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Calculation of structurally related properties of bulk and surface Si
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The self-consistent pseudopotential method is applied to study the bulk and surface structurally related

properties of Si. Equilibrium configurations are determined by minimizing the total energy of the system;
the calculated bulk properties and the surface relaxation of Si are found to be in good agreement with

experiment. The surface energy and the surface reconstruction of Si are briefly discussed.

I. INTRODUCTION

Structural properties of Si involving the total
energy have been studied extensively using the
pseudopotential method. ' ' Among these proper-
ties are the equilibrium lattice constant, crystal
energy, cohesive energy, bulk modulus, and the
stable crystal structure. On the other hand, al-
though the surface structure of Si and the struc-
tural energy gained in the surface formation have
drawn considerable attention, ' ' accurate calcula-
tions are difficult and, hence, rare. In fact, the
present work represents the first self-consistent
attempt to calculate the total energy of both bulk
and surface Si. A momentum-space formalism
derived previously" has been used to simplify the
computational procedure. The only input is the
ionic pseudopotential" obtained by fitting to atomic
spectra. Although this pseudopotential is a local
version of the more accurate nonlocal pseudopo-
tential, the agreement between the present local
calculation and experimental data is satisfactory
for most properties of bulk Si.

The calculations presented here of the total en-
ergy of the unrelaxed and relaxed surface predict
an inward relaxation of -0.16 A for the Si (111)
surface, in good agreement with experiment. "
There is no essential difficulty in calculating the
surface energy, but we have found that a much
bigger unit cell (and, hence, more computation
time) is required to obtain an accurate estimate of
the surface energy. Determination of the equili-
brium surface reconstruction by minimizing the
total energy of the system does not seem possible
at present. In par ticular, the required matrix
size is unmanageably large for the reconstructed
geometries (e.g., for the Si 7&7 surface). In ad-
dition, there are many possible configurations of
reconstruction to be tested (unless the calculation
is restricted to comparison among a few simple
configurations as was done successfully by
Chadi"). A more difficult point is the lack of de-
tailed knowledge of the surface energetics since
surface reconstruction is known to be temperature

dependent and sensitive to environment. ' The ex-
perimental temperature dependence indicates that
the reconstruction probably involves an energy
gain of the order of 0.01 eV per surface atom be-
tween different configurations; calculations of this
accuracy for the surface cannot be claimed at
present. The question of the reliability of the
pseudopotential method in studying the phase sta-
bility is also discussed in the text.

The rest of this paper is organized as follows:
The calculational procedure of the self-consistent
pseudopotential method is briefly described in
Sec. II, and the total energy formulas derived in
Ref. 11 are given. The results of the bulk and
surface Si calculations are presented in Sec. III
and Sec. IV, respectively.

II. CALCULATIONAL PROCEDURE

The self- consistent pseudopotential method has
been described in detail elsewhere. " Self-consis-
tency here means the, self-consistent response of
the valence electrons to a given structure of ions.
In the present calculations, self-consistent iter-
ations continue until the screening potential is
stable within 10 Ry together with the same degree
of stability fear the total energy. For surface cal-
culations in Sec. IV, the criterion is somewhat re-
laxed to -10 ' Ry.

The local pseudopotential of Si used here is

U'„(G)=—', (cosa, G+ a,)e'4a4, (1)

where a, = —1.1463 (for the bulk with a, = 5.43 A),
a, =0.79065, a,=-0.35201, and a, = -0.01807,
respectively. Rydberg atomic units are used
throughout the paper. This pseudopotential for
Si has been used successfully for various solid-
state calculations. " The total energy per at0~ is"
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where Q„ is the atomic volume, Z is the valency,
the G's are reciprocal-lattice vectors, and S(G)
is the structure factor. g,. (k,. + G), V„(G), p(G),
p, „(G), and U„(G) are Fourier transforms of the
electron wave function, the Hartree potential, the
total (valence) charge density, the exchange-corre-
lation potential, and the local pseudopotential. The
index i represents both the wave vector k,. and band
index yI and runs over occupied states of the val-
ence electrons. n, and yE g~ are"

87TZ 1 2Z
o. , =lim U„(G)+ —, = U (r)+—d'r,

a-0

where the R„'s are lattice vectors to ionic sites.
An alternative form for the total energy is"

R.,a=+ c; —Q„&g V (G)p(G)+4+ v.„(G)p(G))
G&0 G

+ Q. ~Z + yE gd (5)

where the e,. 's represent the eigenvalues of the
valence electron wave functions. n,Z is calcu-
lated and shown in Table I for typical pseudopo-
tentials of Si appearing in the literature. ". " For
nonlocal pseudopotentials, the average of the s
and p pseudopotentials is given. Note that the
choice of the local part from the nonlocal pseudo-
potentials is not unique as discussed in Ref. il.
Not all the pseudopotentials derived from the
atomic properties can be used in the momentum-
space formalism. For example, u, for the
Simons- Bloch pseudopotential" diverges (unless
an artificial cutoff of the 1/r' tail is introduced)
because of the unphysically long-range character
of the 1/r' potential added to —2Z/r. The rela-
tively large fluctuation of o.',Z (-1 Ry) among dif-
ferent pseudopotentials does not invalidate the

TABLE I. Typical ionic pseudopotentials of Si. &&Z is evaluated for these pseudopotentials (Z=4).

Reference

SCLC a~
2 [cos(a2q)+a3]exp(a4q )

Pseudopotential
&&Z (numerical value
in Ry; ata, =5.43 A)

1.433 17

AHb
3/2 3/2 2

I

0.990 60

FK

Ashcroft

Heine

e2 Z'e ~ V&'Y3——(Z' —Q+Qe ") + — exp[-V'(Q/Z) &r]+ =- exp[-(p r /2)l(»)3g2

0,
U(r) =(

r
: Vp coskr+ Cp r & r,

U(r) =(
r&r

QA)P), r&r, —
U(r) =(

1.652 93

1.392 12

1.518 58

Simons g

Z unger- Cohen h

~ &~&r
U(r) = — +~
(first-principles pseudopotential) 1.962

Reference 12. This is used in the present calculations.
Reference 13. This gives the smallest &&Z, i.e., it is most attractive.
Reference 14. Z' —Q =4 bere.
References 2 and 15. We used an unadjusted r in Ref. 2.
References 3 and 16. Cp and Vp are not given in Ref. 3.
Reference 17. The given value is the average of the 8 agd p pseudopotentials.

g Reference 18. This pseudopotential cannot be used in our scheme as discussed in the text.
Reference 19. The given value is the average of the 8 and p pseudopotentials. The unusually large 0.'&Z originates

from the y behavior near y = 0 typical for any ab initj0 pseudopotentials.
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pseudopotential scheme. For example, the pseu-
dopotential used by Zunger and Cohen" has a very
strong repulsive core, hence, a large n,Z, but its
major effect is a rigid shift of the band structure
downward with respect to the average potential. "
Therefore, P, e,. + n,Z is insensitive to the pseu-
dopotentials used as long as they are not patho-
logical. y~„« is readily available in the litera-
ture. ' ym „d's for representative structures nor-
malized to one electron per atom are listed below:

y &~~'"4~ = -5.386 80/a, = —1,670 8 5/r„

ys„s~ 'f ' —-4.584 88/a, = -1.791 75/r, ,

ys~z'b"' ——-3.639 24/a, = —1.791 86/r, ,

yE sz~"~' = —3.241 87/a= -1.791 68/r, ,

ys„~~'""'"s"' ———5.524 08/a= -1.773 02/r, ,

(6)

(7)

(8)

(9)

where a, is the lattice constant of the cubic system.
c/a= v'8/3 and 0.554 are assumed for the hcp and
white Sn structures, respectively. Values for the
diamond, fcc, and bcc structures are quoted from
Ref. 20 [y(diamond) can be calculated from the re-
lation y(diamond} = y(fcc) + y(bcc) —y(sc) for the
same a,], and values for the hcp, white Sn, and the
slab structure (appearing in the surface calculation
in Sec. IV) are calculated analytically using the
method of Ref. 20.

Ten special points" in the irreducible Brillouin
zone (, of the Brillouin zone} are sampled in the
bulk calculation for the diamond structure and
equivalently for other structures. Stability of the
summation over R,. is tested by comparing the re-
sults with 34 evenly spaced points using the Gilat-
Raubenheimer scheme. " For surface calculations,
18 special points" in the irreducible zone (-' of the

12
whole zone) are taken and tested against 28 evenly

spaced points. Three or four iterations are suffi-
cient to achieve the desired self-consistency of
bulk Si starting with the empirical pseudopotential
used in Ref. 12. In the bulk calculation, we in-
clude plane waves up to 6.4 Ry in kinetic energy
in the basis set and another set of plane waves up
to 12 Ry through Lowdin's second-order perturba-
tion scheme. '4 These numbers correspond to -80
plane waves and another -100 plane waves in the
basis set. The criterion is relaxed to 2.7 Ry and
5.5 Ry in the kinetic energy for the surface calcu-
lation.

III. BULK Si

The results for bulk Si are listed in Tables II—
IV. A portion of these results has been reported
elsewhere. " Before proceeding to the discussion
of the results, it is helpful to illustrate the validity
of Eq. (2) or (5) in a somewhat more physically
transparent" way. We f irst calculated the total
energy of the Si atom in real space using the same
pseudopotential as used in the bulk. In this case,
terms such as o., and yE„sz do not appear (Table
II). The total energy of the bulk is then calculated
with a large lattice constant (a, = 10.6 A) using Eq.
(5). This should yield the atomic total energy in
the limit of a, =~. u,Z and yE„„~, which are arti-
facts of the periodicity introduced deliberately to
facilitate the momentum-space formalism, still
have sizable contributions at a, =10.6 A, but the
total energy of this system converges to the total
energy of the atom to within 0.04 Ry. This repre-
sents evidence of the validity of Eq. (2) or (5).

The total energies of Si for different lattice con-
stants and n's in the Xn scheme are listed in
Table HI. The value n = —', corresponds to Kohn
and Sham's" choice, and u = 1.0 is Slater's" value.

TABLE II. The atomic energy of Si is compared to the bulk energy calculated from Eq. (2)
with a very large lattice constant (a~ =20agoh, ). & = 0.794 in the X& scheme is used here (see
text). At a~ = 20' h, (=10.58 A), the bulk total energy is quite close to that for isolated atoms
(within 0.04 Ry). Values are in Ry.

Atom Bulg (g =20ga h, )

Kinetic

Up, pd r3

2.366 61

-13.664 42

Kinetic

S(G)Up, (G) Pi &}

2.141 57

—5.547 11

V~pd y 5.749 50

Qgg

I

V~(a) p(G)

0.19356

1.943 18

4 pxcpd &

Total

-1.866 89

-7.415 20

~Ewald

4 g V .(&}Vi&)
G

Total

-4.30945

-1.877 38

-7.455 63
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To see the dependence of the total energy on
we make one more choice of a at an intermediate
value. a = 0.794 has been chosen in accordance
with the choice of Appelbaum and Hamann (AH), "
which brings Slater's exchange into agreement
with Wigner 's interpolation formula" for the aver-
age valence charge density of Si (y, =2.005). This
value is very close to that suggested by Hedin and

I undqvist29 for the ave~age charge density of Si
(n =—', & 1.18) although their n is density dependent.

In Eq. (2) we have a numerical factor, —'„multi-
plying p.„,. For any terms coming from electron-
electron interactions, we normally expect to have
an overall factor of —,

' as in the electron- electron
Coulomb energy. Since Sn/4 is the effective factor
multiplying the original Slater exchange potential,

TABLE III. The total energy of Si for different lattice constants us ing & = 3, n = 0.794, and
n = 1.0 as explained in the text. For & = 1 ~ 0, both 4 p, „,and 2 p, „~+correlation are given.

Kinetic

5.esa A

2.614 11

n,Z

2 (1„+'Vs(G)p(G)

~Ewald

a40„+p..(G) p(G)

Correlation

Total

1.266 83

0.516 75

-8.061 03

-1.938 44

-6.368 64

-7 ~ 942 63

0~) P,
'

S(G)Ups(G) p(G) -1.972 20

5.43 A

2.775 66

-1.861 82

1.433 1V

0.465 45

-8 ~ 39949

-1.999 08

-0 ~ 373 74

-7 ~ 959 86

5.21 A.

2.944 10

—1.748 78

1~ 622 52

0.413 19

-8 ~ 754 17

-2.661 78

-0.378 87

-7 ~ 963 79

5.0 A

3.122 24

-1.63149

1~ 835 64

0.360 00

-9.12184

-2 ~ 126 09

-0.383 97

-7.945 52

4.8 A

3.300 28

-1.498 33

2.074 81

0.305 31

-9.501'92

-2 ~ 19127

-0 ~ 389 03

-7.900 15

~ = 0.794

Kinetic 2.651 54

DgZ

2 &
a& Pj' Vs(G) p(G)

~Ewald

4 0.t P p-«) p(G)

Total

1.266 83

0.547 61

-8 ~ 061 03

-2.322 39

-7.946 46

Qa~ Q' 8(G) Upg(G) p(G) —2.029 02

2 ~ 81153

—1 ~ 91555

1.433 17

0.493 46

-8.39949

-2 ~ 393 58

-7 ~ 970 46

2 ~ 977 40

-1.798 59

1.622 52

0.438 12

-8.754 17

-2.466 98

-7.981 69

3.152 08

-1~ 676 48

1.835 64

0.381 60

-9.121 84

-2.542 15

-7.971 09

3.325 63

-1.53743

2.074 81

0 ~ 323 37

-9.501 92

-2.618 17

-7 ~ 933 72

2.876 30

-2.007 47

1.433 17

0.543 46

-8.39949

-3.043 22

3.205 86

-1.753 47

1.835 64

0.420 22

-9.12184

-3.224 16

3 ~ 037 47

—1~ 883 79

1.622 52

0.482 63

-8 ~ 754 17

-3.132 76

3.371 30

-1.604 19

2 ~ 074 81

0 ~ 355 60

-9.501 92

-3.31625

2.718 56Kinetic

Oat Q' $(G) Up, (G) p(G) —2.124 92

QgZ

2 (1 ' Q Vz(G) p(G)

1.266 83

0.601 89

—8.061 03

-2 ~ 955 51

+Ewald

~40.~ g p „(G)p(G)

(Total) '
$()at+ p„(G)p(G) —2 ~ 088 51 -2 ~ 14944-1~ 970 34

-0.368 64

-7.937 65

-2.028 81

-0.373 74

-7.956 58

-2.210 83

Correlation

Total

-0.383 97

-7.947 00

-0.389 03

-7.904 25

-0.378 87

-7.962 72

(-8.554 18) (-8.597 25) (8 ~ 628 10) (-8.637 75) (-8.620 64)

Heference 30. Nozieres- Pines correlation = Z(-0.115 + 0.031 lny, ).
Using & = 1.0 we overestimate the exchange correlation.
This row is obtained by replacing 4 Qaq g p„~p by 2 (1ggg p, „p+correlation.
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TABLE IV. The total energy of Si (&=+3) for different phases of their respective equilibrium
lattice constants. The exchange coefficient C„(see text) is also given.

Structure Diamond bcc fcc hcp White Sn

ac=5.21 A ac=2.77 A a, =3.49 A g =4.64 A

Kinetic

f1a~ Q' &(G) &p, (&)p(&)

n, Z

2 &gt p~' Va(G) p(G)

~Ewald

a4fi, t P p.,(&)p(G)

Correlation '

2.944 10 3.411 39 3.424 12 3.167 23 2.773 70

-1.748 78

1.622 52

0.413 19

-8.754 17

-2.061 78

-0.378 87

-0.264 87

2.693 68

0.014 75

-0.294 37

2.693 68

0.023 41

-0.041 64

2.693 68

0.003 99

-0.276 09

2.074 81

0.033 18

—11.11644 —11.11576 —11.11529 -10.082 91

-2.267 00

-0,399 82

-2.271 64

—0.399 82

-2.258 33

-0.399 82

-2.089 68

-0.389 03

(r, =1.924) (r =1.625) (r, =1.625) (r, =1.625) (r =1.772)

Total -7.963 79 -7.928 30 -7.940 39 -7.950 18 -7.956 02

C„ factor 0.991 61 0.920 97 0.922 85 0.91745 0.925 73

the self-consistent Xn method is consistent with
Slater's exchange energy if and only if a = —', . In
this case, p, „, represents pure exchange. If n is
larger than —'„we effectively include some corre-
lation contributions in an approximate way. No

attempt was made to include a separate correlation
potential (e.g., Hedin-Lundqvist potentials in Ref.
29) in the Schr'odinger equation. Rather, an ad koc
correlation term was added to Eq. (2) when —', was
chosen for n. The correlation energy of the free
electron gas given by Nozieres and Pines' was
used for the average charge density of Si giving
good results as'shown below. We can see in Table
III that the total energy for n= » including the
correlation correction, turns out to be very close
to that for n = 0.794. With a = 1.0 we have ob-
viously overestimated (in magnitude) the exchange-
correlation energy. Therefore, the change of the
numerical factor of —,

' to & is made here as is usu-
ally done for non- self-consistent calculations. The
result is in remarkable agreement with that for

3 ~ This implies that the choi ce of n in the
total energy calculation can be balanced by a cor-
responding change in the numerical factor multi-
plying p, „,. For instance, the total energy for
&=0.794 agrees with that for a=-', if the numeri-
cal coefficient of 2 &&1/0.794 is assumed. On the
other hand, if we consistently have the multiplying
factor of 4, then the total energy is linear in n up
to103 Ry,

where A is a constant. Z„,~(0.79) coincides with

E„~(—', ) plus the Nozieres-Pines correlations.
The equilibrium lattice constant a„ the total

(crystal) energy Z„,@, and the bulk modulus B are

obtained by a weighted least-square fitting to data
points with a parabola. Using n = —'„we get a,
= 5.32 A, E„«——7.96 Ry, and B= 1.8 X 10" dyn/
cm'. The zero-point vibrational energy (-0.06
eV) is neglected. Results for o.'= 0.794 or o.'= 1.0
do not differ significantly. Experimentally, a,

5o43 Ay Eto~ 7o919 Ryy and B 0 99 ~ 10
dyn/cm'. "'" Previously reported values in Ref.
25 differ slightly from the present results. Equa-
tion (2) was used in Ref. 21 while Eq. (5) is used
at present. The difference arises because folded-
down elements of the wave functions are not reex-
panded in our approximate treatment of the second-
order terms. However, both equations give simi-
lar values for a, and B; i.e., the difference be-
tween them ig an almost rigid shift of the total en-
ergy. We tested the validity of our scheme by
doing separate calculations without the second-
order perturbation approximation (solving -180
&&180 matrices for bulk Si). The result agrees
very well with Eq. (5) using 80 plane waves plus
an extra 100 planes through the second-order per-
turbation scheme. The difference is only 0.005
Ry, and more importantly, the difference is al-
most a constant, resulting in no change. in a, and
B.

In Tables II-IV, the total energy is first obtained
from Eq. (5); the ion-valence-electron interaction
energy Q„QS(G)U„(G)p(G) is evaluated indepen-
dently, and the kinetic energy is deduced by sub-
tracting out all other contributions from the sum
of eigenvalues. This decomposition is done to see
the trends of various components. Some individual
components like the kinetic energy and the ion-
electron interaction energy may not be as accurate
as the total energy. (The kinetic energy is that of
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the pseudovalence electrons; it is not directly ob-
servable anyway. )

The calculated bulk modulus seems to be very
sensitive to the pseudopotential used. It is over-
estimated by about 80% here while Morita et al. '
have obtained a value which is an underestimate
by 20-30% using Ashcroft's pseudopotential with
the equilibrium lattice constant adjusted to experi-

I

me'nt. Ohkoshi ef af. ' get B= 1.39 x 10'2 dyn/cm'
while Wendel et al."obtain B= 0.70 x10" dyn/cm'
using the AH pseudopotential. We believe that
more ref ined nonlocal pseudopotentials which re-
produce the atomic wave functions and eigenvalues
more accurately would account for the discrep-
ancy.

The crystal energy is defined by

crystal energy (per atom) = —cohesive energy—
i (valence electrons)

(ith ionization potential) . (12)

For Si, the sum of the four ionization potentials is
103.12 eV,"and the experimental cohesive energy
is 4.63 eV,"hence, the crystal energy is -7.919
By. Though our calculated crystal energy -7.96
Ry is in good agreement with experiment, there
is a more stringent test to check the reliability of
the pseudopotential method. The calculated atomic
energy using the pseudopotential should agree with
the sum of the four ionization potentials of the
atom. Additional complications, however, are in-
volved in the atomic energy calculation because
spin polarization'~ must be considered for an atom
with an unfilled outer shell. We have shown in
Table II that the calculated atomic energy without
spin polarization is -100.88 eV using a =0.794.
Comparing the E«tz for n = 0.794, we get -7.7 eV
for the cohesive energy without spin polarization.
(We have chosen o!= 0.794 rather than o = —', be-
cause the Nozieres-Pines correlation is not appli-
cable for an isolated atom. ) We do not know the
energy gain due to the spin polarization for Si.
For diamond„ the calculated cohesive energy is
reduced by 4.1 eV by including spin polarization in
the all-electron calculation. " A smaller reduction
is expected for Si. A reduction of the total energy
of the Si atom by 3 eV would bring the calculated
cohesive energy in agreement with experiment.

In a non-self-consistent calculation, Wendel eg

gl."obtained a, = 4.7 A using the AH pseudopoten-
tial with n =0.855. Using the present self-consis-
tent scheme, the AH pseudopotential (n = 0.794)
yields a, =4.95 A; a, =4.9 A would be obtained
with n =0.855. The AH pseudopotential is, indeed,
too attractive as pointed out in Ref. 33. We can
see immediately from Table I that the AH potential
gives an unusually small n,Z.

In Fig. 1, each term contributing to the total
energy is plotted as a function of the lattice con-
stant. Note that the kinetic energy here corre-
sponds to the smoothed pseudo-wave functions.
Therefore, the behavior of the kinetic energy is
far from the free electron value 2.21Z/y', . As has
been shown in Ref. 11, the usual virial theorem
(Z„„=—2Z„, at equilibrium) does not hold. n, Z,
yE„„d, the Hartree energy, and the ion-electron
interaction energy are considered together because
they are not independent. . The exchange energy is
larger in magnitude than the free electron value of
0.916Z/r, as expected for covalent materials. The
correlation energy, while contributing significantly
to the crystal energy, plays a minor role in de-
termining the equilibrium lattice constant. With-
out the correlation term, a, and B change only by
order of 1%. This in part justifies our approxi-

TABLE V. The average energy Per atom of the Si (lllj surface (unrelaxed and relaxed)
simulated by 12 layers of Si and five equivalent vacuum layers. Therefore, the total energy
in this table is the total energy of the unit supercell divided by 12. e is 3 and correlation en-
ergies are assumed the same.

Kinetic

0m~ P' S(G)&p, (G)p(G)

n, Z

~20 ag p' &H(G) p(G)

~Ewald

f0a~5, p..(G)p(G)

Correlation

Unrelaxed

2.688 69

-40.677 85

1.01165

19.597 31

11.827 74

-1.937 53

-0.373 74

Belaxed (0.165 A)

2.71043

-42.060 42

1.01165

20.236 48

12.555 58

-1.945 22

—0.373 74.

Relaxed (0.33 A)

2.725 15

-43.524 61

1.01165

20.957 56

13.291 90

-1.951 35

-0.373 74

Total —7.863 73 -7.865 24 -7.863 54
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ma. tion to the correlation contribution.
In considering the structural stability of bulk Si

the total energy and the equilibrium lattice con-
stant are calculated for the bcc, fcc, hcp, and
white Sn structures. We find that the equilibrium
r, 's for bcc, fcc, and hcp structures are almost
the same (r, = 1.63), and the y, for the white tin
structure (-1.8) is midway between the diamond
structure and the others. The calculated nearest-
neighbor distance is -2.4 A for the white Sn and
bcc structures and -2.5 A for the fcc and hcp
structures compared with -2.3 A for the diamond
structure. These four structures (white Sn, bcc,
fcc, and hcp) are all found to be metallic from the
calculated band structures. The total energies
near the respective equilibrium lattice constants
are presented in Table IV. The diamond structure
does give a lower energy than any metallic struc-
tures. Morita et g). obtained similar results'
while the hcp structure was the most stable one
in Weaire's calculation. ' The pseudopotential
form factors for the smallest G for three struc-
tures [V(111)for fcc, V(110) for bcc, and V(001)
for hcp) are non-negative, which is another feature
characteristic of metals. " V(001) for the hcp
structure is zero in effect when we multiply by the
structure factor, and the next smallest component
[V(100)] is positive. The smallest nonzero form
factor for white Sn structure [V(200)] is very
slightly negative.

It is generally believed that the diamond struc-
ture is stable relative to the others because of the

exchange energy gained in forming covalent bonds.
The exchange energies listed in Table IV cannot be
compared to each other directly since the respec-
tive lattice constants are different. The exchange
energy for each structure has been calculated with
the same r, (= 2.005), and the diamond structure
has been found to have the largest exchange energy
in magnitude. To examine the behavior of the ex-
change term in more detail, the exchange energy
may be expressed as -C„Z/r, w'here C„ is 0.916
for a free-electron model. C„ is a measure of the
covalent character of the homopola, r material. C„
for the structures studied here are presented in
the same table. C„ is only slightly greater than
0.916 for metallic structures. We note that core
orthogonalization may bring about additional con-
tribution to C„. C, is closely related to the maxi-
mum charge density at the center of the covalent
bond.

In Fig. 2, the charge density plots are shown
for the diamond and white Sn structures. (See
Ref. 21 for figures of other structures. ) They are
plotted on the same scale for comparison. The
strong covalent bonds for the diamond structure
are obvious, and the maximum charge density is
25 compared with 12 in the white Sn structure.
There are eight electrons per unit cell in each
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FIG. 1. Behavior of various components of the crystal
energy of Si tentering Kq. (2)] as a function of the lattice
constant. o.~Z, yE &z, the Hartree energy, and the ion-
electron interaction energy are considered together and
denoted by "Coulomb" in the figure. This plot is for
the diamond structure with e = ~~. Note how small the
variation of Et«, ~ is compared with each component.

FIG. 2. The total valence charge density contours of
bulk Si for (ai the diamond structure at a, = 5.43 A, and

(b) the white Sn structure at a =4.64 A. Plots are in
(110) plane for the diamond and in (010) plane for the
white Sn structure. Heavy dots represent atomic sites,
and solid lines connect nearest neighbors. Normalization
corresponds to e ight electrons per unit cell. Successive
contours are separated by 1. The figures are plotted on
the same scale for comparison.
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case. The maximum charge density was 10 for
all three other structures. " The behavior of the
white tin structure is intermediate between the
diamond and more metallic structures. Although
the white tin structure has four nearest neighbors,
the ratio of the next-nearest-neighbor distance to
the nearest-neighbor distance is only 1.07 (with
c/a= 0.554). Therefore, the coordination number
is almost six, falling between the diamond and the
bcc structure. The same trends for the charge
density, exchange energy, minimum total energy,
and the normalized equilibrium lattice constant
(r,) were observed above. Indeed, the diamond
structure has been found to undergo a phase tran-
sition to the white tin structure under high pres-
sure. '" The same calculations for the graphite or
wurtzite structure would be desirable to study the
phase stability. However, the structural energy
gain relative to these structures ig expected to be
very small —probably of the order of 10 ' eV/atom.
Approximations involved in the pseudopotential
method and the exchange-correlation energy are
of this order.

We have assumed above that the core is indepen-
dent of the structure; i.e., we have used the same
pseudopotential regardless of the structure. Jan-
ak" has carried out self-consistent KKR calcula-
tions for different phases (fcc and bcc) of Be and
Na and concluded that the change in the energy of
core states can be comparable to or larger than
the stabilization energy between phases. We do
not have data for the core state energy shift for
Si. The theoretical prediction of the more stable
phase between the diamond and the metallic struc-
tures is still expected to be reliable because the
calculated stabilization energy for Si (-0.1 eV) is
much larger than the value obtained by Janak for
Na (-0.005 eV) or for Be (-0.01 eV). Approxima-
tions for the correlation energy may also be cru-
cial in the latter cases.

IV. Si (111)SURFACE

In this section, we present results of the total
energy for unrelaxed and relaxed Si(ill) surfaces.
The periodicity of the system which is essential
in the present formalism is retained in the form
of repeated slabs. The unit supercell" has 12 Si
atoms plus vacuum layers equivalent to 2.5 Si
layers in thickness on each side. As each unit
cell has two surface" atoms, the surface energy
per surface atom is obtained by comparing the av-
erage energy per atom in this system and in the
bulk and multiplying the difference by 6. The en-
ergy gain in the surface relaxation is obtained in
the same manner by comparing the average energy
in the unrelaxed and the relaxed geometry. Plane

waves up to 2. 7 Ry are included in the expansion
of the wave functions, and those up to 5.5 Ry are
included through a second-order perturbation
scheme. These correspond to -180 plane waves
and another -320 plane waves in the basis set, re-
spectively. n = —', is chosen, and the correlation
energy for each geometry is assumed the same.
The ionic pseudopotential is cut at q=3.1 a.u. to
limit computational time. To determine the lattice
constant to be used in the surface calculations,
calculations for the bulk were done with these input
parameters. The calculated total energies are
—7.91020 Ry, —7.92492 Ry, and -7.91996 Ry for
a, = 5.658 A, 5.43 A, and 5.21 A, respectively.
These numbers give 5.37 A for the equilibrium
lattice constant and 1.49 x10" dyn/cm' for the bulk
modulus. Correlation energy is included as be-
fore. However, as mentioned above, there is no
variation of the correlation energy in the surface
calculations because the avezaI, e charge density of
each supercell is the same irrespective of the re-
laxation. Therefore, it is reasonable to recalcu-
late equilibrium properties without including the
correlation contribution. 5.43 A and 1.4 X 10"
dyn/cm' are obtained for a, and B, respectively.
Total energies for the unrelaxed and relaxed sur-
face are then calculated with a, = 5.43 A. In de-
termining the equilibrium relaxation distance,
three data points around the energy minimum are
used to fit with a parabola. Other points outside
this region give a much higher total energy as
expected.

Results for these three geometries are given in
Table V. The calculated relaxation distance is

0
0.16 A in agreement with the measured values"
of 0.12 A and 0.16 A for the impurity stabilized re-
laxed

Si(ill�)

surface. The calculated energy gain
in relaxation is 0.13 eV per surface atom. No ex-
perimental data for the relaxation energy are
known to the authors. The calculated surface
phonon energy is 0.038 eV assuming that the re-
duced mass for the vertical vibration is just the
mass of the Si atom. Because the bulk modulus
has been overestimated by -40%, the phonon fre-
quency may have been overestimated by -20%.
Our results can-be compared with the cluster
model calculations by Redondo et al. ,

' which give
0.08 A for the relaxation and 0.036 eV for the sur-
face phonon energy. Experiments using low- ener-
gy electron spectroscopy have reported" a surface
phonon frequency of 0.055 eV; however, identifi-
cation of the peak with a surface phonon has been
questioned, ' and it, is not yet clear whether this
peak corresponds to the vertical vibration calcu-
lated here. Bullett' estimated the relaxation en-
ergy to be about 0.1 eV, but his calculated relaxa-
tion length (0.43 A) seems unusually large. AH
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0
have assumed an inward relaxation by 0.33 A in
their calculations. "

The covalent bond between the surface atom and
the subsurface atom is contracted as the surface
atom is relaxed inward. The maximum charge
density at the center of the covalent bond is found

0
to increase until the relaxation becomes -0.4 A;
it then starts to saturate as the relaxation in-
creases. This exchange energy gain in relaxation
is balanced by other contributions to the total en-
ergy, and the minimum total energy occurs at
0.16 A relaxation. The relaxation of 0.16 A cor-
responds to a bond length of 2.30 A which is the
average of the bulk bond of 2.35 A and the molecu-
lar (Si,) bond of 2.25 A. Including correlation ef-
fects in the calculation does not give rise to first-
order changes in the relaxation distance. Although
proper treatment of these correlation effects would
make the bond shorter, the same correlation ef-
fects contribute to a shorter equilibrium lattice
constant as well, resulting in minor changes in
the relaxation.

Subtracting F. t,~ for the bulk in Table III from
Et,~ for the surface in Table V and multiplying by
6, we can, in principle, get the surface energy
per atom. However, this procedure can be mis-
leading because the convergence of the total energy
for the surface is much poorer than that of the
bulk. The plane waves were truncated at 2.7 Ry
compared with 6'.4 Ry for the bulk. The estimated
error in the surface energy is of the order of an

eV. Even if we truncate the plane waves at 2.7 Ry
for both the bulk and surface, the result does not
improve significantly because, even though the
bulk total energy has converged fairly well in this
case, the abruptness of the surface charge density
results in slow convergence. To have the same
degree of convergence here as for the bulk, we
would need at least -650 plane waves in the basis
set.

A more meaningful comparison between experi-
ment and theory is presented below. One-half of
the tetrahedral bonding energy (equivalently, ~ of
the cohesive energy 4.63 eV) minus the calculated
relaxation energy (0. 13 eV) is 1.03 eV, in good
agreement with the experimental surface energy
(0.99 eV). ' The sign of the discrepancy (-0.04 eV)
is also correct because some relaxation of electrons
has occurred for the unrelaxed surface to reduce the
total energy. In contrast to the case of the surface
energy, the error in the relaxation energy is nar-

rowed down to -0.05 eV since we are actually calcu-
lating the change in the energy brought about by the
relaxation. The degree of convergence in the calcu-
lation is the same, and the surface-surface inter-
action is essentially the same whether the surface
is relaxed or unrelaxed as long as the distance be-
tween neighboring slabs remains fixed. There-
fore, the two most important sources of error in
our calculation are absent here.

Since a real surface undergoes reconstruction, '
it is desirable to get the stable reconstructed ge-
ometry by minimizing the total energy. As pointed
out in Sec. I, however, it is possible that other
factors such as temperature, surface preparation,
impurities, or defects play an important role in
the surface reconstruction. It is questionable be-
cause of this whether our ground-state energy
formalism is able to give results consistent with
experiment. Moreover, the order of accuracy
required in the calculation of reconstruction en-
ergy is beyond computational techniques now avail-
able to us.

Note added in Proof. T. S. Kuan and S. L. Sass
[Acta Metall. 24, 1053 (1976); Phil. Mag. 36, 1473
(1977)] have proposed a model in which the scat-
tering intensities observed in. the diffuse & phase
of Zr-Nb alloys are attributed to an extended lin-
ear defect. Since the scattering observed in the
present experiments is similar to the diffuse (d

phase, the sam. e explanation would work here.
However, the mechanism leading to an extended
defect which locally resembles the ~-phase struc-
ture such as they propose is not clear. R. Pynn
[J. Phys. F 8, 1 (1978)t has advanced an alternative
description of the diffuse ~ phase in terms of a,

one-dimensional model analogous to that used for
charge density waves. This latter model, how-
ever, seems unlikely to be appropriate for the
present case, given the low concentration of de-
fects involved.

ACKNOWLEDGMENTS

We thank Dr. A. Zunger and Dr. K. M. Ho for
helpful discussions. This work was supported by
the National Science Foundation (Grant No.
DMR7822465) and by the Division of Materials
Sciences, Office of Basic Energy Sciences, V. S.
Department of Energy (Grant No. W-7405-ENG-
48). One of us (M.L.C.) is the recipient of a
Guggenheim Fellowship (1978-79).

~D. Weaire, Phys. Status Solidi 42, 767 (1970).
A. Morita, T. Soma, and J. Takeda, J. Phys. Soc. Jpn.
32, 29 (1972).

3I. Ohkoshi and K. Shindo, J. Phys. Soc. Jpn. 43, 1879

(1977).
H. D. Shih, F. Jona, D. W. Jepsen, and P. M. Marcus,
Phys. Rev. Lett. 37, 1622 (1976).

5J. V. Florio and W. D. Robertson, Surf. Sci. 24, 173



J. IHM AND MARVIN L. COHEN

{1971).
6J. J. Gilman, J. Appl. Phys. 31, 2208 (1960).
~A. Redondo, W. A. Goddard, T. C. McGill, and G. T.

Surrat, Solid State Commun. 20, 733 (1976).
D. W. Bullett, Solid State Commun. 17, 843 (1975).

~See, for example, J. E. Howe and H. Ibach, Phys. Bev.
Lett. 31, 102 (1973) and 32, 421 (1974).
D. J. Chadi, Phys. Rev. Lett. 41, 1062 {1978}.
J. Ibm, A. Zunger, and M. L. Cohen, J. Phys. C 12,
4409 (1979).
See M. Schliiter, J. B. Chelikowsky, S. G. Louie, and
M. L. Cohen, Phys. Rev. B 12, 4200 {1975)and refer-
ences therein.

~3J. A. Appelbaum and D. B. Hamann, Phys. Rev. 8,
1777 (1973}.

~4W. R. Frensley and H. Kroemer, Phys. Rev. B 16,
2642 (1977).

~5N. W. Ashcroft, Phys. Lett. 23, 48 (1966).
~6W. C. Topp and J. J. Hopfield, Phys. Rev. B 7, 1295

(1973).
7A. E. U. Anirnalu and U. Heine, Philos. Mag. 12, 1249
(1965).
G. Simons, J. Chem. Phys. 55, 756 (1971); G. Simons
and A. N. Bloch, Phys. Bev. B 7, 2754 (1973).

~ A. Zunger and M. L. Cohen, Phys. Rev. B 18, 5449
(1978).
B. A. Coldwell-HorsfaQ and A. A. Maradudin, J. Math.
Phys. 1, 395 (1960). Hall's correction term IPhys.
Rev. B 19, 3921 {1979)j cancels with other electro-
static contributions and is not included in our definition
of pE~~yg see Bef. 11 .

~D. J. Chadi and M. L. Cohen, Phys. Rev. B 8, 5747
(1973).

22J. F. Janak, in Computationa/ Methods in Band Theory,
edited by P. M. Marcus, J. F. Janak, and A. R. Wil-

liams (Plenum, New York, 1971), p. 323.
23S. L. Cunningham, Phys. Rev. B 10, 4988 (1974).

M. L.Cohen and V. Heine, in Solid State Physics, edited
by H. Ehrenreich, F. Seitz, and D. Turnbull {Academic,
New York, 1970), Vol. 24, p. 128. The second-order
correction is not included in the expansion of the soave
functions. This is an approximation to the original
paper by P. Lowdin, J. Chem. Phys. 19, 1396 (1951).
J. Ihm and M. L. Cohen, Solid State Commun. 29, 711
(1979).
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
J. C. Slater, Phys. Rev. 81, 385 (1951).
E. P. Wigner, Phys. Rev. 46, 1002 (1934).
L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064
(1971).

3 D. Pines and P. Nozieres, The Theory of Qgantum
Liquids (Benjamin, New York, 1966), Vol. 1.
~C. Kittel, Introduction to Solid State Physics (Wiley,
New York, 1976), 5th edition.

3 C. E. Moore, Atomic Energy Levels (Circular of the
Natl. Bur. Stand. , Washington, D.C. , 1949), Vol. 1,
No. 467.

33H. Wendel and R. M. Martin, Phys. Rev. Lett. 40, 950
(1978).

340. Gunnarson, B. I. Lundqvist, and J. W. Wilkins,
Phys. Rev. B 10, 1319 (1974).
A. Zunger and A. J. Freeman, Phys. Bev. B 15, 5049
(1977).
V. Heine end D. Weeire, in Solid State Physics, edited
by H. Ehrenreich, F. Seitz, and D. Turnbull (Academic,
New York, 1970), Vol. 24.

3~8. Minomura and H. G. Drickamer, J. Phys. Chem.
Solids 23, 451 (1962).
J. F. Janak, Solid State Commun. 20, 151 (1976).

398. Ibach, Phys. Rev. Lett. 27, 253 (1971).


