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We have used the local-density formalism and the atomic-sphere approximation to calculate self-
consistently the electronic properties of thorium at pressures up to 400 kbar. The derived equation of state
agrees very well with static pressure experiments and shock data. Below the Fermi level (Ep) the electronic
band structure is formed by 7s and 6d states while the bottom of a relatively broad 5f band is positioned
0.07 Ry above E;. The calculated extremal areas of the Fermi surface and their calculated pressure
dependence agree with earlier calculations and with de Haas-van Alphen measurements supporting the
validity of the itinerant description of the 5f electrons for the light actinides. The calculation shows that the
gradual s to d transition taking place at pressures up to 200 kbar is the cause of the unusual pressure

dependence of the Fermi surface seen experimentally.

I. INTRODUCTION

Among the actinides, thorium plays, in some
respect, a role similar to that of copper among
the transition metals, It is relatively abundant,
it has a simple crystal structure (fcc below
1400 °C), and it was the first element in its ser-
ies for which its Fermi surface was obtained ex-
perimentally’’? as well as theoretically.®® Since
thorium is at the beginning of the actinide series
it has unoccupied 5f transitional states close to the
Fermi level. One may therefore expect its Fermi
surface to be simple, and observably but only
weakly affected by the presence of the 5f states.
For this reason thorium has to some extent served
as a test case for band calculations in the 5f tran-
sition series.

The Fermi surface found in the pioneering work
by Loucks and co-workers®™® is indeed simple,
consisting of only three closed pieces. Further-
more, these authors found that they could account
qualitatively for the Fermi surface found in the
de Haas-van Alphen experiments if they artificial-
ly removed the 5f bands. Later refinements by
Koelling and Freeman®'” showed, however, that

the inclusion of these 5f states in the band picture .

gave improved quantitative agreement with the
measured Fermi surface. This was taken as evi-
dence for the itinerancy of the 5f electrons at
least in the lighter actinides, a claim that has
been substantiated by other band calculations,®®
by careful examination of cohesive energies,’® and
most recently by calculations of the atomic volume
through most of the actinide series.!

All of the previous band calculations are non-
self-consistent and have used the Slater Xa ex-
change-correlation potential'®* with @ varying from

21

1to £. It is the purpose of the present paper to
employ the conceptually more satisfactory scheme
of Hohenberg and Kohn'® and Kohn and Sham' for
ground-state properties in order to calculate and
understand the electronic structure of thorium
under pressure. Similar calculations have previ-
ously been performed on palladium® with consider-
able success, and most recently Gldtzel'® used
essentially the present scheme to account for sev-
eral ground state properties of thorium, cerium,
and lanthanum,

Recent de Haas—van Alphen measurements by
Schirber et al."” show that all of the observed or-
bits decrease in size with increasing pressure,
contrary to the predictions of simple energy-band
scaling models. The same authors attempted an
explanation in terms of non-self-consistent band
calculations, and they concluded that self-con-
sistency was-needed in order to understand their
unexpected experimental results in details. In the
present paper we present such self-consistent
energy-band calculations, which do indeed offer
an explanation of the Fermi surface data for thori-
um at low pressures. In addition we show that the
same one-electron procedure, within the limita-
tions of the so-called frozen-core approximation,
can explain the electronic structure of thorium
also at high pressures.

II. ONE-ELECTRON THEORY

The present technique is based on the local-
density approximation to the density-functional
formalism of Hohenberg and Kohn'® and Kohn and
Sham,'* and we use the exchange-correlation po-
tential devised by Barth and Hedin.”® The original
complicated many-body problem is thus reduced
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to a one-electron description, but one still has to
perform self-consistent energy-band calculations.
To do this, we take advantage of the atomic-sphere
approximation (ASA) to the linear-muffin-tin-or-
bitals (LMTO) method® of Andersen which gives
rise to an extremely efficient self-consistency
procedure.

There are two basic ingredients in this approach
to band theory. First, the use of energy-indepen-
dent muffin-tin orbitals leads to linear energy band
methods, such as the LMTO method, which are
orders of magnitude faster than the methods com-
monly used. Second, the atomic sphere approxi-
mation gives rise to the concept of canonical bands
and the scaling technique which transforms these
into unhybridized energy bands. When combined,
these two features form the basis of our self-con-
sistency procedure, which was developed by An-
dersen and co-workers® for use in calculations
of ground state properties of transition metals.

In order to illustrate the techniques® involved
let us consider the density of conduction electrons,
spherically averaged over the atomic sphere of
radius S as obtained in the ASA

o) =2 Y [T eEN@aE, 0

where ¢,(E, 7) is the solution inside the atomic
sphere of the radial Schrodinger equation and N,(E)
is the [-projected state density. Since N,(E) is
easily obtained in a LMTO band calculation one
might proceed by calculating the electrostatic and
exchange-correlation potential and solving for a
new band structure and corresponding projected
state density. However, at this stage it is more
efficient to use the following result from canonical
band theory:

2,(8) =5,(8) (22 )5, @

where n(f) is the canonical number-of-states
function and the dot denotes differentiation with
respect to energy. The potential function vector
P is defined through

P=(p,,P,,P,,...), (3)
Py(E)=2(21+1)[D,E) +1+1]/[D,(E) -1], (4
D,(E)=S ¢}(E, 8)/,(E,S). (5)

Since a given crystal potential V*(») specifies
a unique path 5*(E) in P space, one may map out
7n(P) by performing band calculations for many dif-
ferent potentials. This tedious procedure may be
circumvented by neglecting differential hybridi-
zation because, in that case, 97/0P is linear in

the sense that

an(P) _ 8
5P,  oP,

n{P[EFP,)], P, [E}(P,)],

Py, PsEXP))]}, (6)

and similarly for s, p, and f. Here E} is the func-
tion inverse to PH(E).

In the neglected differential hybridization ap-
proximation, Eq. (2) reduces to a scaling of the
individual projected state densities, and the self-
consistency loop then consists of one band calcula-
tion and repeated use of Eqs. (1) and (2). When
wave functions, potential functions, etc., are writ-
ten in terms of potential parameters, this scheme
involves only the solution of Poisson’s equation
and of the radial Schrddinger equation at three
different energies. Even in the cases where dif-
ferential hybridization cannot be neglected, the
scaling procedure allows us to obtain a self-con-
sistent solution without performing more than a
few band calculations.

The above technique is used only for the con-
duction electrons, while core states are included
in the frozen-core approximation. A core charge
density is constructed by performing a self-con-
sistent relativistic atomic calculation for the ap-
propriate electronic configuration, and renormal-
izing the atomic charge density to the atomic
sphere. In the present case we have frozen the
entire radonlike core and thus neglected the effect
of the relatively extended 6p states which may be
regarded as the major source of error in our cal-
culation. On the other hand, this type of frozen
core approximation has worked extremely well for
transition metals,?®"* light rare earths (La, Ce)
and, most importantly, for all the light actinides™
(Ra-Cm). Inthe ASA the electronic pressure may
be calculated from the relations

0D ,(E)
61InS

)

PV=) fEFdE N,(E) SP¥E, S)
13

GaDllIEES) =(DZ(E)+Z+1)(D1(E) - l)+(E— exc)s’

(M

where €, is the exchange-correlation energy taken
at the atomic radius. These expressions are only
slightly more complicated than Eq. (1), and imply
that one may separate the total pressure into in-
dividual s, p, d, and f contributions. It is pre-
cisely because of this separation, which is in-
herent in the ASA, and which also applies to other
quantities, that the ASA is so useful for the un-
derstanding of trends and variations among the
elements.
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III. EQUATION OF STATE

The high-pressure electronic properties of
thorium as obtained by means of the local density
and the atomic sphere approximations are pre-
sented in Fig. 1. At pressures below 100 kbar the
calculated equation of state, Fig. 1(a), shows ex-
tremely good agreement with static pressure mea-
surements.?® Strictly speaking the theory is only
valid at 0 K while the measurements were made at
room temperature. However, both theory and ex-
periment are normalized by the equilibrium atomic
volume and the difference in temperature is there-
fore insignificant. At pressures above 200 kbar we
compare with shock data.?” Since these data contain
an increasing pressure contribution with decreas-
ing volume from the heating of the sample, the
agreement with theory may also be considered as
satisfactory in this pressure range. As a final
point, one may note that the theoretical equation
of state provides an accurate interpolation between
the two sets of data, which is especially satisfying
in view of the fact that the only input to the calcu-
lation is the atomic number of thorium.

The individual s, p, d, and f contributions to the
pressure are presented in Fig. 1(b). As seen from
the figure, the d pressure is negative and the d
states provide at normal volume the main contrib-
ution to the metallic binding, while the s and p
electrons are repulsive, In addition there is a
negative f contribution to the pressure. This does
not mean, however, that 5f orbitals are signifi-
cantly occupied in thorium but rather that in the
partial wave analysis, the tails of the s, p, and d
waves give rise to an f contribution.

This question is clarified in Fig. 1(c), where we
have plotted several band energies as function of
the atomic radius. This shows that the 5f band is
positioned above the Fermi level at low pressure
and that it approaches E at increasing pressure
and may eventually be occupied. It further shows
that the p band is also well above E,, and accord-
ingly the only occupied states are those of the 6d

TABLE 1. Band masses y; and relative band-center
positions §%C;s=5%(C; — C;) for thorium compared to
free-electron values.

S (a.u.) 3.4 3.756 3.9 Free electron
s 0.58 0.63 0.66 1
p ) 0.67 0.68 0.69 1
! d 1.57 1.88 2.03 1
f 8.09 12,12 14.62 1
p  14.22 12,90 12.43 7.4
s’C;;  d 3.01 4.35 4.68 17.7
f 3.95 5.11 5.26 30.7
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FIG. 1. Thorium under high pressure. (a) Calculated
equation of state, solid line, compared to static pres-
sure measurements (Ref. 26), open circles, and shock
data (Ref. 27), open squares. (b) Partial pressures
3P,V as a function of atomic radius. (c) Band ener-
ties, i.e., bottom of the ! band B;, center of the !/ band
C,, top of the Z band 4,, Fermi energy Ep, and exchange-
correlation energy €, as function of atomic radius. The
zero of energy is the electrostatic potential energy at
the atomic sphere. (d) Number of I electrons at the
Fermi level as a function of atomic radius.

and 7s bands. Finally, we note that the center of
the s band moves through the Fermi level and that
the p band moves steeply away from E .

The potential parameters listed in Table I show
that the relative band-center energies C,;, and Cy;
vary little with volume, while the variation in the
bandwidth proportional to (u,S?)™" depends strongly
on [. Table I further shows that the d and f elec-
trons are far from being free-electron-like. - All
the above-mentioned movements of band energies
are clearly reflected in Fig. 1(d), which shows
that, as a function of decreasing volume, the num-
ber of s and p electrons decrease while the num-
ber of f electrons increases and »n; goes through a
broad maximum at S=3.5 a.u. corresponding to a
pressure of approximately 200 kbar. Thus, since
the p and f states are unoccupied, an s to d tran-
sition is occurring, in which s electrons are being
transferred to the d band under pressure.

IV. GROUND-STATE PROPERTIES

A few selected ground-state properties have
been calculated, and they are compared to experi-
ment?%: 28°% jp Table II. The agreement we obtainis
similartothat found in the transition metals, i.e., a
few percent deviation for the equilibrium radius anda
few-tens percent deviation for the bulk modulus. The
calculation by Gl6tzel™ is similar to ours except
that he relaxed the outermost core p states which
leads to a rather small equilibrium radius. The
poor agreement with the dB/dP estimated from
the static pressure data of Bridgman®® is not sur-
prising since this corresponds to the second de-
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TABLE II. Calculated equilibrium atomic radius S,
bulk modulus B, and the pressure derivative of B com-
pared with experiment.

Expt. Theor.
S (a.u.) 3.756 2 3.787° 3.64f
B (kbar) 543%, 580°, 6109 632° 500 %
dP/dB 6.6° 2.5° 3.4!

2Reference 28.

® Estimated from Ref. 26.

¢Reference 29.

dReference 30.

® Present results. B evaluated at calculated atomic
radius.

fReference 16. B evaluated at observed atomic radius.

rivative of the equation of state, and is therefore
poorly determined, both experimentally and the-
oretically.

V. ENERGY BANDS

The calculated self-consistent relativistic band
structure for thorium at the observed equilibrium
volume is presented in Fig. 2. In the range below
the Fermi level our bands are similar to those of
Gupta and Loucks*’® who used full Xo exchange'?
and artifically removed the 5f bands. In addition,
we find close agreement with the bands of Freeman
and Koelling® who used £ exchange and included the
5f states.

Within the atomic-sphere approximation, it is
possible to obtain an approximate decomposition
of a band structure by comparing unhybridized en-
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FIG. 2. Self-consistent relativistic energy bands for
thorium at the observed equilibrium radius S=3.756a.u.
The calculation includes spin~orbit coupling and the cor-
rection to the atomic-sphere approximation (Ref. 19).
The zero of energy is taken to be the potential energy at
the atomic sphere, which is essentially the muffin-tin
zero.

FIG, 3. Self-consistent relativistic energy bands for
thorium. (a) Bands calculated without the spin-orbit
interaction but with the correction to the ASA included.
(b) Unhybridized s, d, and f bands.

ergy bands with fully hybridized bands. In Fig, 3
we show such a comparison, and the overall pic-
ture one obtains is that, below the Fermi level,
the band structure is dominated by the s and d
states while a relatively narrow f band (width of
the order of 0.25 Ry) is positioned with its bottom
0.07 Ry (I', —Ej) above E,. One may, further-
more infer that the fd hybridization will only
slightly modify the shape of the Fermi surface,
which is otherwise determined by the sd states
and their hybridization. Finally, by comparing
Fig. 3(a) with Fig. 2, one may judge the effect of
spin-orbit coupling, which is seen to be important
for the topology of the Fermi surface.

The projected state densities® shown in Fig. 4
represent a decomposition which is less approxi-
mate than the unhybridized bands. It is clearly
seen in Fig. 4 that, although the d character dom-
inates below E ;, there is still appreciable f char-
acter through hybridization. Thus at the Fermi
level the f states contribute 30% of the total state
density. From the band structure of Fig. 2 we cal-
culate the density of states at the Fermi level to
be 15.0 [states/atom Ry] which may be compared
to the measured®® electronic specific-heat coeffi-
cient of 4.31 [mJ/mol K] corresponding to 24.8
states/atom Ry, giving an enchangement factor of
1.65. The electronic Griineisen parameter
+d InN(E ;)/d InS is calculated to be 2.2. This
is somewhat larger than the value 3 expected for
pure d bands, and indicates the importance of the
sd and fd hybridization at the Fermi level.

VI. FERMI SURFACE

The theoretical Fermi surface of thorium was
first established by Gupta and Loucks.*’® Their
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thorium. The calculation is without spin-orbit coupling
but with the correction to the ASA, and corresponds to
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FIG. 5. Gupta-Loucks model of the Fermi surface for
thorium [after Boyle and Gold (Ref. 2) as modified by
Koelling and Freeman (Ref. 7)]. The extremal orbits in-
dicated correspond to those listed in Tables III and IV.

model is shown in Fig. 5, and it consists of three
closed pieces: (i) a hole surface centered atT'
(the “cube”), (ii) hole surfaces centered at L (the
“dumbbells”), and (iii) compensating electron
sheets on the symmetry line £ (the “lungs”).
Comparison with the de Haas-van Alphen experi-
ments® showed that the topology of the calculated
Fermi surface was correct and that the size of
the lungs was in reasonable quantitative agree-
ment with the measurements, while the cube was
too large and the dumbbell too small.

Subsequent calculations,”’® which included the 5f
states and used reduced exchange, confirmed the
Gupta-Loucks interpretation of the de Haas-van
Alphen measurements and showed quantitative
agreement with the Fermi surface areas observed
experimentally. The present calculation® also
gives quantitative agreement with observation,
as may be seen from Table III, where we list ex-
perimental and theoretical cross sections of the
Fermi surface. The maximum shift in the Fermi
level required to give complete agreement is 2
mRy for the cube, -14 mRy for the dumbbell, and
-6 mRy for the lung. In agreement with Koelling
and Freeman’ we take this as evidence for the
importance of hybridization with the 5f electrons
in thorium.

VII. PRESSURE DEPENDENCE OF THE FERMI SURFACE

In order to obtain further evidence for the itin-
erancy of the 5f electrons, Schirber et al.'” per-
formed de Haas—van Alphen measurements on
thorium under pressure. They discovered that all
the Fermi surface areas observed decreased with
increasing pressure, in contrast to a simple scal-
ing model. The same authors calculated the area
of several Fermi surface orbits and found that
most but not all areas decreased with decreasing
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TABLE III. Experimental and calculated Fermi surface data for thorium,

Extremal areas (a.u.)

Effective mass

Surface Direction Orbit Expt.? Cale.® Cale. ¢ Calc.? Expt.® cale.¢ Cale.®
Cube 001 N 0.0591 0.0612 0.0577 0.0564 0.75 +0.03 —-0.55 ~0.62
110 F 0.0660 0.0711 0.0646 0.0628 -0.72 -0.88
111 K 0.0674 0.0703 0.0651 0.0634 —~0.69 —-0.85
Dumbbell )
001 Q 0.0429 0.0584 -0.81 -0.52
110 B 0.0361 0.0262 0.0332 0.0321 ~0.37 -0.25
110 E 0.0529 0.0416 0.0499 0.0489 ~0.41 -0.34
111 H 0.0291 0.0210 0.0256 0.0249 ~0.27 -0.19
111 J .~ 0.0599 0.0447 0.0584 0.0572 -0.48 -0.41
Lung 100 L 0.0267 0.0238 0.0265 0.0267 0.66 +0.03 0.55 0.38
100 M 0.0315° 0.0284 0.0300 0.58 +0.03 0.34 0.35
001 p 0.,0574 0.0584 0.71 0.63
170 A 0.0054 0.0046 0.0042 0.0047 0.20 0.15
110 c 0.0425 0.0322 0.0364 0.0382 0.67 0.60
011 D 0.0257 0.0229 0.0222 0.0233 0.58 +0.01 0.44 0.32

2Reference 17. Note that the orbits C and D have been interchanged in order to be consistent with Ref. 7 and our Fig.

5.
PReference 2 as quoted by Ref. 7.
¢ Present results.
dReference 7.

atomic volume, and they attributed this unexpected
volume dependence to the sd hybridization.

We have calculated® the volume derivative d InA/
d InQ of the Fermi surface cross sections in thor-
ium and show the results in Table IV. The agree-
ment with experiments is excellent and confirms
the observation that most of the areas, but not all,
decrease with increasing pressure.

In order to understand this situation let us con-

TABLE IV. Volume and pressure derivatives of Fermi
surface areas for thorium.

d1nA dInF

-4 4
Tna i) (10~* kbar™)
Cale. Cale.? Expt.?
Cube 001 N 2.29 -39 -38,-40
110 F 2.45 —42 -38
111 K 2.33 —40
Dumbbell
001 Q 2.74 —47
110 B 1.96 -34
110 E  0.18 -3 -12,-11,-13
111 H 1.97 ~34 -39
111 J ~0
Lung 100 L 0.68 -12 -4.4
© 100 M 0.57 =10
001 P ~0 .~0
170 A 0.93 -16 -50, -60
170 C 0.31 -5
001 D 0.33 ~6 -3.4

2(Obtained by multiplying d1n4/d1nQ by the experimen-
tal dInQ/dp=—~1/B=-1,72 x 10= kbar? (Ref. 29).
PReference 17.

sider the following expression® for the volume
derivative of a Fermi surface area in a pure
band:

dlnd;, 2 (Ep-C)wmy (dln(EF—C,) +a)
dln@ "3 34, dInS ok

_d In(p, S%) @)

=7 qms

where m} is the effective mass of the orbit in
question. Since the bandwidth varies as (uS?)™
the terms in the parentheses represent the rate
by which the movement of the Fermi level is out
of step with the band broadening. If we have only
pure ! bands, Ep - C, varies as S™* and the vol-
ume derivative d InA/d InQ is ~%. Thus, for the
pressure derivative d InA/dp, a value of 2B™ sig-
nifies a “pure” behavior.

In the present case where s electrons are being
exchanged for d electrons, @, is 4.12 and we cal-
culate d In(E, —C,)/d InS to be -2.51, which is far
from the pure value -5. Using typical values from
Table III we find the volume derivative for d hole
orbits to be 2.6. The agreement with the d InA/

d InQ values for the cube and the dumbbell (Table
IV) shows that these hole sheets determine the
position of the Fermi level. On the other hand,
thorium is a compensated metal and the volume
derivatives for the orbits on the electron lungs
should therefore, in general, have the same sign
as those of the hole orbits. The magnitude how-
ever, need not be so large since there are 12 lungs
to compensate one cube and four dumbbells. Thus,
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the s-to-d transition which takes place in thorium
under increasing pressure and the compensation
which must occur is responsible for the somewhat
unexpected pressure derivative of the areas of the
Fermi surface.

VII. CONCLUSION

We have performed self-consistent energy-band
calculations for thorium at pressures up to 400
kbar by means of the local density formalism in
conjunction with the atomic sphere approximation.
Below the Fermi level the band structure is formed
by the 7s and 6d states while a 5f band is posi-
tioned above the Fermi level, but hybridizes with
the sd bands below E,. The derived equation of
state describes the static pressure and the shock
data extremely well, and the results show that at
pressures up to 200 kbar, s electrons are being

transferred into the d band. The calculated ex-
tremal areas of the Fermi surface as well as their
calculated pressure dependence is found to be in
good agreement with de Haas—van Alphen measure-
ments. Furthermore, the comparison shows that
the above-mentioned s-to-d transition is the cause
of the unusual pressure dependence of the Fermi
surface found experimentally in thorium. In sum-
mary, it has been possible within the local-density
formalism to account for the electronic properties
of thorium metal as they manifest themselves at
low pressure in Fermi-surface data and at high
pressure in shock data.
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