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A theory for optical heating in semiconductors has been formulated in terms of the coupled diffusion
equations for heat and excess carrier density. The solution for the temperature increase near the surface of
the material is given by a general expression which is applicable to a broad range of semiconductors and
excitation conditions. The present theory is considerably more comprehensive than previous closed-form
results in that the optical and transport properties of the material are allowed to be arbitrary functions of

photoexcited-carrier density and temperature.

I. INTRODUCTION

With the relatively recent development of the
high-power laser, the generation of dense plas-
mas of optically excited electrons and holes has
become a powerful tool for studying semiconduc-
tor properties. Experiments of the last 15 years
have shown that many of the basic optical and
transport parameters can be highly sensitive to
the presence of laser-generated carriers. Exam-
ples include the intrinsic'-® and free-carrier*:®
optical absorption, reflectivity,®” electron and
hole mobilities,5"® ambipolar diffusion coefficient,®
and the free-carrier lifetime.'%" 2

When a semiconductor is irradiated by intense
laser light, a frequent consequence is the produc-
tion of heat. Laser heating is a complex process
which takes place in a number of steps and involv-
es a variety of semiconductor properties. While
the optical properties govern the absorption of
laser energy by the material, the free-carrier
transport and recombination properties are also
relevant since most of the radiation absorbed by
a semiconductor goes initially into the system of
mobile electrons and holes.'?

Apart from the general interest in characteriz-
ing the temperature within a semiconductor during
optical excitation, an accurate determination of
laser heating is essential to a number of specific
applications, such as laser annealing and laser
damage (due to surface melting). As a conse-
quence, several closed-form theoretical models
have been proposed in recent years.'*"®* However,
these share the important drawback that the car-
rier density and temperature dependence of the
various optical and transport properties have not
been taken into account in a comprehensive way.
Thatis, either thedependences are ignored entire-
ly,'*"'8 or their inclusion is of limited scope.'”'?
As an alternative to obtaining an approximate
closed-form result, calculations have recently ap-
peared in which the coupled partial differential

equations for temperature and excess-carrier
density have been solved numerically.?%?' Unfor-
tunately, such calculations are tedious, require a
great deal of computer time, and offer little physi-
cal insight into the heating process.

Derived in the following sections is a first-prin-
ciples theory for the heating of a semiconductor
surface due to laser irradiation. The result is ob-
tained in the form of closed-form expressions
which contain no adjustable parameters. The ma-
terial properties are allowed to depend in a gen-
eral way on temperature and optically excited car-
rier density, which means that such nonlinear ef-
fects as the dynamic Burstein shift, free-carrier
absorption, two-photon carrier generation, car-
rier diffusion, and radiative and Auger recombina-
tion can be accounted for. The inclusion of these
“dynamic” processes, particularly at short pulse
durations, can have a significant effect on the cal-
culated temperature increase which results from
the laser heating.

In Sec. II below the various physical processes
involved in the absorption of laser energy and its
conversion to heat are discussed. The tempera-
ture increase expected to result from the irradia-
tion is considered from a phenomenological stand-
point. In Sec. III the problem is rigorously formu-
lated in terms of the coupled diffusion equations
for temperature and excess-carrier density. Sec-
tion IV then deals with the derivation of approxi-
mate closed-form solutions to the diffusion equa-
tions in the region near the surface of the mater-
ial. The final result obtained for the laser power
density required to increase the surface tempera-
ture of the semiconductor by a given amount is
general with respect to the dependence of the ma-
terial parameters on laser-generated carrier den-
sity and temperature. In Sec. V this expression
is applied to the specific example of surface melt-
ing in InSb due to @ -switched CO, laser pulses.

As a comprehensive test of the theory, a detailed
comparison with experimental laser damage
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thresholds of germanium, silicon, InSb, and GaAs
for a broad range of laser wavelengths and pulse
durations will be dealt with in a future publica-
tion.??

II. PHYSICS OF OPTICAL HEATING

To accurately calculate the temperature increase
in a laser-irradiated semiconductor it is necessary
to consider in detail the various processes involv-
ed in the absorption of optical energy and its con-
version to lattice heat. The processes which must
be considered include the following: (1) the ab-
sorption of photons in the semiconductor, result-
ing in the creation of electron-hole pairs, carrier
heating, or both, (2) thermalization of “hot” elec-
trons and holes to quasiequilibrium with their re-
spective carrier populations, (3) diffusion of the
excess electrons and holes, (4) carrier recom-
bination, and possible transfer of the recombina-
tion energy in the lattice, and (5) diffusion of the
excess lattice heat which is generated at steps (2)
and (4).

In order to illustrate the effect of some of these
processes on the dynamics of laser heating, we
consider a specific example involving the intrinsic
absorption of a photon whose energy v is consid-
erably greater than the gap energy E,- For con-
venience, a simplified band structure is assumed.
Figure 1(a) illustrates the absorption of a photon
(A) and subsequent thermalization of the photoex-
cited carriers (B). Since hv>> Eg, the newly creat-
ed electron and hole have energies E, and E, in ex-
cess of the quasiequilibrium values E,, and Erp
respectively® (indicated by the dashed lines). The
hot electron and hole rapidly relax to quasiequili-

(a) (b)

FIG. 1. (a) Photon absorption (A) and carrier ther-
malization (B) for a simplified semiconductor band
structure. E; and E; represent the newly created car-
rier energy and the quasiequilibrium energy, respec-
tively. (b) Auger recombination (C) involving transfer
of the recombination energy E to a second electron (D)
and eventual thermalization (E) of the hot electron.

brium with their respective populations, primarily
through collisions with phonons and other carriers.
Since thermalization typically occurs on a psec
time scale, significant carrier diffusion has not
yet occurred. The thermalization energy E,,

(=E, —E,+E, ~Ey,) therefore tends to be converted
to lattice heat within one absorption length, o™,

of the surface of the sample. After diffusing
through the crystal for some period of time, the
electron and hole eventually recombine. The dom-
inant recombination mechanism at high excitation
levels is often the Auger process, which is illus-
trated in Fig. 1(b). In this process, the electron-
hole recombination energy (C),

ER=hV —ET=Eg+ETn+ETp’ V)

is transferred to a third carrier, in this case an
electron (D). The Auger electron then rapidly
thermalizes (E), transferring the energy Ej, to the
lattice. Typically, this occurs within the depth
a”'+I,, where [, is the ambipolar carrier diffu-
sion length. (If recombination occurs by a radia-
tive rather than Auger process, the energy Ej,
goes into the emission of photons, which must be
reabsorbed before heating can occur.) Once the
absorbed energy is converted to lattice heat, it is
free to diffuse to greater depths via thermal con-
duction.

If we assume the sample to be semi-infinite, all
of the laser energy entering the semiconductor in
across-sectional area A is absorbedin the mater-
ial. This energy can be written

€=(1=R)P,At,, (2)

where R is the reflectivity, P, the laser power
density, and ¢, the laser pulse length. I this en-
ergy is added uniformly within a depth 7 of the
surface, the temperature increases may be writ-
ten

AT=e/pcAl, (3)

where p is the mass density of the material and ¢
the specific heat. This assumes that AT is suffi-
ciently small so that all the parameters in Eq. (3)
may be considered constant. The temperature in-
crease AT depends simply on the density, the
specific heat, and the added energy per unit vol-
ume €/Al. In general, ¢ may be expressed in
terms of the components

=€ p+eiR+eR+elR+ek, (4)

where €, represents the thermalization energy of
hot electrons and holes which is converted to lat-
tice heat immediately after absorption of the pho-
ton, e}F is the increase in lattice energy resulting
from nonradiative bulk recombination, €% is the
radiative bulk recombination energy which appears
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as emitted photons, and €¥F and €% represent en-
ergy going into nonradiative or radiative surface
recombination, respectively. The thermalization
energy €, contains contributions from carriers
heated by free-carrier absorption as well as from
the relaxation of hot electron-hole pairs. It is
assumed that the radiative components ¥ and €&
do not contribute to heating.?*

Generally, the lattice heating associated with
the various €’s listed in Eq. (4) is distributed over
different depths in the material. If we define the
thermal diffusion length, L., to be the distance
heat can diffuse by the end of the laser pulse, then
heating which results from the thermalization en-
ergy €, occurs roughly over the depth Ip=a ™'+ L.
Since the excess carriers diffuse before bulk re-
combination occurs, the energy e¥F is distributed
over a depth #F~q '+ L, +L,. The nonradiative
surface recombination energy §’SV % which originates
at the surface, is distributed over a depth &F=L .
We see then that [EF <[, < §F.

If we consider the three energy components €,
e¥R, and e¥F distributed over their respective
depths, Egs. (2)—(4) can be combined to yield the
approximate laser power density needed to in-
crease the surface temperature by AT:

_PcATLy

" (1-R),’ ®)

Py

where
Ly= [XT/((!-1+ LT)
+y¥R /(@ + L+ Lyp)+x5R/ L1 (6)

and y;=€,/e (e.g., xi¥ is the fraction of the total
energy entering the sample which goes into nonra-
diative bulk recombination, etc.). The quantity
L, may be thought of as a generalized, composite
heating depth. Stagni'® has proposed a similar ex-
pression for calculating laser damage thresholds
in semiconductors. However, when applied to
cases involving large AT, Eq. (5) can lead to sub-~
stantial error because it does not take into account
the dependences of the material parameters on
temperature and optically excited carrier density.
More general expressions which take these depen-
dences into account will be obtained in the sec-
tions which follow.

III. MATHEMATICAL FORMULATION

A comprehensive model for optical heating in
semiconductors is now formulated in which the
material parameters are functionally dependent on
temperature and optically generated carrier den-
sity. Coupling between the semiconductor and the
laser radiation is assumed to occur via three prin-
cipal absorption mechanisms, so that the total ab-

sorption coefficient ¢ can be written
A=Qpot+a,+ta,. N

The free-carrier absorption coefficient @y, is pro-
portional to the carrier density and absorption
cross section for each type of carrier. The one-
photon and two-photon band-to-band contributions,
o, and @,, result in the generation of excess elec-
trons and holes. Since a, corresponds to the si-
multaneous absorption of two photons, it is depen-
dent on the power density of the radiation, i.e., a,
=B(1 =R)P,e”%, where g is the two-photon absorp-
tion coefficient and z is the depth into the material.
As shown in Sec. II, the dynamics of laser heat-
ing depend on the optical and transport properties
of the photoexcited electrons and holes as well as
on the thermal properties of the material. Con-
sequently, it is necessary to solve both the ex-
cess~-carrier and heat diffusion equations, which
are coupled, since these equations involve pa-
rameters depending on both 7 andn. A semi-in-
finite sample thickness and uniform irradiation
are assumed, so that the problem can be consider-
ed in one dimension. Effects of finite sample
thickness and beam diameter have been discussed
elsewhere.'5:1%25 We assume pure material,
which implies n=p. This causes no appreciable
error as long as the photoexcited carrier density
is much greater than the extrinsic concentration.
Under these conditions, the coupled diffusion equa-
tions for temperature and carrier density as func-
tions of time ¢ and depth z can be written

8T 9 3T\_ G, T,2,1)
oz (k0 5 )= T ®
on )

on\ _ n-—=n
a—t—g"z'<D(n, T)g;)—g(n, T,z, t) "TB(n,T)’ (9)

with the boundary conditions
T(z,1=0)=T,,
T(z=c0,t)=Ty KoT/32+§,?7°=0,
nlz, t=0)=n(Ty), Ddn/oz~-sl —n;)|*7°=0,
n(z=co, t)= (T ),

where k (=K/pc) is the thermal diffusion coeffi-
cient, K is the thermal conductivity, G is the rate
of heat generation in the bulk, D is the ambipolar
diffusion coefficient, g is the rate of excess car-
rier generation, »; is the intrinsic carrier concen-
tration, 7, is the bulk free carrier lifetime, T,
is the initial sample temperature, G is the rate
of heat generation at the surface, and s is the sur-
face recombination velocity.

The excess carrier generation rate g contains
terms due to both one- and two-photon absorption,
i.e., g=g,+g; Where
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g:=[no(1=R)Poa,/hv]e **, (102)
g,=[(1 =R)?P28/2hv]e?*, (10D)

and 7, is the quantum efficiency for one-photon
carrier generation. If hv>E,, thenn,>1, since
more than one electron-hole pair per photon can
be produced owing to impact ionization.

The inverse lifetime for bulk recombination of
excess carriers, T;, can be separated into the
components®®

TR=T +TR +Ta =T +Vo 0 tn) vy anbe+n,),  (11)

where 7g, Ty, and 7, are the Shockley-Read, ra-
diative, and Auger recombination lifetimes. Be-
cause of the dependences of 7, and 7, on carrier
density, Auger or radiative recombination usually
dominates at high optical flux levels.

The rate of heat generation in the bulk is given
by

G=(1=R)Papce” **+(hv/no-Eg)g,
+ (2hV —ER)g2+ER(71 _ni)/Tl}gR'

The first term of Eq. (12) represents heating due
to free-carrier absorption, while the second and
third terms correspond to the thermalization en-
ergy which results from the relaxation of optical-

(12)

ly excited electron-hole pairs to quasiequilibrium.

The fourth term corresponds to energy which is
converted into lattice heat only after the electron-
hole pairs recombine nonradiatively (r4F is the
nonradiative component of the bulk lifetime). The
average electron-hole recombination energy E,
is given by Eq. (1).

Finally, the rate of heat generation at the sur-
face is

§ =sypln(2=0, 1) =0, ]E ¢,

where s, . is the part of the total surface recom-
bination velocity which is due to nonradiative pro-
cesses.

IV. SOLUTION TO THE DIFFUSION EQUATIONS

The coupled diffusion equations (8) and (9) rep-
resent a general formulation of the optical heating
problem within the restrictions outlined at the be-
ginning of Sec. III. Although an analytic solution
is not possible, the introduction below of certain
simplifications allows us to obtain a closed-form
result for the temperature increase near the sur-
face of the material which closely approximates
the exact solution for most cases of interest. The
approach consists of first obtaining expressions
which are valid in the short pulse regime and
which do not take heat conduction into account. It
is for these short times that processes which de-
pend on optically excited carrier density and tem-

perature have their greatest effect. Thermal dif-
fusion is then incorporated phenomenologically
using the results of Sec. IT as a guide. Similarly,
surface recombination is initially assumed to be
radiative, and later the effects of surface heating
are incorporated phenomenologically.

We therefore proceed by setting =0 and § =0
in Egs. (8) and (9). We also note that for high car-
rier densities the free-carrier lifetimes due to
Auger and radiative recombination are usually
much shorter than the laser pulse durations con-
sidered here.?” Hence we can set or/5f =0 since,
at a particular depth, the carrier density reaches
a steady state value at each temperature. With
these simplifications, Eqs. (8) and (9) become

8T _ G

=L 1

o pc’ (13)
% _8D(on\* 8D BT dn _ n-m (14)
02> on\oz) ol ozdz 5 71,

Owing to the temperature and carrier density
dependences of the various parameters, Eqs. (13)
and (14) still represent a complex mathematical
problem which must be simplified further in or-
der to obtain a closed-form result. Since we are
primarily interested in the behavior near the sur-
face, we proceed by approximating 7'(z) in Eq.
(14) by T(2=0). This effectively decouples the two
equations and allows Eq. (14) to be solved for the
carrier density at the surface n(z=0, ¢) for each
value of T(z=0). The error introduced by this ap-
proach is usually small, as is discussed in the
Appendix.

To solve the decoupled form of Eq. (14), we
note that when carrier diffusion is unimportant
(Lpa < 1), terms involving D can be ignored and
the solution is n(z =0, {)=n;+g(z=0)7 ;. The effects
of surface recombination can be accounted for by
replacing 7, with the composite lifetime 7 due to
both bulk and surface recombination (r7'=73'+73},
where 75'=s/L,). When carrier diffusion is sig-
nificant, its effect is to redistribute the excess
carriers over the depth ¢ '+ L,, which results in
a decrease of the concentration near the surface
by a factor of about L,a+1. In this case n(z=0, T)
is approximated by

n(@=0,T)=n;+ge=0)/(Lpa+1)|7=T¢==0,  (15)

where L, is given by the usual expression L,
=(DT5)'"2. In order to test the accuracy of Eq.
(15), Eq. (14) was solved numerically by computer
to obtainn as a function of z for various repre-
sentative forms of T(z) and for various depen-
dences of the lifetime, diffusion coefficient, and
absorption coefficient on#. The results, discuss-
ed in the Appendix, indicate that the approxima-
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tions made in decoupling Eqgs. (13) and (14) are
usually quite reasonable and that the n(z=0, T) ob-
tained using Eq. (15) agrees with the numerical
result to better than 20% for a very broad range
of experimental conditions.?® It should be remem-
bered that g, 7, L,, and @ can all depend on car-
rier density, so thatx appears on both sides of
Eq. (15).

Now that an expression for n(z=0, T') has been
obtained, Eq. (13) can be solved by separation of
variables for the region near z=0. While the las-
er pulse can in general have an arbitrary time pro-
file, we assume for convenience a single square
pulse of the form P[U(t) -U (¢ - ¢,)], where U(¢) is
the unit step function. The solution to Eq. (13)
can then be written

(7 pcdr ‘
t’_j;, G(z=0) (16)
o

where T, is the final surface temperature at the
end of the laser pulse. Since p is not very tem-
perature dependent it can be assumed a constant
in most cases and taken out of the integral. On

the other hand, the temperature dependence of ¢
may be appreciable and should not be neglected.
From Eqs. (12) and (15) the heat generation rate
at z=0 is

G@=0)=(1 =R)Paly+x5*/(Lya+1)], (17

where, as in Sec. II, y, is the fraction of the total
laser energy entering the material which thermal-
izes with the lattice before carrier diffusion can
occur:

XT=[(1 _T’Q ER/hV)a 1
+(1 =Ep/2mv)as+ags )/ a, (18)

and y¥F is that fraction transferred to the lattice
following nonradiative bulk recombination:

X5R= /TR g E/hv)a,+ (Ee/2hv)as)
= (/TR = Xp) « (19)

Using Eq. (17), Eq. (16) can be inverted to obtain
P, the power density required to increase the
surface temperature from T, to T;, as a function
of t,:

- pc ATLy 20
P, —9——-—(1 R, (20)

where c,=c(T,), R,=R(T,), and

1-R, (TrdTc(T)a™!
AT Jp  1-R(T)

L4} 8s70= [Xr+x 4"/ (L pa+ DI

(21)

Equations (20) and (21) represent a solution to
the laser heating problem for short laser pulses
where thermal diffusion may be neglected. It was

also assumed in cbtaining this solution that any
surface recombination is radiative and therefore
does not contribute to heating. The solution can
be generalized to incorporate thermal conduction
and surface heating by making use of phenomeno-
logical arguments discussed in Sec. II. Using Eq.
(6) as a guide, L, can be written

=1 —RQ ij daT Ca-l
CoAT Jp, 1-R

Ly

Xxp/(Lpa+ D) +xER/ (Lpa+ Lya+ D+x¥%/Loal™.
(22)

x%® is the fraction which is converted to heat via
nonradiative surface recombination:

YR = (0 /TR = Xg) Lyor/ (L pa+ 1), @3)

The factor L a/(L,a+1) in Eq. (23) represents
that fraction of the excess carriers which are
close enough to the surface to take part in surface
recombination. The dependence of the thermal dif-
fusion length on temperature can be estimated by
using the usual relation 7=~ (kt)!/? with the ap-
proximation® T(z2=0) — T~ AT(t/,)"/>. One then
obtains®®

Lo (T)~m?[R(T)t,]2(T - T )/AT. (24)

It should be remembered that the integral of Eq.
(22) contains several terms which can depend on
P,, indicating that Eqs: (20) and (22) must be
solved self-consistently.

Qur final result for the laser power density re-
quired to heat the surface of a semiconductor
from -an initial temperature T, to a final tempera-
ture T, is thus represented by Eq. (20), where L,
is given by Eq. (22). As in Sec. I, L, may be
thought of as a generalized composite heating
depth, while the y; represent those fractions of
the laser energy entering the sample which go in-
to the various thermalization and recombination
processes (Xp +XEF+xZ+x¥F+xF=1). InEq. 22)x &
and y® do not appear because radiative recombina-
tion does not contribute directly to lattice heat-
ing.

Each of the three terms within brackets in Eq.
(22) can dominate depending upon the experimental
conditions. The first term usually dominates
when the photon energy is well above the bandgap
or when free carrier absorption is very large,
since most of the laser energy is then immediate-
ly transferred to the lattice due to the thermaliza-
tion of hot electrons and holes. The second term
has its greatest effect when the photon energy is
only slightly above the bandgap and the intrinsic
absorption is stronger than the free-carrier ab-
sorption. In this case, most of the laser energy
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reaches the lattice only after electron-hole recom-
bination. The third term is important in mater-
ials with a high surface recombination velocity
and may dominate in the short pulse regime where
the thermal diffusion length 1, is small. When
the surface recombination velocity is small this
term may usually be neglected. In general, the
relative importance of the three terms depends
not only on the magnitude of the y;, but also the
depth over which each energy component is dis-
tributed, as given by the denominator of each
term. For pulse durations sufficiently long that
Ly>» a”'+L,, the separation of the laser energy
into fractional parts is unnecessary (unless y¥ or
x% is large), since all three components will have
diffused over the same depth L.

The simplifications required to obtain the closed
form solution Eq. (20) follow primarily from three
approximations:

(1) The carrier density reaches a quasiequili-
brium at times short compared to the laser pulse
duration [on/0¢~0 in Eq. (9)]. Owing to the short
lifetimes for Auger and radiative recombination,
this assumption is almost always valid in the nsec
pulse regime. It may break down for psec pulses..

(2) The carrier density near the surface is given
by Eq. (15). It is shown in the Appendix that Eq.
(15) approximates the exact solution of Eq. (14) to
within 20% for a wide range of experimental con-
ditions. Only for certain cases (specified in the
Appendix) where surface recombination or surface
heating dominates is caution required, and even
then Eq. (15) represents a good order-of-magni-
tude approximation.

(3) Thermal diffusion and surface heating have
been incorporated phenomenologically. The cor-
rect dependence on pulse length and material pro-
perties is obtained when limiting cases are con-
sidered, thus demonstrating the reasonableness of
this approach.

We conclude that Eq. (18) represents a simple,
but accurate description of laser heating near the
surface of a semiconductor. It is thus unneces-
sary in most cases to obtain tedious numerical
solutions to the coupled partial differential equa-
tions for thermal and carrier diffusion. Physical
insight into the nature of the heating process can
also be gained from the straightforward pheno-
menological interpretation of the derived expres-
sions.

V. APPLICATION OF THE THEORY: DAMAGE OF
InSb DUE TO 170-nsec PULSES OF 10.6-um RADIATION

A detailed comparison of the present theory with
experiment will be given elsewhere®? for a broad
range of materials, laser wavelengths, and pulse

durations. Here we illustrate the application of
the derived expressions by considering InSb irra-
diated by @ -switched CO, pulses. The case of
10.6 ym laser damage in InSb is particularly in-
teresting because each of the different absorption
mechanisms considered in Eq. (7) becomes im-
portant at different stages during the laser pulse.
Near-room-temperature carriers are generated
primarily by two-photon absorption since v <E,(T)
<2hv. The dominant absorption mechanism in this
temperature range is free-carrier absorption
since ay. > a, for the power densities involved.
At higher temperatures the energy gap decreases
sufficiently that hv=E, and ¢, becomes the domin-
ant carrier generation term. It can be shown that
over the entire temperature range of interest ¢ is
sufficiently small that I,e, L,o <« 1, that recom-
bination mechanisms other than the bulk Auger
process can be ignored (i.e., 7=7,=74F), and that
xr+x%¥=1. The dependence of the reflectivity on
temperature and carrier density is also small and
can be ignored. Under these conditions Eq. (22)
reduces to the relatively simple form

Tm
Ly~(1/c,AT) f aT ¢ (T)a™N(T), 25)
To

where the melting temperature T, of InSb is®!
798 °K.

In order to calculate the melting threshold, we
must determine the temperature dependence of o,
which consists of three components: one-photon
and two-photon band-to-band absorption and free-
carrier absorption. If the value of ¢, at low exci-
tation intensities is designated o, we can esti-
mate the temperature dependence by assuming it
is due only to the temperature shift of the bandgap
(see Ref. 22),

oy (hv, T)=0,(hv +E, (300 °K) ~E,(T), 300°K).  (26)

When the 300 °K data of Moss et al.*? are used in
Eq. (26), the resulting o(T) roughly agrees with
the limited high temperature data® which have
been published. At high excitation intensities, the
band-to-band absorption is limited by the dynamic
Burstein shift3*

a,=a\[1-£,(E,) =f,(E)], (27

where f, , are the electron and hole Fermi distri-
bution functions and E, , are the energies of the
particular electron and hole states involved in the
absorption process. Since the electron effective
mass is quite small in InSb, a large electron
Fermi energy can be obtained with relatively few
carriers. As a result the decrease in absorption
due to the dynamic Burstein shift is quite large in
the present example.

The two-photon absorption coefficient at low ex-
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citation levels is taken to have the room-tempera-
ture value®® p'~0.2 cm/MW. As with one-photon
absorption, B8 is expected to decrease at high ex-
citation levels because of the dynamic Burstein
shift. The value of 8 can be calculated using Eq.
(27), where 8 and B’ are substituted for @, and o/, .
The two-photon absorption is then given by a,
=(1-R)P,8.

The free-carrier absorption is dependent on
the density of electrons and holes, and is given by

Qpc=0,n+0,p=0p o1, (28)

where 0, (1)=0,(T)+0,(T) is the sum of electron
and hole free-carrier absorption cross sections,
which can be estimated from Ref. 36. The carrier
density is given by Eq. (15) which, when Auger re-
combination is dominant and 7., «1, reduces to

n(2=0, T) z (g/73)1/3

n>n;

252 - 1/3
2hvyy hvys

where we can assume ng~1 and y,4(T) can be ob-
tained from the Beattie-Landsberg result.’” It
must be remembered that ¢, and g are functions
of n, since, from Eq. (27) they depend on the elec-
tron and hole Fermi energies.

The calculated variations of n, @, and T as func-
tions of time during the laser pulse are illustrated
in Fig. 2. In the first=~0.1 nsec of the pulse, the
carrier density increases rapidly due to two-pho-
ton absorption from the intrinsic thermal value
7;(300 °K)~2x10'® cm™ to the optically excited val-

1019
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| Ly

- < _ _
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TIME (nsec)
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expANDED 1 P~
FIG. 2. Calculated behavior of the carrier densityz,
total absorption coefficient az, and temperature7 vs

time during the laser pulse for irradiation of InSb by a
Q@ -switched CO, laser (10.6 um).

ue =1.9x10'7 em™ (which is limited by the dynam-
ic Burstein shift). At the same time, o, in-
creases from3® 16 cm™ to~150 cm™, due to the
increasing photoexcited carrier density. Since the
elapsed time is so short, no significant heating
has taken place. On a longer time scale the tem-
perature rises, causing the carrier density to
gradually increase because the degeneracy of the
electrons is lifted somewhat, making the dynamic
Burstein shift less effective. Once T reaches
=450 °K, n (and therefore a,.) begins to rise
sharply due to one-photon absorption. Because of
this increased optical absorption, the tempera-
ture rises rapidly to the melting point, which is
reached at the end of the 170 nsec laser pulse.
The importance of accounting for the “dynamic”
nature of the material parameters during the heat-
ing process is illustrated by this example.

Using the above expressions for a,, a,, and ap,
as functions of temperature in conjunction with
¢(T) from the literature,®® Eq. (25) was integrated
numerically to give L,~39 pm. The value of L3
is compared to ¢ in Fig. 2. Substituting L, into
Eq. (20) yields for the damage threshold P,=2.2
%107 W/cem?. The agreement with the experimental
value 4x107 W/cm? obtained by Kruer et al.*® for
the same pulse length is quite good when one con-
siders the number of “nonlinear” physical process-
es which were taken into account. Current uncer-
tainty in the high temperature and carrier density
behavior of 0,,, v, B, and @, is probably respon-
sible for most of the disagreement between ex-
periment and theory. The agreement should im-
prove as more extensive experiments are perform-
ed involving the various parameters which appear
in the calculations.

In order to more thoroughly test the present the-
ory, melting damage thresholds calculated using
Eq. (20) are compared in Ref. 22 with the available
experimental results for Ge, Si, InSb, and GaAs
over a wide variety of laser wavelengths and pulse
durations. Agreement is within a factor of two for
all cases considered, and is often much better. In
contrast to any previous formulation, the present
theory is seen to give a reliable description of
laser heating for a broad spectrum of materials
and experimental conditions.

VI. CONCLUSIONS

The physical processes involved in the conver-
sion of high intensity optical energy to lattice heat
have been considered in a theory for optical heat-
ing in semiconductors. The problem has been for-

‘mulated in terms of the coupled diffusion equations

for temperature and excess carrier density. For
the first time, closed-form solutions valid near
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the surface of the material have been obtained for
the general case where the optical and transport
properties vary with carrier density and tempera-
ture. The problem was made tractable through the
use of several assumptions which are reasonable
for a very wide range of experimental conditions.
This permitted the differential equations to be de-
coupled and solved independently. The solutions
give physical insight into the roles various mech-
anisms play in the heating process.

The importance of accounting for such nonlinear
processes as two-photon absorption, free-carrier
absorption, the dynamic Burstein shift, Auger re-
combination, and the temperature shift of the en-
ergy gap has been illustrated by considering melt-
ing in InSb due to @ -switched CO, laser pulses.
Good agreement between theory and experiment is
obtained. More generally, uniformly good agree-
ment is obtained when melting damage thresholds
calculated frc m the present theory are compared
to experimental results for a wide variety of ma-
terials, laser wavelengths, and pulse durations.
This agreement is expected to become even better
as the parameters used in these calculations are
measured more exactly at high carrier densities
and temperatures.

APPENDIX: NUMERICAL SOLUTION OF THE
CARRIER DIFFUSION EQUATION

To determine the accuracy of Eq. (15) as an ex-
pression for the carrier density at the surface of
an optically excited semiconductor, the general
carrier diffusion equation is solved numerically.
The numerical result # is then compared to the ap-
proximate result (which we denote 7) given by Eq.
(15). For convenience, the carrier density is as-
sumed to be much greater than »; for the high opti-
cal flux levels involved. Two-photon carrier gen-
eration and free-carrier absorption are also ne-
glected, since these effects are only important
when L a «1, the regime for which Eq. (15) is ex-
pected to be most accurate. Under these condi- -
tions, Eq. (15) may be written

no(1 =R)P G (F5'+75")™"
hv (L pa+1) ’

= (A1)

where

I:D.—: (D:,'—B)l/Z, ,7-;1 =yrﬁr-1:
and

73=s/Lp-

A tilde over a parameter indicates the value of
that parameter for n=# and T=T(z=0). Here »
=2, 3 corresponds to radiative and Auger recombi-
nation, respectively.
With the simplifications specified above, the car-
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rier diffusion equation (14) becomes

_De%n_(9Don\° _8D 8T n_no(1-R)Pe™™ n
8z° \@9noz) oT 0z 8z hy Ty

Do _ sn|=0=0. (a2)

0z
We wish to solve Eq. (A2) for the most general ¢
case in which 7,, D, and @ depend on carrier den-
sity, and a thermal gradient exists. It is imprac-
tical to solve Eq. (A2) for every possible function-
al form of these quantities. Rather, we choose
representative dependences which reflect the na-
ture of the variations observed experimentally,
but which require a minimum number of indepen-
dent parameters. For example, we assume the
carrier density dependence of the ambipolar dif-
fusion coefficient D to be D(n)=D(n/ii)*. The pa-
rameter ¢ can be either negative due to electron-
hole scattering or positive due to free-carrier
screening or degeneracy. The temperature depen-
dence of D can be assumed to follow an inverse
power law.

Since the optical absorption is intrinsic (e=a,),
the absorption coefficient in Eq. (A2) depends on
the carrier density primarily through the dynamic
Burstein shift. If we consider for simplicity a
case where the holes are nondegenerate but the
electrons are degenerate, we have from Eq. (27),
a(n)=al-f,(E,)]. For a“worst case” test of
Egs. (15), we consider the limit E,, ;T «< Ep,
since the variation of @ with» is much smaller if
either E, or kT is comparable to or larger than
the electron Fermi energy. For this case a(n)
becomes o’ exp((E, —Eg,)/kpT]. Introducing the
reduced Fermi energies n, =E,/k,T and 7,
=Eg,/ksT, a(n) can be rewritten @ exp(f, —n,)-

If we assume that the electron Fermi energy var-
ies approximately as the two-thirds power of the
electron density, the expression for o (z) becomes

a(n)=a exp{f,[1-(n/a)"]}. (A3)

The dynamic Burstein shift can be ignored by set-
ting the parameter 7, equal to zero.

Finally, we model the temperature gradient
term (6D/5T)6T/5z) of Eq. (A2). I surface heat-
ing is dominant, 57 /8z]*>° depends on the rate of
nonradiative surface recombination. The tempera-
ture gradient varies with depth approximately as
e*L'r, where L, is the thermal diffusion length.

If surface heating is unimportant, the thermal
gradient is governed by the optical absorption
depth and the carrier and thermal diffusion dis-
tances. In this case the gradient varies roughly

as exp(—az/y,), where 1<y, <Lpa+Lpa+l. In
order to account for both cases, we assume a gen-
eral temperature gradient of the form exp(-&z/y).
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The coefficient of 9%/8z in Eq. (A2) can then be
written:

D 3T _

5T o2 a@DTe 1, (A4)

where T" and y are adjustable parameters. When
surface heating is unimportant, neither I" nor the
product Ty should exceed 0.5.

We now introduce the variables x=Gz and y=n/i.
With the models for D, o, and 37/3z given above,
Eq. (A2) becomes

+ =X a+ 9
—yr1 &8 e (l) R

ax>

1 a(y) = - - & )
= 1 1)l /ale 7
m( 5 (A+R )L ,@+1)e Y]
with the boundary condition (Aa5)
x=0
2Ryt o,
x L&

where R =7;1/73 and a(y)/a is given by Eq. (A3).

Equation (A5) was solved numerically by com-
puter for the ranges of the seven independent pa-
rameters given in Table I. These ranges should
adequately cover most conditions likely to be en-
countered for real semiconductors at high excita-
tion levels.

The results of the numerical solutions indicate
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TABLE I. Ranges for the various parameters for
which Eq. (A5) was solved numerically.

r=2,3
0.01 <Lp,d<100
-0.3 <as<1l.0
0 <#,<15
0 <Ry<10
0 <TI<50
0.002<y<10

that for R <1 and I" <0.5 and I'y <0.5, or I's50
and I'y <0.1, the value of y at x=0 is between 0.8
and 1.2 for all values of the other parameters with-
in the range tested. Hence Eq. (15) approximates
the exact solution to the carrier diffusion equation
to within 20%, unless either a large carrier den-
sity gradient or a large thermal gradient is pres-
ent due to surface recombination. It was further
found that for R, as large as 10 and I" <0.5 and Ty
<0.5, Eq. (15) agrees with the numerical solution
to within a factor of 2. This indicates that Eq.
(15) is qualitatively reasonable even when surface
recombination is highly predominant. These re-
sults demonstrate that Eq. (15) satisfactorily de-
scribes the carrier density at the surface of an
optically excited semiconductor for a broad range
of physical parameters and excitation conditions.
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