastic or elec-
tronic properties of graphite provide the origin of
the apparent inelastic scattering. Measurement
of the final-state energy would help elucidate this
situation.

Calculations are in progress of alternative model
potential forms, band structure, and 3He scatter-
ing. We intend also to examine the implications
for thermodynamic measurements (both binding
energy and heat capacity) of our results. This
overlap of superficially disparate fields represents
an exciting aspect of the He-graphite system.

Note added in proof. More recently we have
found it necessary to include anisotropy in the
He-C pair interaction, See W. E. Carlos and
M. W. Cole, Phys. Rev. Lett. 43, 697 (1979).
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