
P H Y S I CA L RE VIE% B VOLUME 21, NUMBER 4 15 FEBRUARY 1980

Effect of dimensions on the vibrational frequencies of thin slabs of silicon

G. Kanellis, * J. F. Morhange, and M. Balkanski

(Received 23 July 1979)

Calculated frequencies of the long-wavelength vibrations of thin slabs of silicon parallel to the (111)plane
show that the in-plane modes decrease almost exponentially in frequency with decreasing thickness of the
slab. The out-of-plane modes have frequencies lower than the in-plane modes and decrease in the same
fashion as the slab becomes thinner. This result is consistent with the observation that the Raman-active
mode shifts toward lower frequencies in laser-annealed, ion-implanted silicon when the recrystallization is
not perfect.

I. INTRODUCTION

In recent years growing interest has developed
in materials that are not infinite crystals. Poly-
crystalline semiconductor heterostructures and
materials have given rise to a great deal of funda-
mental work related to some of their exceptional
properties. Amorphous and polycrystalline states
are successive steps in the recrystallization pro-
cess of ion-implanted materials when specific
doping is intended for some particular use.

To account for the observation' that in laser-
annealed ion-implanted silicon, depending on the
degree of recrystallization, the Raman-active
mode shifts from 520 cm ', the frequency of the
I"-point optical mode in a perfect crystal, to
516 cm ', we attempt to attribute this shift to the
effect of dimensions on the vibrational properties
in small crystallites of imperfectly recrystallized
silicon.

It is now well established that real crystals, '

when their dimensions are relatively small, show,
in addition to the normal modes of the infinite lat-
tice, surface modes and effects of dimension, ' when
the dimensions become extremely small only the
surface modes persist.

In ionic crystals of finite thickness, one finds
two classes of modes: Those of the oscillatory
spatial dependence and frequencies equal to the
normal transverse- (TO) and longitudinal-optical
(LO) frequencies at q=0, in an infinite crystal,
and those with an exponential dependence on dis-
tance across the slab and frequencies between
coLQ and (dTQ More recent calculations' of the
long-wave optical vibrational modes in finite
ionic crystals of arbitrary shape have led to the
same conclusions: In finite specimens there
exist transverse and longitudinal bulk modes as
well as surface modes which are neither trans-
verse nor longitudinal and which have interme-
diate frequencies.

When the expansion of the displacement in

plane waves is not used in the calculation of the
vibrational frequencies of finite one-dimensional
lattices„one shows that the free ends produce
"surface" modes of vibrations with frequencies
in the forbidden gap between the optical and
acoustical branches.

Surface modes and size effects have been cal-
cul.ated for many different systems. In a semi-
infinite lattice with the harmonic approximation,
the normal modes are classified into "bulk" and
"surface" modes. The surface modes exhibit an
exponential decay of their amplitude away from
the free surface because they have a complex
wave-vector component normal to the surface.
The frequencies of these modes lie in intervals
which have, at most, their end points in common
with intervals where bulk modes occur at the
same transverse wave vectors.

Calculations for the surface mode in diamond
and zinc-blende lattices' have shown that the de-
tails of the modes depend strongly on the struc-
ture of the surface: A very detailed knowledge
of the geometric surface structure is necessary to
make definite statements on frequencies of sur-
face modes.

Our purpose here is to account for the variation
of normal-mode frequencies with dimensions in a
polycrystalline structure. A detailed calculation
is impossible at present because of the poor
knowledge of the exact structure of the interfaces.
Therefore we believe that at this stage a useful
exercise would be to give the general features of
the observed correlation between the frequency
shift of the Raman-active mode and crystallite
dimensions on the basis of a very simple model.

II. THEORETICAL MODEI.

For the purpose of examining the effect of the
finite size of a homopolar crystal on the fre-
quencies of the vibrational modes, we consider
the simplest case, e.g., the case of a thin slab
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extended to infinity in two directions. The slab
is considered to consist of a number of layers,
each of which has the thickness of a unit cell. In
such a structure, the periodicity of the lattice
is conserved along the two directions, and, con-
sequently, the atomic displacements parallel to
these directions can be expanded in plane waves,
and the periodic boundary condition can be ap-
plied. Along the third direction neither of, the
above considerations is possible, and the sequence
of cells along that direction is treated merely as
one unit cell. As a result, the number of inde-
pendent interactions increases considerably, for
we have to account for interactions between plane
lattices rather than three-dimensional ones. In
fact, for a slab consisting of N unit-cell layers
with n atoms per unit cell, the dynamical matrix
needed to provide the vibrational frequencies is of
3nNx SnÃ dimensions. Associated with the above
structure is a two-dimensional reciprocal lattice
which displays a, symmetry depending upon the
orientation of the slab in the three-dimensional
lattice. The corresponding two-dimensional
Brillouin zone is a section of the three-dimen-
sional one. Some reduction of the above-men-
tioned dynamical matrix for special points of the
Brillouin zone may be possible if the orientation
of the slab is chosen to be across directions of
the crystal of high symmetry.

For the fcc lattice in which the group IV elements
(Fig. I) crystallize, the (lll) plane is favorable,
for it displays a relatively high symmetry and,
moreover, the plane lattices parallel to that plane
are described by two of the three unit vectors of
the three-dimensional lattice. A new coordinate
system Ox'y'g' chosen so that the Og', Oy' axes
are coplanar with the slab while the Oz' direction
is perpendicular to it, e.g. ,

a1 a2 ~r ai a2 ~ i a1 a2

la, —a, l' la, +a, l' la, xa I
'

where ai, a2 are the primitive lattice vectors. .
The new coordinates of the atoms are given by

the relations

y' =H y

where H is the transformation matrix

1/2 31/2 0

H=6 '" 1 1 2

21/2 21/2 21/2

If the space group G of the original (three-di-
mensional) structure is symmorphic a similar
transformation of the form

R]——HR,.H

provides the new representations 8,' of the group
elements. If the initial space group is nonsym-
morphic, the associated translation vector v has
to be transformed accordingly:

v'=Hv .

S,. 0,
,
0 0 1

where S, is a 2X2 matrix.
The group G' of the so chosen elements is the

"space" group of the new two-dimensional struc-
ture (slab) and can be used to provide the form
of the force-constant matrices and the relations
between the elements of the dynamical matrix. '

The elements of the dynamical matrix are de-
fined by

Among the rotations in the new representation
8,'. we choose only those which are associated with
a. translation v' whose z component is zero (if
any), and which have the form

0

D I
—exp —gg x
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[
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FIG. 1. Schematic representation of the face-centered-
cubic lattice.
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where the wave vector q refers to the two-dimen-
sional Brillouin zone, and

(7a)

onal form

I
, I, i,

0

describes the points of the two-dimensional in-
finite lattice and

(7b)

D'(o) = rD(o) r-', (9)

where T is an orthogonal matrix of the same or-
der as D and whose elements are

(f, iP
~s~

~

as ~,r, ~as"
&)

Using the corresponding point group Go of the
above-defined space group G', we find that the
interactions between the plane lattices are ex-
pressed for q=0 by a matrix

(1o)

(l, f,')

i) )'j
of the form

B -B
Di' = B A B-~E3 ~3

()'s

describes the positions of the atoms within a
"unit" cell, consisting of the sequence of unit
cells of the original structure along the direction
a3 ~

Ip what follows we are merely interested in the
long-wavelength vibrations, e.g., q-0, so the ex-
ponential factors drop out.

The position vectors of the atoms and the dy-
namical matrix can be expressed in either of the
above-mentioned coordinate systems Oxyx («-
primed symbols} or Ox'y'z' (primed symbols) by
the same relations (6 and 7), provided the lattice
primitive vectors a, are expressed accordingly.
In the system Oxyz these vectors are given by the
relation

(0j) 0 1 1 %g

a2 ———1 0 1 y()

l
2 2

a3 1 1 0, zo

where g is the lattice constant.
The two representations of the dynamical ma-

trix for q=0 are related by the similarity trans-
formation

0

This form implies that the solutions for any slab
having the above orientation are separated into
two groups, one doubly degenerate containing the
solutions corresponding to modes which vibrate
in the two directions where the slab extends to
infinity (xy modes), and one nondegenerate con-
taining the solutions corresponding to vibrations
perpendicular to the surfaces of the slab. This
reduction by a factor of 3 of the dynamical matrix
due to the orientation of the slab simplifies the
computations.

For the purpose of comparing the frequencies of
the above two types of solutions for a slab with
the frequencies of an infinite lattice in the case of
silicon, we calculated these frequencies on the
basis of the following valence-force-field model.
We assume only first-neighbor central interac-
tions (force constant X) and bond-bond interac-
tions of the type proposed by Clark, Gazis, and
Wallis' (force constant y).

It is well known that such a model is inadequate
to reproduce with accuracy the experimentally'
found dispersion curves for Si, because even a
valence-force-field model with six parameters
describing forces extended to the third neighbor
gives higher frequencies for the acoustical
branches. ' As has been shown by Weber, ' Cou-
lomb interactions through charges localized on
the bonds have to be introduced to describe pro-
perly the lowering and the flatness of these
branches.

Nevertheless, we think that the proposed model
is sufficient for the purpose of studying to a first
approximation the effect of the finite size of the
slab on the frequencies of vibrations. According
to that model, the potential energy of the lattice
is written as

4 =—Q X(dr, ))'+—
) Q yro(d8;, ;.)

f jk'
(13)

where the first sum extends over all first-nearest
neighbors and the second sum over all angles of
bonds for each atom.

Because the forces considered are extended
only to second-nearest neighbors, it is evident
that the interaction matrices

Using the transformation (9) we obtain the diag-
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between the same pair of atoms k,k' are identical
with those for the infinite structure, if at least
one of the atoms lies at a distance from the sur-
faces of the slab greater than the thickness of the
primitive unit cell measured perpendicular to
the surface, ' i.e., only the forces exerted on the
atoms on the first two lattice planes from the
surfaces are perturbed if no change of equili-
brium positions of the atoms due to the presence
of the surface is assumed.

Finally, we note that the Brillouin zone corres-
ponding to the slab structure is a section of the
three-dimensional one for the fcc lattice through
the center perpendicular to the vector ba.

III. RESULTS AND DISCUSSION

The values of the two parameters involved have
been obtained by a fitting to the frequencies of the
TO modes at the points I', X, and L of the infinite
structure. The experimental values of these fre-
quencies, the calculated ones, and the values of
the parameters are given in Table I. The reason
for using only the frequencies of the optical modes
is that the frequencies of the acoustical modes at
the points X and L are lower than predicted by
such a model as discussed in the preceeding para-
graph.

Using these values we have calculated the fre-
quencies of the vibrational modes for slabs having
thickness from 1 to 50 unit cells. The results
obtained can be described as follows.

The xy modes, e.g., modes of q =0 vibrating
parallel to the surface of the slab, are grouped
in two regions separated by a large gap which is
almost equal to the gap between the TA and TO
phonons of the point I of the three-dimensional
structure. This means that all these modes
should belong to the two branches of transverse
phonons across the A direction. This is parti-
cularly true in the limit of a large number of
cells across the z direction. For a slab having
the thickness of only one cell, the gap is reduced
by approximately 2 cm ' from the three-dimen-
sional one.
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All the modes of the upper group are of optical
type, e.g., every pair of atoms in each cell moves
in antiphase, while all the modes of the lower
group are of acoustical type. The distribution of
the "optical" modes shows two peaks near the
limits of the frequency interval in which they are
contained (Fig. 2). The distribution of the acous-
tical modes is rather constant, except near the

TABLE I. Transverse-optical frequencies for the
points I', I., and X in the Brillouin zone (BZ). 6O s s I I I I I t i I ~ ~ a I l s s

10 15

Point in the BZ
TO- frequencies(cm-~)

Experiment Calculated Thickness (number of cells)

520
491
462

520
491.5
461.3

Values of parameters used in the calculations:
X=1.296 mdyn/~, y =0.047 mdyn/~.

FIG. 3. Frequency variation of the higher-frequency
optical mode for the xy modes as a function of the num-
ber of cells, i.e. , thickness of the slab, rising exponen-
tially toward the limit frequency of the I'-point TO mode
of the three-dimensional lattice. The higher-frequency
z mode shows the same variation although lower in fre-
quency.
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upper end of the interval where it shows a peak.
The higher frequency of the optical modes cor-

responds to the one of the I' point. For a slab
having the thickness of only one cell, this fre-
quency lies near the peak of the amorphous ma-
terial spectrum and varie8 almost exponentially
with the thickness towards the I" frequency of the
infinite lattice (Fig. 3).

The z modes, e.g. , the modes whose displace-
ments are along the z axis, have frequencies
which are distributed between zero and the I'-
mode frequency, in two groups with a gap be-
tween them almost equal to the gap between the
LO and LA frequencies of the point I of the three-
dimensional lattice.

Again the vibrations of the higher-frequency
group are of optical type and belong to the LO
branch of the perfect crystal, while the vibrations

of the lower-frequency group are of acoustical
type, except the one with the higher frequency in
this group which is again of optical type.

The distribution of the z modes of both types
at the corresponding intervals is similar and is
almost constant over the frequency range, showing
only a peak at the upper end of the range.

The higher-frequency optical mode corresponds
again to the 1-point optical mode of the perfect
crystal. The dependence of its frequency on the
thickness of the slab is similar to that of the
corresponding gy mode with the difference that the
values are lower (Fig. 3).

Weighted frequency distributions of gy and z
optical modes with a weighting factor inversely
proportional to the thickness of the slab are
shown in Fig. 4. For the case of very thin slabs
1 to 5 unit cells thick [Fig. 4(a)], the frequency
distribution shows a pronounced maximum be-
tween 480-490 cm ' near the maximum of the
spectrum of amorphous material. Another less
pronounced maximum occurs near the upper end.
For the case of thicker slabs (11-15unit cells
thick) the frequency distribution of optical modes
changes, showing the higher-frequency maximum
more pronounced than the lower-frequency one
[Fig. 4(b)]. Finally, the frequency distribution
of even thicker slabs (21-25 unit cells thick)
exhibits analogous features except that the higher-
frequency maximum becomes more pronounced,
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FIG. 4. Weighted frequency distributions of xy repre-
sented by O and z optical modes represented by ~ with
a weighting factor inversely proportional to the thick-
ness of the slab. Number of modes per unit cell as.a
function of frequency. (a). For very thin slabs: 1 to 5
cells thi:ck. (b). For slabs having a thickness of ll to
15 cells. (c). For slabs 21 to 25 cells thick.
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FIG. 5. Raman spectra of laser-annealed ion-
implanted Si from three regions with partial re-
crystal. lization: (a), (b), and (c) partially recrystaQized
with grains of increasing size.
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and the one at lower frequency is shifted to
higher frequencies.

These features are exactly what has been ob-
served in the Raman spectra of laser-annealed
ion-implanted Si, in the intermediate recrystal-
lization stage. These spectra can be explained
if a distribution of very small crystallites of dif-
ferent sizes is assumed. As the distribution of
crystallites moves towards larger sizes, the ob-
served spectrum shifts from the one of the
amorphous material to that exhibiting a second
peak near the upper end, superimposed on the
amorphous material spectrum and finally, to a
spectrum showing only one peak of practically
the same frequency as that of the perfect crystal,
followed by a tail towards lower frequencies.
This experimental results are summarized in
Fig. 5.

parallel to the (111) plane, on the basis of a very
simple va3ence-force-field model with two para-
meters for the purpose of studying the effect of
the finite thickness of the slab on the vibrational
frequencies of small homopolar crystals. We
found that all of the modes belong to the certain
branches of phonons of the perfect crystal, but
have frequencies generally lower, depending on
the thickness of the slab. Weighted frequency
distributions of the optical-mode frequencies for
slabs with different thicknesses display the main
features of the Raman spectra of laser-annealed
ion-implanted silicon when the recrystallization
is imperfect.
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