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Uniaxial-stress dependence of the first-order Raman spectrum of rutile. I. Experiments

P. Merle, J. Pascual, ~ J. Camassel, and H. Mathieu

(Received 14 May 1979)

We report an investigation of the uniaxial-stress dependence of the first-order Raman spectrum of rutile
(Ti62). We find a normal-mode behavior, characterized by an increase in the phonon frequency versus
uniaxial compression, for the two Raman modes 1& (A&~) and I5 (E~). We deduce two deformation
potentials for I', (in unit of cm '): a&

———610 cm ', b&
——' —820 cm ' and four deformation potentials for I &

(doubly degenerate mode): a, = —1170 cm ', b~ = —1840 cm ', c, = +35 cm ', and d&
———230 cm '.

We find less' classical results for I', (B,s): the phonon frequency increases for uniaxial stress parallel to 6
but decreases for uniaxial stress parallel to 0 ([100] direction) or parallel to R' ([110] direction). The
corresponding deformation potentials are a, = + 620 cm ' and b, = + 330 cm '. .Within experimental error,
all phonon energies displace linearly versus deformation.

I. INTRODUCTION

The lattice vibration spectrum of rutile (TiO, )
is now fairly well understood. Comprehensive
studies of Raman' and infrared' spectra have been
published, and quite recently neutron' and Bril-
louin' scattering experiments have been performed.
On the theoretical side a variety of models have
been given, of which the most successful is an
analysis of the dispersion data in terms of a shell
model with tensor forces. ' Concerning the Raman
modes, the influence of hydrostatic perturbations
such as temperature' and pressure" has been
studied. Both reveal a softening of the low-fre-
quency I', (B~) mode: The frequency decreases
with decreasing internuclear distances. This be-
havior has been viewed' as indicative of a definite
phase transition from the tetragonal rutile struc-
ture (D~"„) to the orthorhombic structure of CaCl,
(Diss). Since, in this case, the orthorhombic dis-
tortion would presumably be rather small (-2%;
see Ref. 8), it can be easily achieved by applying
a large uniaxial compression (X-17 kbar) along
one of the crystal's a axes. If we suppose that
the r, mode is indeed especially sensitive to this
stress configuration, we can expect to find a non-
linear behavior of the I', (B~) mode at 143 cm '
and of the I', (g~) mode at 612 cm '. Indeed both
modes, which achieve the same I, symmetry in
the D» point group, should couple strongly. Such
stress-induced couplings have been already re-
ported for electronic energy levels in TiO, (Ref.
9) and Raman modes in paratellurite, "but were not
found in a previous uniaxial-stress experiment of
the Raman modes of rutile. "Finally, inthe work of
Ref. 11, which was restricted to rather low pres-
sures (-3.5 kbar) and to configurations X

~~
c and

X~~ a, no deformation potentials for phonons were
deduced and the splitting of the doubly degenerate

I', (E,) mode was not resolved.
In this paper we investigate the stress depen-

dence of the main Raman modes in configurations
X[[c, X~~ a, and X~[ a . In Sec. II we briefly set the
theoretical background needed to analyze the data.
In Sec. III we give the experimental details. In
Sec. IV we present the results obtained with un-
iaxial stress ranging up to 10 kbar in the [001]
direction (c axis), 6 kbar in the [100]direction
(a axis), and last, 12 kbar in the [110]direction
(a, axis). We separate all deformation potentials
which combine to give the stress dependence of a
given phonon. %e get two deformation potentials
(a„b, and a„bs) for the nondegenerate modes I',
(A„) and I', (B~), and four deformation potentials
(a„b„c„d)sfor the doubly degenerate mode
I, (E,).

Discussing the experimental data, we show that
the "soft" mode I'„while weakly sensitive for a
uniaxial stress directed along the crystal c axis,
apparently stiffens versus pressure. This conclu-
sion disagrees with the result of a previous paper"
in which it was found that the pressure derivative
obtained for I; under uniaxial stress parallel to
c was small but positive. However, in both cases,
the pressure coefficients reported are very small
and the. softening observed under hydrostatic con-
ditions comes from the strong negative shifts ob-
served when the force is either parallel to a or
parallel to a'. Finally, we show that there is no
stress-induced coupling between I', and I', which
would corroborate a special sensitivity of TiO,
to the orthohombic distortion when X

~~
a. In the

following paper, a model calculation for the de-
formation potentials of phonons in the rutile struc-
ture will be presented. It shows that the soft-
mode behavior of the I; Raman mode comes di-
rectly from the atomic displacements associated
with pure rotations of the oxygen atoms around
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FIG. l. (a) Tetragonal
unit cell of rutile, (b) atom-
ic displacements of atoms
associated with vibrations

I'4, and I).

I (E)

the central titanium atom. The stress-induced
change in the bond-bending constants, which hap-
pens in this case, accounts for the softening ex-
perimentally found under hydrostatic conditions.

II. THEORETICAL BACKGROUND

The tetragonal unit cell of rutile is shown in Fig.
1(a) (point-group symmetry D~„). It contains six
atoms (two formula units) which give a total of 18
phonon branches. Among them, three are acousti-
cal branches: I' point symmetry I;,(A,„)
+ I', .(E„). The 15 remaining branches give the
zone-center optical phonons

1,(w„) + I;(W„)+ I",(a„)+ r,(a„)+ r, (Z, )

+1„(a,„)+ 21,,(a,„)+ 3r,,(E„).

All I", and l, modes are doubly degenerate.
Modes of symmetry 1",.+ I;, are infrared active
while three modes (I'., +2l', ,) are silent. Finally,

modes of symmetry 7'„ I'„ I „and I', are Raman
active. This is summarized in Table I, where we
list also some useful basis functions. The dis-
placement of atoms associated with the four Ha-
man-active modes is shown in Fig. 1(b).

Associated with each Raman-active mode is a
scattering tensor z,.&. In order to see experiment-
ally one given component, one has to arrange the
scattering geometry in such a way that the incident
light is polarized in the i direction while the scat-
tered light is analyzed in the j direction. On the
other hand, since it is more convenient to refer the
direction of polarization to the sample geometry,
we introduce two sets of scattering tensors.

The first one refers to the crystallographic di-
rections and corresponds to a rectangular cut of
the sample (x[[a, y[[a, z(Ic). The second corres-
ponds to a 45' cut of the sample (x'

[[ a', y'
[(
a',

z ((c). It is used when the uniaxial stress is di-
rected along a [110jdirection (a axis). Both

TABLE I. Phonon symmetries of rutile together with their infrared (ir) or Haman activity.
Also listed are some basis functions of the corresponding irreducible representations.

Phonon mode
of rutile (D4q) Activity Basis functions of the irreducible representations

r, (w„)
I'2 (A2 )
I'~ (B~)

r, (E,)

r,' (a,„)
r,' (z„)

8am an
silent mode
Raman

silent

f0=X + g ) $0=Z
B
fj=& -x2 2

f()= &~+ &a &O=f&

q2 q2

f2- &~&a
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TABLE II. Polarizability tensors of the Raman-active modes of rutile for the rectangular
and 45' cuts. Please note the apparent change in selection rules which appears between the
I'3 (B&) and r4 (B2 ) modes, respectively.

Itectangular cut (x II a; y II a; z II c) 45 «t (x'll a'; y'll a'; z'Ilc)

r( {A(g)

r, {B„

r4 (B~)

r) (xz)

15 (E~)

r, yz)

a 0 0~

0 a 0
~0 0 b~

0-c 0
&0 0 0~
«0 d 0~

d 0 0
io 0 Oi
0 0 e'
0 .0 0

ie 0 Oi
«0 o o

0 0 e
io e Oi'

I'5 (x'z)

r, y'z)

a 0 0
0 a 0

io 0 b~

c 0
c 0 0

~0 0 0~'

-d 0 oi
0 d 0
0 0 0~
0 0 e+

0 0 0
~e 0 0
«o o o'

0 0 e
io e 0

series of tensors are listed in Table II. It is
interesting to note the change in selection rules
which happens between I", and I;, depending on the
r epresentat ion.

Under application of a static uniaxial compres-
sion X, the crystal deforms and reduces to a
generally lower symmetry point group. All the
symmetry elements of the new point group are
common to both the unstrained crystal and the
strain ellipsoid. or instance, a stress directed
along the fourfold c axis leaves the tetragonal
symmetry unchanged, while a stress directed
along the twofold a or a axis lowers the symme-
try to D»(x) and D»(x'), respectively. In Table
III we list the corresponding compatibility rela-
tions. They show that the stress-induced change
in symmetry results: (i) in a splitting of the
doubly degenerate I', mode for both Xlla and

Xl~a; (ii) in stress-induced couplings of modes
I', ('p, ) with I', (I',) when X II a and of modes I',
(I;) with modes I; (I',) when XII a . These effects
are associated with a stress-induced admixture
in wave functions but are not experimentally found.
(It would result in a stress-induced activity of
the silent mode 1, which is opposite to the experi-

mental finding). This justifies a posteriori the use
of D4„scattering tensors to compute the selection
rules. Since I', is expected to be very sensitive
to the orthorhombic distortion for X ll a, we note
that this should result in a strong nonlinear be-
havior of both I', and I; modes. [Same I', symme-
try in D»(x). j We will come back on this point
when discussing the experimental results.

I.et us now concentrate on more quantitative de-
tails. The phenomenological theory of piezospec-
troscopic effects in rutile has been already given
for electronic energy levels' and is basically iden-
tical for Raman-active modes. It will be simply
summarized in this work. We know that the
stress-induced behavior of a Raman line can be
completely characterized by a set of phenomeno-
logical constants: the deformation potentials. A
general description of the deformation potential
approach has been given by Tekippe et al."for
o. -quartz (point group D,) and by Lemos &t aL"
for TeO, (point group D,). To terms linear in
strain, the perturbation Hamiltonian gives

V = V, & e, &
with i, j= x, y, z,

where V,.&
are operators which are functions of

TABLE III. Compatibility relations for the Raman-active modes in rutile under compres-
sicns x II c, x II a, and x II a.

D4„
(x=o; xllc)

I'i + ) r& (A&) I'3 (B& ) I'4 (B2 ) I'5 (E )

D»(x)
(x II a)

D»(xy)
(x II")

r, (A, )

r( (A )

r, (a„) r, (~)

3 {B~) 3 (4 )

3{ i) 2(2)+ 4(3g)

r2 (B2,)+ r4 (B~)
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TABLE IV. Symmetry of the products of the basis
functions of I'5 (E~).

(1) as

v = —,'(v„„+v„)(e„„+e,„)
r, (A~)

i
xz& 2 (I'(+ 1"3)

I'4 + -', (V„„—V„)(e„„—e„) T',(B„)
+2&„3 e„3

+2 V„e„
+2V„e,„

r,(B„)

(3)

the undeformed coordinate system and e,&
are

the strain components. Both V;z and e, , are sym-
metric second-rank tensors. At the I' point of the
Brillouin zone they generate the irreducible rep-
r esentations

2r, (x„)+ T',(B„)+ 1",(B„)+ f', (B,),

where a given symmetry element transforms like
the basis functions of the corresponding represen-
tation:

The first two terms belong to I', and connect
eigenfunctions with identical symmetries. They
correspond to the fully symmetric part of the per-
turbation. The remaining terms belonging to I'„
I'4, and l"„' they correspond to the shear part of
the perturbation.

I.et us now express the stress dependence of the
eigenvalue of the perturbed Hamiltonian. Consider
first a nondegenerate phonon of symmetry I';. In
the linear regime the stress dependence is given
by I", terms only and gives

x'+y' and z' for 1", (A„),
x' —y' for T', (B„},
xy for r, (B„),
xz and yz for I', (E,) (doubly degenerated).

s r, = —,'&r', ~v„„+v„~r,&(e„,+ e„)

+&1', ) v„[r,&e„ (4)

'

e„„.

~12 Sl1 ~li

ega

13 13 33

o o o s„o o

0 0 0 0 S„O
0 0 0 0 0 $„

The components of the strain tensor for X
~~ c,

X
~) a, and X

)~
a together with their irreducible

(symmetrized) combinations have been listed in
Ref. 9. Also listed are the elastic compliance
constants obtained from the work of Ref. 4.

In order to get the deformation potentials in
their simplest possible form we must rewrite Eq.

For rutile, and referring to the crystallographic
axis, the components of the strain tensor e,&

are
related to the components of the stress tensor X,&

through the elastic compliance constants 8,&
by"

= a, (e,„+e„)+ b,e„(i= 1, 3, .4), (5)

where b, I', is the phonon energy shift, a, is a de-
formation potential associated with a pure co-
planar strain perpendicular to c (a, = —,'(I", ~V„„
+V„,~l';&), and b, is a deformation potential as-
sociated with a pure axial strain parallel to c
(b, =&r, Iv,.ll', &).

Consider now the doubly degenerate mode I",
(E,}. When X~~ c, any linearly independent com-
bination of eigenfunctions xz and yz forms a
basis for D4„. Instead, when applying a stress
X

~(
a or X

~~ a, only one well-specified basis
diagonalizes the strain Hamiltonian. In this work,
we have chosen to express all coupling coefficients
in the system of crystallographic eigenvectors
xz and yz. They couple under application of opera-
tors whose symmetries are z'x', z'y', and z'xy.
The decomposition of such products in terms of
the irreducible representations of D,„ is given in
Table IV and the matrix equation gives

[zx&

a,(e„,+e„)+ b,e„+c,(e„„-e„) d5e„y

a,.(e„„+e„)+ b,e„—c,(e,„—e„„)
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with

f'5 = zg'o I I'gg lfo& ~

Of course, with this representation the nondiagon-
al part corresponds to a pure stress Xll a; the
situation mould be reversed in representation zx,
gy . The parameters a, and b, are fully symme-
tric deformation potentials, while c, and d, are
pure shear deformation potentials. f,', P'„ f'„
and f, are the basis functions listed in Table I
for representations I', (A~), I's (B~), and I'» (B„),
respectively.

The resulting eigenvalues are

6 I', = a, (e,„+e„)+b,e„
+ Ic',(e„,—e„)'+d e'„,j"'.

For stresses directed along the crystal c, a,
and a axes, respectively, application of Eqs. (5)
and (7), together with the deformations listed in
Ref. 9, gives the slope parameters listed in Table
V. For a nondegenerate phonon, we get tmo inde-
pendent parameters (a„b,) and three independent
determinations. For the doubly degenerate I'„.
mode, we get four independent parameters and
five independent slopes. %e expect again the
fully symmetric part to be identical for X ll a and
Xlla'.

III. EXPERIMENTAL DETAILS

The Raman spectrometer used in this experi-
ment was made of a Spectra Physics Model 165
Ar'-ion laser, a Coderg T800 triple monochro-
mator, and a cooled EMI 9816 QA photomulti-
plier. A right-angle scattering geometry and con-
ventional lock-in detection techniques were used.
The Raman spectra were recorded with typically

400 m% of the 5145-A laser line and a spectral
resolution below 1 cm '.

The stressing apparatus is shown in Fig. 2. It
is designed to work at room temperature and is
small enough (15x 15 cm') to render the align-
ment procedure simple. It is made of two optic-
ally flat pistons (2, 3) with sample (1) compressed
in between. Piston (3) is fixed and is drilled with
a small aperture (-1.5 mm diam) which allows the
incident light to impinge upon the sample. In this
configuration the full length of the sample was
used in 90 scattering experiment and could be
focused on the horizontal entrance slit of our
monochromator. A transparent glass window (4)
is positioned between the sample and piston (2).
A quartz-force transducer (5) controls the
strength. Piston (2) is allowed to move. Its dis-
placement is driven by the small rotation of the
left arm (6) of a deformable fork (7). It can be
modified by tightening the screw (8) working
against a spring.

All TiO, samples used in this experiment mere
x ray oriented from a single ingot. " They were
in the form of small parallelepipeds approximately
10 x1 x 1 mm' and, in order to ensure a better
stress homogeneity, all small pressure faces
were optically flat. Three different configura-
tions have been used. First, the long dimen-
sion (direction of the stress and of the incident
light) was along c (or a), then the scattered light
was collected along a (or c). Second, the long
dimension was along a (x axis) and the scattered
light was collected along c. In both cases, by
rotating the polarization of the incident light, we
could observe all Raman-active modes through
the xy (x y ), zx (zx ), zy (zy ), and y' (y ') com-
ponents of the scattering tensors listed in Table
II for the rectangular (and 45') cut.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A zero-stress Raman spectrum is shown in Fig.
3. We note the phonon frequencies, I', (B~) ap-

x /(a

Stress dependence dZ';/dX of the most important Haman-active modes of Ti02.

x(fc x II
a'

rf (a„)
612 cm

~3 +f~)
143 cm

~4 @2)
826 cm f

F5 (E)

449 cm f

2uf Sf3 + bf S33

0.11 + 0.04 cm /kbar

2a3Sf3 + b3833

+ 0.02 + 0.02 cm f/kbar

2a4sf3+ b,S33

2a5Sf3 + b5S33

0.28 + 0.04 cm f/kbar

Sfi + Sf~) + bf Si3

0.10 + 0.04 cm f/kbar

a3 (Sff + Sf ) + b3Sf3

—0.13 + 0.02 cm f/kbar

+4 (Sff Sf2) + b4Sf3

(Sff + Sf2) + b5Sf3 + 5(Sf f Sf2)

(
0.21 + 0.04 cm i/kbar
0.13 + 0.04 cm f/kbar

W (Sff+Sf2)+ biSi3

0.11+ 0.04 cm f/kbar

a3 (Sfi+ f )+ 3Si

-0.16 + 0.02 cm-f/kbar

a4 (S„+S„)+b,Sf3

1
a5 (S«+ S„)+ b5Sf3+-,d5S«

(
0.20 + 0.04 cm f/kbar
0 14+0 04 cm f/kbar
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'

0 0 0 0 0 0 0 0 0 C
08

—,0 0 0 0 0 0 0 0 0 OL FIG. 2. Schematic draw-
ing of the room-tempera-
ture stre ssing apparatus.
The incident light (Io) im-
pinges upon sample (1) .

through a small aperture '

drilled in the fixed piston
(3). Piston (2) is allowed
to move and its displace-
ment is controlled by the
small rotation of the left
arm (6) of the deformable
fork (7). (4) is a quartz
window, (5) a quartz trans-
ducer, and (8) is a screw
working against a spring.
The scattered intensity I,
is collected in 90' scattering
geometry.

peering first at 143 cm '. I', (E ) is found at 450
cm ', I", (A, ) at 612 cm ', and, last, I'4 (8„)at
826 cm '. All values are in good agreement with
previously published data. "%e note the very
weak scattering intensity associated with the I'4

mode: It precludes any attempt to deduce ac-
curately the corresponding stress dependence.
Also the strong two-phonon band' which appears
near 235 cm ' was not investigated.

A. I 3 (8& ) mode at 143 cm

This is the sharpest mode of the Raman spec-
trum of TiO, . The experimental linewidth which
is about 2 cm ' permits rather accurate mea-
surements. The results are displayed in Figs.
4(a) (X!!c) and 5(a) (X!!a and X!!a'), respectively.
First we note that the I', mode behavior is found
normal in configuration X!!c, i.e. , the phonon fre-
quency increases under uniaxial compression.
However, the magnitude of the displacement is
extremely small and cannot compensate for the
strong softening observed when X!!a or X!!a [see
Fig. 5(a)]. This effect results in the soft-mode
behavior already reported under hydrostatic con-
ditions. '

As already said, our results in configuration
X!!c disagree with the experimental findings of
Ref. 11 (see Table VI). We get almost identical
absolute values but opposite signs. However, it
should be noted in both cases that the experiment-
al shift appears very small and in fact is of the
order of the experimental uncertainty. So the dis-
agreement may not be very significant. It should

Ti02 300 K

Z(YY+ Y Z) X

r, (a„)
6)2 cm

r,(E,)
450.m-~

0 200 400 600
Raman shift (cm &)

FIG. 3. Zero-stress Baman spectrum. The I'3(8 fg)
mode appears at 143 cm, 1"& (Ez) at 450 cm, I'.

& (A&z~)
at 612cm-, and I&(82~) at 826 cm- . The strong fea-
ture near 235 cm-' is a two-phonon band.

800 1000

be noted also that different shapes have been used
for the samples: 3.5 x3.5 x1.5 mm' in Ref. 11
against 10x1x1 mm' in the work. A small amount
of nonuniaxial component which may be present
with the square samples would be sufficient to.
turn the uniaxial-stress dependence from positive
in configuration X!!c (according to our data) to
slightly negative because of an X!!c and X!!a ad-
mixture.

The solid curves in Figs. 4 and 5 are least-
squares fits through the experimental data. Con-
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Ti 02 300 K

Xll c

r, (A„)

612 cm

Ti 02

300 K
r(A } 2-

812 cm~O
~~O

~ ~ I~0~ ~I
0(

Ob

) (8 ) ~0b
~~

143 CAl ~~ ~~ ~I 0 ~ . ~

2-
r, (E,)

450 cm
t /st

0.2-
0.'I — ~~~O

0 ~erg
0

r, (B„)
143 cm

cerning I', (B~), they give the slopes

XI~c: +(0.02a0.02) cm '/kbar,

X~Ia: -(0.13+0.02) cm '/kbar,

XI)a': -(0.16+0.02) cm '/kbar.

I I

0 5 10
Stress (kbar)

FIG. 4. (a) Stress dependence of I'3 (&«) in configura-
tion X II c. The solid line is a least-mean-squares fit
through the experimental data with slope 0.02+ 0. 02 cm- /
kbar. Note the scale on the vertical axis. (b) Same as
Fig. 1(a) but for I'5 (E~). The best fit gives a slope
0.28 + 0.04 cm-~/kbar. (c) Same as Fig. 1(a) but for
I f (Agg) ~ The slope is 0. 11 + 0.04 cm-'/kbar.

Xll a X II a
I I I I

5 0 5 10

Stre ss (k bar)
FIG. 5. (a) Stress dependence of the low frequency

I3 (+fg) mode in configuration X II a and X II a' . Note the
negative dependence. The solid lines are least-mean-
squares fits which give the slopes -(0.13+ 0.02) cm /
kbar in configuration X II a and -(0.16+0. 02) cm '/kbar
in configuration X II a'. (b) Same as (a) but for I', (A~/.
Note the positive stress dependences (normal mode be-
havior). The solid lines give 0.10+0.04 cm-~/kbar
(X II a,) and 0. 11+0. 04 cm-~/kbar (X II a').

10

which gives in the notation of Table P

dP dX J zip dX z)p

From our experimental results we get a pressure
coefficient dI;/dP =-(0.24+0.06) cm 'jkbar to be
compared with the experimental results of Ref.
5: —(0.34+0.03) cm '/kbar; Ref. 6: —0.36 cm '/
kbar; and Ref. 11: -(0.37+0.07) cm '/kbar. With-
in experimental uncertainty, all results are in
satisfactory agreement and support an average
val'ue: -(0.33 + 0.05) cm '/kbar.

The mode Gruneisen parameter y, can also be
extracted from the deformation potentials g, and 5,:

Using the theoretical expressions of Table V
and the $,&

parameters listed in Ref. 9, we deduce
two deformation potentials, a, and b„associated
with the I, phonon mode. In units of cm ', we get

with

d(lnI;) 1 a, +)'rbs

d(in V) I; 1+a

a, =620+ 120 cm ' and b, =330+ 120 cm '.
To compare with previous experiments, we must
deduce fr om our data the fr equency shift associa-
ted with pure hydrostatic conditions. Introducing
the deformations

e„=(S„+S,2 + S,~)P = e„, e = (2S~s +S3~)P,

we get

d I'3' =2a, (S„+S„+S„)+b,(2S„+S„),dI'

1 2$~3+ $33k= ——
$11 $12 $13

We get y~ = -(4 + 1) to be compared with y~ = -5 in
Ref. 5.

ithin experimental error, the least-mean-
squares fit gives identical slopes for F, in con-
figurations X ([ a and X II a. ', and we do not find the
nonlinear behavior expected in configuration
X ~~a. This point is worth noting. It shows that
I', (B„)does not exhibit the special sensitivity
to the orthorhombic distortion previously sugges-
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TAp, LE ~. Summary of the uniaxial-stress dependences and hydrostatic pressure coefficients reported for TiO2.
When measured from the uniaxial-stress experiments, the hydrostatic pressure coefficients were deduced from equa-
ti.on dI'/dP= d1" /d&lg ii" + 2dI' /dxl g o- ~

dI';/dX (cm «/kbar)
b

Average
value

I'«

(A«)
612 cm «

x ll c o.11+o.o4

ll a, 0.10 ~ 0.04
x ll

Z' o.11 ~ o.o4
hydrostatic
component 0.31 + 0.12

x ll c o.o2+ o.o2
x ll a 0.13+o.o2
x llK' -0.10+ 0.02
hydrostatic
component -0.24+ 0.06

x ll c 0.2s ~ o.o4
0.21 + 0.04
0.13+0.04

0.24 + 0.06

-0.03 + 0.01
-0.17 + 0.03

-0.37 + 0.07

0.18 ~ 0.04

0.18 + 0.048

0.41

-0.36

0.46 + 0.12

-0.34 ~ 0.03

0.17 + 0.05

0.39 + 0.12

-0.01 + 0.02
-0.15 + 0.03

-0.33 + 0.05

0.23 + 0.04

0.18 + 0.06 e

xlla' 0.14+ 0.04

hydrostatic
component 0.62 + 0.12 0.54+ 0.12 0.43 0.52 + 0.09 0.53 + 0.11

This work.
"Reference 11.
'Reference 6.
Reference 5.

'Center of gravity; the two components of the stress-induced doublet were not resolved in the work of Bef. 11.

ted. In fact the atomic displacements for this
vibrational mode correspond with pure rotations
of the oxygen atoms around the central titanium
atom. Such rotations are associated with a bending
of the first-nearest-neighbor interactions. In the
following paper it will be shown that the stress-in-
duced change in the bond-bending constants results
in a normal softening of the I', Raman mode.

8 V
&

{A
&g) m od e at 612 cm

This is the strongest mode of the Raman spec-
trum in Fig. 3. The spectral line is rather broad
and the accuracy in the peak position is only +0.2
cm '. In configuration Xnc, the stress depen-
dence is displayed in Fig. 4(b). In Fig. 5(b) it is
displayed for configurations X ll a and X ll

a'. From
the least-squares fits (solid curves) we get the
slope coefficients

Xll c: +(0.11+0.04) cm '/kbar,

X ll a: +(0.10+0.04) cm-' jkbar,

Xlla': +(0.11+0.04) cm '/kbar.

Within experimental error, a].l pressure coeffic-
ients are identicals. The deformation potentials
and mode Gruneisen parameter deduced from the
measurements are a, =-(610+240) cm ', b,

=-(820+310) cm ', and y, =+(1+0.4). We find
negative signs for the deformation potentials and
a positive sign for the mode Gruneisen parameter.
This reflects the normal mode behavior of I', :
The phonon frequency stiffens versus pressure.
In the next paper it will be shown that this is an
effect of the stress-induced change in the bond-
stretching constants between first-nearest neigh-
bors.

The mode Gruneisen parameter found in this
work (1+0.4) appears slightly lower than the value
quoted in Ref. 5 from hydrostatic experiments
(y, = 1.6). Also the hydrostatic pressure coeffic-
ient

———'=0.31+0.12 cm ~/kbar
dP

appears slightly lower than the values 0.46+ 0.12
cm '/kbar quoted in Ref. 5 and 0.41 cm 'jkbar
quoted in Ref. 6. The discrepancy however stays
within the experimental uncertainty and supports
an average value (0.39+0.12) cm '/kbar.

C. I'5 (E ) mode {45(}cm ~)

This is the only doubly degenerate mode of the
Raman spectrum. It has been identified' at
450 cm '. In Fig. 3, the corresponding spectral
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line is again very broad (-30 cm ') and the ex-
perimental accuracy in pointing the peak maximum
is 0.2 cm . The line splits under compressions
X

~I
a and X

~I
a according to the compatibility rela-

tions listed in Table III. In configuration XII a,
the two split components I', and T'4 correspond to
the nondiagonal part n,„and n„, respectively, of
the polarizability tensors listed in Table II. Their
energy separation is achieved by use of their po-
larization properties. %e work in configuration
(xIsxIz) to resolve the I; (8„)component and in
configuration (x~syIs) to resolve I', (8„). The
same is true for XI[a, but with x and y' replac-
ing x and y, respectively (45' cut of the sample).

For stresses directed along the crystal c axis,
the mode frequency shifts and remains degenerate.
This is shown in Fig. 4(c). From the least-mean-
squares fit, we get a positive slope 0.28+ 0.04
cm '/kbar.

For stresses parallel to a, the phonon frequency
shifts and splits as shown in Fig. 6(a). Similar
results are obtained in direction XII a'. They are
shown in Fig. 6(b). For clarity we display on
separate scales the four components. It is inter-
esting to note that the I'4 mode, which is the high-
energy mode (hard component) for X

~I a, becomes
the soft component for XIIa'. This behavior can
be qualitatively understood in light of the deforma-

stsr

stress II a

4h 2h

r (xz)

dL

0

tions and atomic displacements shown in Fig. 7.
For X

~I a, the crystal structure reduces to D, „(x)
and a group theory analysis shows that the I", (8„)
mode corresponds to an out-of-phase vibration of
the pairs of oxygen atoms characterized by a
shorter bond length. This increased coupling be-
tween the pairs of neighboring atoms beating out
of phase in the c direction results in a quenching
of the vibration, i.e. , in a softening of the mode.
Conversely, for the I'~ (8„)mode, the coupling
between pairs of neighboring atoms which beat in
phase increases, and this hardens the mode with
respect to I",. For X II

a', only one pair of oxygen
atoms beat, the two atoms having out-of-phase
displacements. The other pair of atoms is at
rest. If the coupling between the two beating
atoms increases, the frequency hardens. This
corresponds to I', (8„). If the coupling between
the two beating atoms decreases, the mode fre-

T&0, 300 'K t (Egj

&50 cm f (yz)

X ll a'
I

5 0

Stress {gbgr)

Xll a

x
r o(x'~ 2 ro,2h

V X&x
X

Ob
th

+)pre
0

e i r-0 (x')
4 ~

C r-0 fx)
R 0 2 2A

~O
o xx X x

~JC

~ gx xX stress II a'

4h

o

I4

FIG. 6. (a) Stress dependence of the two I'5 (EP split
modes in configuration X II a. For convenience the two
components are displayed on separate scales. The solid
lines are again least-mean-squares fits through the ex-
perimental data. They give the slopes 0.21+ 0. 04 cm"&/
kbar for p4 mode and 0. 13+0. 04 cm- /kbar for I"z mode.
(b) S~e as (a) but for X II a'. The slopes are 0.20+ 0. 04
cm-~/kbar for P2 and 0. 14+ 0. 04 cm-'/kbar for 14.
components are found in polarization n„, (+~i,) and P4
components in polarization e„(0, , ), respectively.

FIG. 7. Atomic displacements for the doubly degen-
erate I'5 mode: (a) stress parallel to a, (b) stress
parallel to a'. In both cases, the hard component is
associated with an increased separation between the
pair of atoms which beat out of phase. This is I'4
for X ll a and I2 for X II a'.
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quency softens. This corresponds to I', (B„).
From the least-mean-squares fit, we get the

slopes of the four phonon branches. They are
0.21+0.04 cm '/kbar and 0.13+0.04 cm '/kbar
for compressions X~~ a, and 0.20+0.04 cm '/kbar
and 0.14+0.04 cm '/kbar for X~~a'. Within ex-
perimental error, the splitting appears identical
in both configurations and indicates an isotropic
behavior of the doubly degenerate F, mode under
compressions perpendicular to c. No comparison
is possible with the work of Ref. 11 in which the
splitting was not resolved in configuration X

~~
a.

In good agreement with the theoretical results
on Table V, the fully symmetric I', part of the
interaction is identical for both directions. We
find a slope

r
a I'5

'%('ll '12) 55'13dX

=0.17+0.08 cm '/kbar.

From this result, together with the slope ob-
tained with X~~c, we get a, =-(1170&370) cm ',
5, =(—1840+430) cm ', y, =+(2.9+0.9) cm '.

Again the mode Gruneisen parameter obtained
for uniaxial-stress experiments appears in satis-
factory agreement with the one obtained from
hydrostatic measurements'. y, = 2.43. The hy-
drostatic pressure coefficient obtained from our
data is 0.62+0.12 cm '/kbar to be compared with

0.52+0.09 in Refs. 5, 0.43 in Ref. 6, and (0.54
+0.13) cm '/kbar in Ref. 11. All results support
an average value: 0.53+0.11 cm '/kbar.

The shear deformation potentials deduced from
the measurements are c, =+(35+35) cm ' and d,
= —(230+ 300) cm . The sign is positive for c,
and negative for d, . This comes from the selec-
tion rules indicated in Fig. 6: The soft component

has symmetry for X ~~a and zy symmetry for
Xi]a'.

V. CONCLUSION

We have investigated the effect of static uni-
axial compressions on the first-order Raman
spectrum of TiO, . All uniaxial-stress depen-
dences obtained in this work are summarized in
Table VI. The comparison with previously pub-
lished data shows minor discrepancies which stay
in the limit of the experimental uncertainty. %e
have found linear displacements of the two nonde-
generate modes I", and I', associated with the
following deformation potentials:

a, = —(610+240) cm ', 5, = —(820+310) cm ',
g, =+(620+ 120) cm ', 5, =+(330+ 150) cm '.

In configuration X
~~ a, the linear behavior of I',

versus deformation rules out a peculiar sensitivity
of this Raman mode to the orthohombic distortion.
In fact, the positive deformation potentials which
are found in this case reflect the change in bond-
bending constants versus deformation. This will
be shown in the following paper.

The doubly degenerate I', mode shifts and
splits, under stress parallel to a and parallel to
a'. The four deformation potentials which are
found in this case are

g, =-(1170+370) cm ', b~=-(1840+430) cm

c, =+(35~35) cm ', d, =-(230+300) cm '.
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