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Effect of electron-hole scattering on ambiyolar diffusion in semiconductors
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The ambipolar diA'usion coefficient of a semiconductor in the absence of an external electric field is
calculated from the Boltzmann transport equation using Kohler's variational principle. For the regime
where electron-hole scattering is important, it is found that the ambipolar Einstein relation is not valid
unless a newly defined free-carrier "diffusion mobility" is employed rather than the usual "conductivity
mobility. "The distinction between the two mobilities is due to the different relative velocities of the electron
and hole systems which characterize the two cases.

I. INTRODUCTION

Recent experiments have shown that when laser
excitation is employed to inject high densities
of. electrons and holes into a semiconductor, the
mobilities of the carriers can differ significantly
from the values measured in the absence of opti-
cal excitation. This is due largely to electron-
hole scattering, since the excess carriers repre-
sent a high concentration of additional scattering
centers. In a dc electric field, e-h scattering
has the effect of decreasing the conductivity mo-
bility of both types of carriers, since the plasma
of electrons with an average velocity in one di-
rection exerts a drag on the plasma of holes
which is flowing in the opposite direction (and
vice versa). However, for ambipolar diffusion
the situation is quite different, since here the net
flow of electrons is in the same direction as that
of the holes. For example, if the electrons have
a higher average velocity than the holes, then
collisions between the two tend to speed up the
holes a.nd in some sense the hole "mobility" is
actually increased by the e-h scattering. These
considerations suggest that in cases where e-h
scattering is important, it may be necessary to
modify the usual form of the generalized Einstein
relation for the ambipolar diffusion coefficient

where n and p are the carrier concentration
and mobility, respectively, of carriers of the
type m, p —= &~ /k&T is the reduced quasi-Fermi
energy, and F„(/)„) is the Fermi integral of or-
der k.

In the following sections, the ambipolar diffu-
sion coefficient is calculated using Kohler's vari-
ational principle for the general case where e-h
Scattering is included. It will be seen that Eq. (I)
remains valid as long as p, is taken to be a newly

defined "diffusion mobility" p, , rather than the
more familiar conductivity (or drift) mobility p .
The effects of e-h scattering on both p, ~ and p, ~
mill be discussed through consideration of the
zero-order approximation to the exact result.
(The g defined below should not be confused with
the "ambipolar drift mobility, " which charac-
terizes the response of an electron-hole system
to both an external field and a carrier density
gradient. )

II. THE VARIATIONAL METHOD

Kohler's variational principle provides a meth-
od for solving the Boltzmann transport equation
to any desired degree of accuracy. The outline
presented in this section will be relatively brief,
since the formalism has been discussed in detail
elsewhere. ' McLean and Paige were the first
to extend the variational method to include elec-
tron-hole scattering. " Appel' ' also considered
this problem employing an e-h scattering potential
which is more physical than that used by McLean
and Paige. Meyer generalized this work to in-
corporate the effects of interband hole scattering,
electron mass anisotropy, and wave-vector-de-
pendent screening using the random-phase approx-
imation (RPA) ' dielectric constant. The electron
and hole mobilities obtained experimentally by
Meyer and Glicksman' for a broad range of photo-
excited carrier densities and temperatures agree
well with the results of the latter theory.

In the present treatment, isotropic and para-
bolic energy bands will be assumed for both elec-
trons and holes. For brevity, multiple hole
bands and scattering between carriers of the same
type will not be considered, although these effects
can be added straightforwardly. ' ' The magnetic
field and temperature gradient are assumed to be
zero. Under these conditions, the Boltzmann
equation for the net change with time of the dis-
tribution function f„(v,) can be written
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where v1 is the velocity of particle 1 in band m.
The first two terms on the right side of Eq. . (2)
represent the tendency of an electric field or car-
rier density gradient to perturb the distribution
function f (v, ) from its quasiequilibrium value

fp (v,). The third term represents the tendency
of collisions with phonons, impurities, other car-
riers, etc. to restore the quasiequilibrium distri-
bution. For a dc electric field and quasiequi'J, i-
brium, (Bf /Bt)„,-0.

If the electric field and carrier density gradient
are both assumed to be in the z direction, one has
in the small field limit~

where E is the electric field, 4:,(=-,'m v2/k&T) is
the reduced energy of the particle, m is its ef-
fective mass, q„ is the sign of its charge (+1 for
holes and -1 for electrons), and fp (v,)(= [1
+ exp(4;, —q„)] ) is the Fermi distribution function.

The effect of collisions may be written
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where L', I ', I.' represent scattering opera-
tors for phonon, impurity, and electron-hole
scattering, respectively. For mechanisms invol-
ving only a single carrier such as simple phonon
or impurity scattering, L has the form

3
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where the significance of C (v;) is given below and
W' (v2-v2) is the transition probability for a
carrier of type m to be scattered from the state
v1 to the state v2 by the mechanism i. Similarly,
for processes such as electron-hole scattering
which involve two particles, I can be written'

L (v2) =
Jl u,h((v2-v2), (vp-v4))exp(&2+ e3 2) Q)kg T 274-5

Xfpm(V2)fpm(V2)f~(V3)fp„(V4)[4m(V2) 4m(V2) + 4&(V3) —C'„(V4)] sinxdydyd v2 .

The quantity o.'m, ((v2-V2), (v3 v4)) —Q h(v2 v2 X, y)
is proportiona'1 to the electron'-hole scattering
cross section (see Ref. 12), where y and y are the
polar and azimuthal angles between the vectors
v1 V3 and v2 —v4. The subscripts 1 and 2 rep-
resent states for particles of type m while 3 and
4 are states for type n. We will use the conven-
tion that if m represents carriers of one type,
then n must refer 'to carriers of the opposite type.
That is, (mn) -(eh) or (he), but not (ee) or (hh).

The C „(v,) which appear in Eqs, (6) and (7) are
related to the effect of the electric field and car-
rier density gradient on the distribution function
f„(v,):

f2„(v,) =-f (v, }-f, (v, ) =-
k
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If the perturbation f,„(v,) is sufficiently small, one
may assume it proportional to the terms of the
Boltzmann equation which bring it about, (Bf„/
Bt)«.„+(Bf„/Bt)„~. From Eqs. (3) and (4), it
follows' that 4 must have the form

(10)

andthe sum isterminated atfinites„ thenthe c,
are variational parameters which can be adjusted
to give the best solution to Eq. (2).

Operating on Eq. (2) with

3
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and setting (Bf„/Bt)„t——0, one obtains the set of
2 x s, simultaneous linear equations:
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where 3„(e;) may be thought of as an energy-de-
pendent relaxation time, whose functional form
must be determined through solution of the Boltz-
mann equation. If & is expanded
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where

&„=q (e&- q„ksTB2)„/Bz), (12)
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In order to evaluate the integrals which appear in
Eqs. (18) and (19), one must characterize the
cross sections for the various types of scattering
events. Since this depends on a number of con-
siderations which are outside the scope of the
present paper, these terms will be left in their
general form. The reader should see Refs.. 11,
13, and 14 for evaluations of the electron-hole
scattering integral, q. (19), in various limits.

The Ritz method can be applied to Eq. (11) to
yield the c„,. It is then apparent from Eqs. (8)-
(10) that this is equivalent to having solved the
Boltzmann equation for f~„(v&). To illustrate, we
note that the current density for particles of type
m due to the combined electric field and carrier
density gradient is equivalent to the average over
the distribution f (v, ) of the quantity eq v„:
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Prom Eqs. (8), (9), and (13) and the result that
the integral over the quasiequilibrium distribution
function fo (v&) vanishes, this becomes
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(23) and H = H„/H, . -

III. CONDUCTIVITY AND DIFFUSION NOBILITIESAlthough the physical interpretation of the quan-
tity p, has not yet been established, it will be
seen below that it corresponds to either the con-
ductivity or diffusion mobility, depending on the
relation between the electric field and the carrier
density gradient.

Combining Eq. (23) with the Ritz method solution

Equation (24) is equivalent to an exact solution
of the Boltzmann equation if s1-~. In practice,
successive approximations usually converge quick-
ly, so that excellent results are obtained when only
a few low-order rows and columns are retained.
In the analysis presented below, the effects of
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electron-hole scattering on the mobility of each
will be illustrated through consideration of the
s1 ——0 approximation (which typically gives an
error of no greater than 20%). In this limit, Eq.
(24) becomes

(8/12 )& p[P p(dOp+gOO)+ (H /H }P pI2pp ~

(dpp+ gpp)(dpp+ gpp }—I pp"I pp

(26)

Equation (25} is more easily interpreted if several
substitutions are made. From conservation of
momentum, it can be shown that vp —vp=(m /
m„)(v1 —v2), which with Eqs. (16), (IV), and (19)
gives hpp =I1pp =—(1Ã /ill )gpp, Equation (13) can
then be used to give
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and that the electron current density is equal and

opposite to that of the holes

2g» 2Q» ~ (sl)

In other words, the electrons and holes diffuse
at a mutual "ambipolar" rate due to the presence
of the induced electric field. To determine the
magnitude of eF, we note that Eqs. (12), (22),
and (30) yield

eF kz T-B2)h/Bz n, l1,
eF+ k//T&lj, /Bz nhp„' (32)

where i1D and i1„are given by Eq. (23). (Because
Rt-l, p,, and p,„are different from p, and p,„ob-
tained above. ) Equation (32) can be rewritten to
give the induced field in terms of p,, and pD„,
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is the zero-order mobility one obtains if electron-
hole scattering is ignored (that is, if J'"-0). Un-
til 8 =H„/H, is specified, the /1„cannot be explic-
itly determined from Eq. (26).

We now calculate the conductivity mobility,
which is defined

~C 2m» (26)
nme+ av)m/a» =o

From Eqs. (12) and (22) one finds that i1„ is given
by Eq. (23), which has been shown to reduce to
Eq. (26) in zero order. It is evident from Eq. (12)
that Bli /Bz=0 implies H„=-H, or R=-I. Thus,
one obtains for the zero-order conductivity mobil-
ity

c „p 1+(n.—n„)i1„PZ"
I+(n„lh'+n„P, „P)J'" ' (29}

Since J'" is positive definite, we see that electron-
hole scattering always has the effect of decreasing
the conductivity mobility for both electrons and
holes. Equation (29) is equivalent to Eq. (26) of
Appel. 3

We now turn to the case of carrier diffusion in
the absence of an external field. If, for example,
n, =n& and p, & p» the electrons will have a ten-
dency to diffuse more rapidly than the holes. The
resulting charge separation then causes an induced
electric field which holds back the electrons and
pulls the holes forward. In fact, it can be shown
that for most cases of interest it is reasonable
to assume that the electron density gradient at
a particular point in space is equal to the hole
gradient

, With Eq. {33), the electron current density can
now be evaluated in terms of p,, and p,~. With
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If the ambipolar diffusion coefficient is defined in
the usual way, D=j„/(eBn/Bz), one finally ob-
tains

~BT +1/2{ 4) ~ +1/2(lh) i e i"h
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{36)
which is equivalent to the conventional form, Eq.
(1), except that the "diffusion mobility" i' must
be employed rather than the conductivity mobility.

Evaluation of p involves solving three equa-
tions [Eq. (32), Eq. (24) with m =e, and Eq. (24)
with 1/2 = kj for three unknowns (It, i1, , and p„).
To illustrate, we again approximate Eq. (24)
with the lowest-order result, Eq. (26). Solution
of the equations then yields
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First we note that although the diffusion and con-
ductivity mobilities are equivalent when electron-
hole scattering is unimportant (since they both
reduce to p, „), the two are distinct for any finite.
J'". It is also apparent from Eg. (38) that if n,
=n„, then p, reduces to p' in zero order even
for large O'". This follows from the assumption
that j„=-j„~which implies that when n, =n„ the
average velocity of the electrons is equal to that
of the holes. In lowest order, no current is gained
or lost due to scattering by a system which is
traveling in the same direction at the same velo-
city.

Now consider the effect of electron-hole scat-
tering on the diffusion mobility when n, 4n„. For
definiteness, we consider Eq. (38) for electrons,

If n„&n„ the electron mobility is decreased by
electron-hole scattering. Since the electron and

hole currents are equal but opposite, the average
velocity of the holes must be smaller than that of
the electrons. The drag due to scattering from a
slower system. causes a decrease in the electron
mobility. On the other hand, if n, & n„, the holes
have a higher average velocity and the scattering
will actually increase the electron mobility.

It has been demonstrated that when the conduc-

tivity mobility is significantly affected by electron-
hole scattering, p. rather than p, ~ should be used
in calculating the ambipolar diffusion coefficient
from the generalized Einstein relation. If n, =n„,
it is often reasonable to employ the conductivity
mobility appropriate for low carrier densities,
since e-h scattering does not affect the diffusion
mobility in zero order. It should be remembered,
however, that p„ from Eq. (27) is not always
equivalent to p. at low carrier concentrations,
since the effects of free-carrier screening or
degeneracy can significantly alter the phonon and
impurity interactions which determine p, .

IV. CONCLUSIONS

Kohler's variational principle has been employed
to solve the Boltzmann equation for the ambipolar
diffusion coefficient of electrons and holes in a
semiconductor. It has been shown that in the
regime where electron-hole scattering significant-
ly affects the transport properties, the ambipolar
Einstein relation is inappropriate unless a newly
defined "diffusion mobility" is employed rather
than the more familiar conductivity mobility. The
difference between the two mobilities has been
analyzed in lowest order of the variational method.
Physically, the two cases are characterized by
differing relative velocities of the electrons and
holes.
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