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Tight-binding Green's functions for surfaces, thin films, and solid interfaces.
A random-walk theory approach
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We present a formalism, derived with the aid of random-walk theory, which yields the Green s function
for a system with planar defects in terms of the associated bulk Green's functions. Exact analytical
expressions are obtained for semi-infinite, thin-film, and solid-solid-interface systems. From these, we
calculated the local density of states for (a) the (100), (110), and (111)surfaces of a model of rocksalt (two
interwoven fcc sublattices with nearest-neighbor interactions); (b) a transition-metal film modeled by a two-
band bcc structure; and (c) a solid interface formed by joining two semi-infinite sc one-band regions. Our
results are compared with the corresponding bulk properties.

I. INTRODUCTION

'The knowledge of the l.ocal density of states
(LDOS) is of importance in many surface prob-
lems because it provides a way of computing
electronic properties of the system without need-
ing to know its eigenstates. Consequently, con-
siderable effort has been put into developing re-
liable methods for its direct calculation. Among
these, those that have in common the employment
of tight-binding Hamiltonians have proved to be
very productive in the study of the electronic
structure of surfaces.

The various techniques for calculating the LDOS
in the tight-binding approximation (and which do
not require the evaluation of the state functions)
can be classified into two general categories. In
the first we include those methods which take ad-
vantage of the two-dimensional. periodicity of the
crystal along directions parallel to the surface. "
By means of Bloch's theorem the three-dimen-
sional problem is seen to take on the same form
as a one-dimensional problem. The associated
Green's function is obtained in terms of a wave
vector paral. lel to the surface, and an integration
on a surface Brillouin zone (SBZ), corresponding
to the arrangement of atoms in the surface planes,
becomes necessary. The second category includes
those procedures based on path- or walk-counting
techniques on a cluster of atoms near the surface.
The methods of Cyrot-Lackmann' and of Haydock
et al. 'belong to this category. In both methods,
the diagonal elements of the Green's function
are given. by a continued-fraction expression. The
moment method of Cyrot-Lackmann constructs the
continued fraction from the first moments of the
density of states. These in turn are calculated
by computing all the possible closed walks on the
cluster of atoms. In the method of Haydock et al.
the counting of walks is performed through a re-

cursion procedure defining a unitary transforma-
tion which takes the Hamiltonian matrix into a
tr idiagonal matrix. 4

The main disadvantage of the walk-counting
methods is that, when accuracy in the results
(e.g., near the singularities of the density of
states) requires large sizes of clusters, the nec-
essary computations may become impractical.
However, their range of applicability is quite
ample, for it is always possible to calculate the
first few moments or iterations in complicated
situations which may include the consideration
of surface dilation, ~' adatoms or layers of
adatoms, "degenerate bands, ' stepped surfaces, '
etc.

On the other hand, for some simple crystals
with only one limiting surface (clean and unre-
laxed), the methods that make use of Bloch's
theorem yield closed expressions for the LDOS
in terms of the bulk Green's function. '" More
realistic surfaces need more attention and their
analysis has-been complemented with some spec-
ial techniques such as the transfer matrix ap-
proach. " However, when this approach is ex-
tended to treat crystal films one is led to iterative
procedures. '2 8 loch's-theorem method has been
applied recently to the study of chemisorption
by calculating the change on the LDOS due to the
interaction of the adatom with the clean sur-
face." Also, the effect of direct adatom-adatom
interactions was obtained from a Dyson equation
which couples the Green's function of a clean sur-
face with that of a monolayer of adatoms. " In
spite of these developments, al. l of the work to
date' '4 has been confined to calculations on
specific crystal models [often for (100) surfaces
on sc crystals with nearest-neighbor one-electron
Hamiltonians] and thus the general validity of
their results (particularly those which appear in
closed analytical form) has not been fully ex-
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plored.
Parallel to this and motivated by other problems

bearing a similar mathematical structure, such
as in lattice dynamics, the theory of random
walks on lattices has been developed with the aid
of the concept of probability generating func-
tions. " Here, by showing that the electronic
Green's function for a general mixed crystal. can
be identified with a random-walk generating
function for the same lattice structure, we ex-
hibit an explicit link between the two classes of
methods referred to above. The advantage in in-
troducing the analytical techniques of random-
walk theory into the study of the tight-binding
approximation becomes apparent from the simplic-
ity of the analysis of defects in complicated lat-
tices. We emphasize its use in discussing the
effect of planar defects, surface or interface.

In Sec. II the formalism is presented in a suf-
ficiently general framework to take into account
interactions extending to any order of neighbors
in a multiband crystal made ap of more than one
type of atom. Expressions are derived for the
Green's function associated with an arbitrary set
of vacancy defects in terms of that for the perfect
lattice. In Secs. III and IV we particularize
these expressions to the cases of semi-infinite
and thin-film crystals, i.e., when the defects,
or traps for the walker, constitute one or more
planes of the lattice sites. In Sec. III we present
the calculations for the LDOS generated by the
introduction of a cleavage plane along different
crystal. lographic directions on a crystal model
featuring rocksalt (two interwoven fcc sublattices
with one interacting orbital per site). In Sec. IV
we study the density of states for a thin-film.
geometry and choose as an example a metal rep-
resented by a two-band bcc structure.

The final application of random-walk theory is
to the calculation of the Green's function of a
solid-solid interface. We show in Sec. V how the
interface problem is solved by expressing the
walks on the interface system in terms of the walks
on each semi-infinite region. A slight modifica-
tion of this problem, the coupl. ing of a thin film
with a one-surface crystal, yieMs the Green's
function for a model of multilayer adsorption.
We present results for a simple cubic structure.
Only unrelaxed and unreconstructed surfaces (or
interfaces) are examined. In Sec. VI we sum-
marize our results and discuss how the modifica-
tions on the LDOS due to surface relaxation effects
can be incorporated.

We feel that the random-walk approach to the
LDOS offers considerable advantages over a di-
rect application of Dyson's equation, for it pro-
vides a clear and systematic way of relating

local to bulk Green's functions. This is particu-
larly useful in the analysis of complicated crys-
tals. Traditionally, the desired features of
the "perturbed" system are build into the starting
Green's function and the analysis is carried on

by means of successive Dyson-l. ike equations.
While the general idea of this method is straight-
forward the formal development is rather compli-
cated. We find it helpful to visualize a surface
or interface problem in terms of its associated
random-walk nature. By identifying which families
of walks, taking place in the infinite perfect lat-
tice, have to be eliminated from, or need to be
included in, the description of the perturbed sys-
tem we construct the appropriate Green's function.
(See also Ref. 16.) A preliminary account of the
random-walk approach, restricted to one-band
crystals with a surface formed along a plane of
symmetry, will appear elsewhere. "

II. GENERAL FORMALISM

A. Bulk properties

To help us study the electronic properties of
a crystal consisting of several kinds of atoms,
each of which possibly contains more than one
interacting orbital, we consider a random-walk
problem on a lattice with the following structure:
Let the framework of the crystal be an infinite
simple cubic lattice, the sites of which are identi-
fied by the vectors {s}.The lattice is divided into
a given number of interwoven sublattices {I',}
labeled by the numbers {j}. The sites of a given
sublattice are all occupied by the same type of
atom, but different sublattices might either be
occupied by different types of atoms or be empty.
We consider atoms to be different when they are
either of a different chemical species or when they
occupy inequivalent sites on the crystal. Thus,
for example, to study rocksalt or nickel one would
choose two interwoven fcc lattices. For the former
crystal each sublattice is occupied by one type of
atom, whereas for the latter, one sublattice is
empty. As an example of a crystal that forms a
lattice for which the geometry yields inequivalent
sites, such as diamond, we display in Fig. 1 the
equivalent arrangement of sites for the hexagonal
lattice on the square lattice. The numbers {u}
will be used to identify the orbitals in an atom.

The first statistical question to be considered
is the following: Let a random walker be at site
(u', j', s') initially; what is the probability that
after n steps it will be at (u, j, s) when the various
transition probabilities are known 7 We define
P„(u,j, s; u', j', s') as the required probability and

. find it convenient to introduce the supermatrix
P„(s,s') whose elements are P„(u,j, s; u', j', s').
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FIG. 1. Equivalent arrangement of sites for the

hexagonal lattice on the square lattice: (a) Hexagonal
lattice, (b) square lattice.

0

The transition probabilities which will apply at
every step are denoted by (P/, ~ (s, s')], where the
exhibited member of the set represents the
probability that a walker at (P, L, s ) will on its
next step arrive at (n, j, s). We have the initial
condition

Po(o.,j, s; e', j', s') =5 .5;&.5", ",.
and the recursion formula

P„.,(s, s') = QP(s, s")P„(s",s'),
I/S

(2)

where P(s, s') is the supermatrix associated with
the {pg,'(s, s')].

It is useful. to construct the generating function

P(s, s'; z) = Q P„(s,s')z",
n=p

so that from (1) and (2) we obtain the Green's-
function equation

P(s, s', z) —z g p(s, s")P(s",s'; z) =P,(s, s') .
ltS

Given the translational invariance of our sc
lattice framework, bothP(s, s') and P(s, s';z)
depend only on the displacement s —s', and there-
fore Eq. (4) can be solved for the generating
function by the application of standard Fourier-
transformation formulas. Thus, if

(-) g IP„(s) P„(s);p., X„(k) &„(k)

.P (s) P (s) . -~. (k) ~..(k)

and

[I-zA(k)] '=[det(k;z)] '
gA.„(k) 1 —zA.„(k)

where

det(k; z) = [1—zA„(k)][1—&A„(k)]—&'A „(k)&„(k)~

The generalization of this to the case of more than
two sublattices or more orbitals per site is
obvious.

We shall show next how the bulk electronic
Green's function, G(s, s'; E), for a general
tight-binding Hamiltonian is related to the random-
walk generating function (3). This Hamiltonian
can be expressed by the supermatrix H(s, s'}
whose element H, , (s, s') represents the overlap
or hopping integral between states ~P,. ) and [@,)
centered on lattice sites s and s', respectively.
The elements H,",~ (s, s), w'hen different from zero,
represent hybridization, whereas H, , (s, s) is the
electronic energy e, associated with ~Q&). The
Green's -function equation

EG(s, s', E) —g H(s, s")G(s",s', E) =5-, -, ,I
g/S

(1O)

is seen to be equivalent to (4) if we assume
H(s, s'}—=p(s, s'), E= z', and-
EG(s, s'; E) —= P(s, s'; z). And thus, we obtain an
algorithm relating the electronic properties of
the crystal to those of a formal random-walk
problem. " This fact has been recognized, di-
rectly or indirectly, by several authors, "and
forms the basis of the moment method of Cyrot-
Lackmann to calculate densities of states. The
density of states per atom for the Hamiltonian
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H(s, s') is given by

D&(E) = —-Im g G(n,j, s; n, j, s; E), s e I'~
m

where the energy E has a small imaginary part.
The nth moment of the density of states is

of n-step walks between s' and s, (1 ~ l - q) that
give rise to P„(s„s')can be separated into dif-
ferent groups according to which of the sites
s c Q is visited first. And similarly, by sub-
tracting from P„(s,s') those walks that would
otherwise lead to trapping, we have

Q„(s, s') =P„(s,s')

~(n) E»D (E)dE
m OO

—g P P„» (s, s„)F» (s„,s'). (14)

H(s, s„,) ~ ~ H(s„s,)H(s„s) In terms of the generating functions
W
S )S q ~ ~ ~ ~ 8

2 n-y

Pn(Gyle si Qr Js s) I s c: Fy I (12)
and

F(s„s',z}=QF„(s„s')z"
n=y

(15)

where the last equality was obtained with the help
of Eq. (2) and the identification H(s, s') —= P(s, s').
The moment method requires, therefore, the
computation of all possible closed walks, whereas,
the Green's-function method, by making use of
the periodicity of the crystal, performs this enu-
meration automatically, e.g. , by calculating the
integral in Eq. (7).

Q(s, s'; z}= g Q„(s,s')z",
n=p

Eqs. (13) and (14) transform into

P s)y s~~ z E s~y s q z =P s)q s ~ 8
m=].

1&l&q

(16)

(17)

B. Local properties

The preceding results can be used as a basis
for the analysis of vacancy defects or surfaces in
the crystal. In random-walk language, these de-
fects constitute a set of sites acting as permanant
traps for the walker. By means of these traps
we eliminate those walks, included in the generat-
ing function P(s, s', z) for the perfect crystal,
that are no longer possible in the presence of
defects.

Thus, let us suppose that (irreversible) traps
exist at the set of q sites Q ={s„... , s,j and let
Q„(s,s'), s, s' Z Q be the probability that a walker
which starts to walk at site s' arrives at s at
the nth step. In order to relate the {Q„(s,s'}] to
the {P„(s,s')) we find it useful to introduce yet
another set of probabilities which we denote by
{F„(s„s')).F„(s„s')is the probability that a
walker, on the perfect lattice, starting from s'
and avoiding the sites s c Q, m Wl reaches site
s& for the first time at the nth step. Both quanti-
ties Q„(s,s') and F„(s„s')are to be understood
as supermatrices with elements similar to those
for P„(s,s'). The {F„(s„s')]satisfy the set of
equations

Q(s, s', z) =P(s, s'; z) —P P(s, s„;z)F(s„,s'; z) .

(18)

The resolution of the linear system (17}for the
F(s„,s', z) yields the desired expression for
Q(s, s', z) in terms of the basic function P(s, s', z).
In particular, for the special case of one trap,
we obtain

Q(s, s';z) =P(s, s'; z)

-P(s, s,; z)[P(s„s,;z)] 'P(s„s';z).

Solving Eqs. (17}and (18) for arbitrary sets of
traps becomes increasingly difficult for larger
numbers of traps. An exception is the case when
the traps constitute lines or planes of traps, for
then, as we shall see in the following sections,
Fourier-transformation techniques simplify the
problem considerably.

The local density of states for the perturbed
crystal we have considered is given by

D, (s; E) =-v 'ImE ' QQ(nj, s; nj, s; 8 '),
q yt

g Q P„, (s„s„)F„(s„,s) =P„(s„s'),
m=j &m &

(13)

s Q I'~.

III. SURFACES

(20)

].&l &q.

Equations (13) merely state the fact that the family
In this section we derive the Green's function

appropriate to the surface of a semi-infinite crys-
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tal. We form the semi-infinite (cleaved) crystal
by introducing a set of N contiguous planes of traps
into the perfect-1. attice framework. The function
of these traps is to confine the walker within one
semi-infinite region. Therefore, the necessary
number of planes in the slab of traps is given by
the range of the Hamiltonian. For the (100) surface
of a sc crystal, a single plane is sufficient to deal
with interactions up to third nearest neighbors.
For other surfaces on the same sc crystal or for

the same (100) surface on either fcc or bcc crys-
tals, more planes are necessary when the inter-
actions reach beyond nearest neighbors.

For clarity of presentation we discuss interac-
tions of arbitrary range only for the case of a
surface along the [100] direction on the sc lattice
framework. Thus, if we let the set of traps be

Q= f(f„ „II,)( 0- E, &N, --«„ ,I&-),
Eqs. (17) and {19)read

gw] gg 00

P(l, —m„ l, —m„ 1, —m„z)E(m„s,', m, —s,', m, —s,', z) = P(l, —s,', I, —s,', E, —s,'; z),
fft =Om ""~m2 3

0&l, &N, — & l„l,&

and

(21)

Q{s„s,', s, —s,', s, —s,'; z) =P(s, —s,', s, —s,', s, —s,'; z) —g g g P(s, —l„s,—l„s,—I„.z)
l=Ol = ~l=-~
1

(22)

(23a)

where s'=(sf, s~i, s,') and s =(s„s„s,). The convolutions appearing in these equations suggest the intro-
duction pf the partial Fourier transformations

u„(s, —s,'; z) = g P(s, —s,', o —o'; z)e' "',
v„(s„s,', z) = g Q(s„s,', o —o'; z)e'"', (23b)

so „(s„sf; z) = g E(s„s,'; e —o', z)e'" ',
where v= (s„s,) and z=(k„k, ), and by means of which Eqs. (21) and (22) become

(23c)

u „-(l,- l,'; z)w „(I,', s,', z ) =u„(l, -s,'; z ), 0 & l, & N
l~=O

(24)

v„-(s„s,'; z) =u„-(s, —s,', z) —g u„-(s, —I,; z) w„-(f„s,'; z) .
l g"-0

(25)

By comparing Eqs. (24) and (25) with Eqs. (17) and (18), we observe that the three-dimensional problem
with a slab of N trapping planes has been reduced in the transformed h: space into a one-dimensional prob-
lem of N contiguous traps. In particular, when one has one plane (l, =0) and three planes (l, =-1,0, 1) of
traps, we obtain, respectively,

and

v(s„s,') =u(s, -s,')-u(s, )u '(0)u(-s,') (26)

(27)

v(s„s,') =u{s, —s,') -u(s, )u"'(0) u(-s,')
—[u(s, —1)-u(s, )u '(0)u(-1)][u(0) -u(1)u '(0)u(-1)] '[u(1-s,') -u(l)u '(0)u(-s,')]
-(u(s, +1)-u(s, )u '(0)u(1) —[u(s, —1) -u(s, )u '(0)u(-1)][u(0) -u(1)u '{0)u(-1)] '

x [u(2) —u(1)u '(0)u(l)])
x (u(0) -u(-1)u '(0)u(1) —[u(-2) -u(-1)u '(0)u(-1)][u(0) -u(1)u '(0)u(-1) ] '[u(2) -u(1)u '(0)u(1) ]] '

x(u(-I-s,') -u(-1)u '(0)u(-s,') - [u(-2)-u(-1)u '(0)u(-1)][u(0)-u(1)u '(0)u(-1)] '
x [u(l-s,')-u(1)u '(0)u(-s,')]],
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where we have omitted the subscript & and z. The expressions above can be further simplified if the
planes of traps effectively confine the walker to one region and if the regions are mirror images of each
other with respect to the cleavage plane. In this case v(8„8,') =0 when s, &0 and 8,'& 0, u(s, ) =u(-s, ), and
Eqs. (26) and (27) reduce, respectively, to

'U(s1«81) =. u(81 —81) -u(s1 +s1) «. s1«81& 0 (26)

v(8»8,') =u(s, —8,')-u(s, +8,') —[u(8, —1) -u(s, +1)][u(0)-u(2)] '[u(s,' —1) -u(8, +1)], s„s,'& l.
Equation (28) can be integrated immediately to yield

(29)

Q(s1«81«o' —v «s) =I (s1 —81«o' —0' «8) —P(81+81«o —o «8) «81«81& 0.

This remarkably simple result which expresses the surface Green's function as the difference of two
bulk Green's functions has been obtained previously for the special cases of a one-band sc crystal by
Dobrzynsky and Mills" and for a two-band CsCL-type crystal with one orbital per atom by Ho et al.
is clear from our derivation, this result only depends on the range of the interactions and on the symmetry
properties of the cleavage plane. It is independent of both the number of interacting orbitals and the kinds
of atoms which constitute the crystal.

According to Eqs. (6) and (7), Eq. (30) can be expressed as
2F 2& 2''

Q(8„8,', o'- o'; z) = "'( )(e"(31(31-31) 8-ikl(31+31))U(k. S) 8 8 «& 0
0 0

(3 la)

or, provided the walks are symmetrical in the 8, direction, that is, p(s„cr) =P(-s„cr), for then U(k„T(; z)
=U(-k„((;z), we have

2w 2$'

Q(s1, 81, o —v; 8) =
3 dk dk1 e sink181slnk(81U(k; z) «81, s1&0.

277 0 0 0

This 1.ast equat:ion indicates that the eigenfunctions
associated with the semi-infinite crystal. are of
the form [q(", (s)) - e '"'sink, s„and clearly reflect
the boundary conditions imposed on the system.

We now turn our attention to the (110) and (ill)
surfaces when formed by one plane of traps. We
find it convenient to embed our original sc Lattice
framework into a larger lattice in such a manner
that the surface is of the (100) type (with as as-
sociated SBZ of square or rectangular shape) for
the new lattice. The additional. sites involved are
empty and if the Hamiltonian is properly rescaled
the problem remains unchanged. %e i1.lustrate the
procedure in Figs. 2 and 3 for the (110) and (ill)
surfaces, for which the new coordinates can be
chosen to be, respectively,

1 3( 1 3)«3 3( 3 1)«3 3

be obtained by first performing the inverse
Fourier transformation of Eq. (33) and then re-
ferring the resulting expression of the original
coordinate system.

The cleavage plane for the (110) surface of the

() ~ 0 ~ 0 ~ 0 ~ 0

0 ~ 0 ~ 0 ~ 0

0 ~ 0 o 0 o 0

() - 0 ~ 0 ~ 0 ~ 0

S1 = 3(S1+S3+S3)«S3 = 3(S1 —S3) «S 3 = 3 (81+S3-283).
(32b)

It is clear that Eq. (26) holds true for the new
reference system, i.e.,
vk(S„S,';z) =uk(S, -S,';z)

-u-„(S„.z) [u„-(0;z)] 'u-„(—S,';z), (33)

and thus the desired surface Green's functions can

0 ~ 0 ~ 0 ~ 0

««'.5

S2

FIG. 2. Embedding of the sc lattice framework into
a larger lattice for the analysis of (110) surfaces. We
only show a layer of sites parallel to this surface and
the dots are the additional empty sites.
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S3" On the contrary, the (111)surface of the cubic
crystals is not formed on a plane of symmetry and
Eq. (28) is not applicable. To analyze further this
type of surface we recall that for the perfect,
transl. ational. ly invariant, lattice framework we
have

0 0 1

P (8; z) - z Q p (S - 8 ')P (8 '; z ) = 63 3I,
S'

(36)

0 0 which, in the partial Fourier space we have em-
ployed, becomes

' S2
uR(S„z) —z g A.„-($,—$,')uK($,'; z) = 6

(36)

FIG. 3. Same as Fig. 2, but for I,'111) surfaces.

cubic crystals is again a plane of symmetry, and
we have in this case that

where

~-„($,) =g p(S„Z)e '*'. (37)

s~+s2~ s2+s~ & 0. (34)

1t lt 3i 3i 3 3P } ( 1 lt 3 2i 3 3t )

-P(s~+s3~ s3+s~ s3 s3$ z) For interactions which vanish beyond nearest
neighbors in the S, direction, Eq. (36) becomes

[I—z&„(0)]uK(S, ; z) —zAR(-1) uK(S, + 1;z) —zhR(1) uK(S, —1;z) = 63,I,
and since

v K($„-$,', z) = 0 =u„(S,+S,'; z) -' uK(S» z) [uK(0; z)] 'uK(S,'; z), S» S,' & 0,

(38)

(39)

we conclude that

uR(S„z) = {uR(l;z)[u-„(0;z)] ] ~uR(0; z),
S &P

and

(4Oa)

1

[I—zAR(0)]BR =zAR(1)BaK+zAR(-1),

respectively, from which we obtain

&R(1)AR + &R(-1)AR = &R(1}BR+ &R(-1)BR'.

(42c)

(43)

$ 00.
Thus, if we let

A„=u-„(1;z)[u"„(0;z)] '

(4ob)

(41a)

uR(W, ; z) = {uR(-1;z)[uR(0; z)] ) u-„(0; z), Furthermore, if we restrict the discussion to the
case when the interactions between each pair of
nearest neighbors have the same strength, the
quantities AR(+1) are of the form AR(1) = n, T and

&K(-1)= c3,T, with n, and u, scalars, and we
find from Eq. (43) that

ERj Q«gBK ~ (44)
(41b)BK =uR(-1; z)[uK(O; z)]-,

the recurrence relation (38) yields, for S, =0,
S, =-1, and S, = 1, the expressions

[I—zAR(0)]uR(0; z) =I+zAR(1}BRuz(0;z)

+ zAR(-1)ARuR(0; z),

[I—zA.R(0)]AR = z&R(1) + z&R(-1)AaK

and

(42a)

(42b)

Now, since the walks on the perfect lattice are
not bias ed towards any specific dir ection, from
Eqs. (40), (41), and (44) we conclude that
~a, n ,'( is necessarily unity, and hence n, n', rep-
resents only a phase factor. There is another
solution to Eq. (43), namely, AR =BE, but it does
not satisfy the boundary condition P„(s)-0
when

~
s~-~, which in turn implies uR(+S, ;z)-0

ass
Finally, through the employment of Eqs. (40),

(41}, and (44), together with Eqs. (23) and (6),
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Eq. (39) is transformed into
2% 2' 27(

Q(S„S,', Z -1";z)= d~Ke ' "' '-.'-[e '""~-(~,~-',)"e'" ']
0 0 0

x[e'«1s'x (o. ,o., ')"1e '«i 'i]U(K;z), S,&S,'&0 ~ (45)

The expression above is a generalization of Eq. (31), and r .duces to it when the surface is a plane of sym-
metry, for then a, n', =1. Also, we observe that the eigenfunctions have the form

~y„-(S)&- e 'x'[e '«1s~ —(o.,o. ,')s~e'«isi].

For the particular case of a (111)surface on a sc crystal one has

(E~+1C3) + -&(E2-IC3) + e 2fE3

with Q-x Ni+.

As an example of the preceding, we present calculations for a model of rocksalt made up of two inter-
woven fcc sublattices (denoted by I', and I', ) and one orbital per site. Each orbital interacts only with its
nearest neighbors. In this case

e, t)).(k)'

.tA. (k) e,

where &, and &, are the electronic energies, t is the two-center hopping integral, and

)).(k) =2(cosk, +cosk, +cosk, ).
For the generating function P(s;z) we obtain

P(s z) =P' (s. &)
(1-«e,} '4(s}

, [(I-ze, )(l -ze, )] '~'[I —&(s)]

[(1-«e, )(1-ze, )] ~'[I - &(s)]

(1-«e,) 'x(s)
9

where A(s) =1 when s connects two sites on the
same sublattice and vanishes otherwise, and

Rs' 2v 8s'

(P(0) (~s. g)
(2x) 0 0 J0 1 g)).(k)

is the Green's function for the infinite, one-band
sc crystal with nearest-neighbor interactions,
where

P'"(s —s' &) =-P'"(s —s' —4)

s e I', and s' E I', or s' H I', and s'el, . (50b)

The employment of Eqs. (7), (9), (46), and (50),
together with

[1-g'A. '(k)] '=2([l- &A, (k)] '+[1+&)(k)] 'j (51a)

g=[(l-ze, )(l-ze, )] ~'zt. (49)

s, s'~ l', or s, s'e (50a)

In deriving Eq. (47) we have used the following
property of nearest-neighbor walks on the two sub-
lattice structures we are considering: Any two
sites on the same sublattice may be connected
only by walks having an even number of steps,
whereas two sites on different sublattices are con-
nected with an odd number of steps. Therefore,
P ' (s —s', f) is a series in even powers of f when
s and s' belong to the same sublattice and a series
in odd powers of g otherwise, and thus

P(0) (~s s I. g) —P(0) ( s sr. g)

P.(k)[1-g') '(k) j-' = —,'([1-P (k)]-'

—[1+g)).(k)] 'J

leads to (47).
In Figs. 4-6 we show the local density of states

.(I DOS) per atom for the first few layers of the
(100), (110), and (111)surfaces and compare them
with the bulk density of states. Gur choice of
parameters was e, =-e, =-2 in units of t. All
curves show the band™gap characteristic of binary
crystals with only nearest-neighbor interactions,
its width being determined by 2&. This width will
narrow for extended interactions as found in Ref.
2. For the (100) and (110) surfaces we calculated
numerically the integral representation"

I ~10(~ 001 (112 ( 2) ) (q I)&12
ImP(0) (s„0,0; g) =, dk, cossP,Z

-p g
(52)
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E=O The bulk density of
states in the E & 0 rregion is
not drawn for clarity.
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with

q =4/(1 —2f cps) '

and K being the complete ell. i tic '
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IV. THIN FILMS

To calculate the Green's function for a
. we introduce two parallel slabs
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0.6 FI . 5. The same as Fig.
4, but for the (110) surface.
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FIG. 6. LDOS for the first
few layers of the (111) sur-
face of the rocksalt model:
(a) Layers of the type-I
atoms; {b) layers of type-II
atoms.
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of planes of traps into the infinite l.attice frame-
work. It is clear that the derivation of the basic
set of equations for this problem is the same as
that for the one-surface problem, and that it is

only necessary to extend the summations in Eqs.
(24) and (25) to the two slabs of traps. When the
film is formed only by the planes (0, f„l, ) and
(I,, /~, l3), we have

(54)

v(s„s,') =u(s, -s()-u(s, )u '(0)u(-s,')
- [u (s, —I ) - u(s, ) u '(0)u(-I )j[u(0) -u(I )u '(0) u(-L)] '[u(I. - s,') -u(I ) u '(0)u(-s,')] . (53)

And if we again assume the symmetry property u(s, ) =u(-s, ), together with the condition that v(s„s,') =0
if s, and s,' correspond to sites on different sides of the planes of traps, we have

u(s, +s,') =u(s, )u '(0)u(s,') =u(s, )u '(0)u(-s,')

and thus

v(s„s,') =u(s, —s() —u(s, +s,') —[u(s, —I ) —u(s, + I )][u(0) —u(2I )] '[u(L —s,') —u(L+s f)],
0&st, s

Furthermore, since [see Eq. (40)]

(55)
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u(s, ) =u(0)[u '(0) u(1)]'&' = [u(1)u '(0)]'&'u(0),

the last term in Eq. (55) can be expanded to yield

'U(s~i S|)=1C(S~ S~) Q(S~+S~)

(56)

—g [u(2nL-s, -s,') -u(2nL -s, +s,') -u(2nL+s, -s,')+u(2nL+s, +s,')], 0&s„s,'&L,
n=l

and hence we obtain, for the Green's function of a film of width L cut along the [100]direction, the
expression

(57)

Q(s~ s|(, o —o l 2) =P(s~ —s~i v —o
~ z) -P(s~+s~~ 0 —o l 8)

[P(2nL —s, -s,', o-o', z) -P(2nL-s, +s,', o- cr', g)

P(2nL+s, -s,', o —o'; z) -P(2nL+s, +s,', a —o'; z)], 0&s„s,'& I .
(58)

If the equation above is employed to construct the LDOS for the film it becomes necessary to know ex-
plicitly the nondiagonal terms of the bulk Green's function. However, since this last function is expected
to decrease rapidly as the distance between the two reference sites increases, only a few terms in the
series above will make important contributions to the LDOS for moderately large I. An alternative form
of Eq. (58), obtained by summing the series, proves to be more advantageous in actual calculations, par-
ticularly when the bulk Green's function is not available, as is often. the case. Equation (58) can be ex-
pressed as [see Eqs. (6) and (7)] as

2v 2v

Q(s„s,', a-o';g) = » dlk, di&e '" l' ' ~U('k;z)iim F„(k,),
0 0 0 N~~

(59)

pic& s)
E„(k,) =e ' ~ '~ 'f -e '" '~"~'+i [cos(s, -s()-cos(s, +sf)]e' ~

1
(60)

or, provided U(k„z;s) =U(-k„z; s), as

2r 2%'

Q(s„s,', o-a';z)=, dec '"' ' ' dk, U(k;z)lim E„(k,),
0 0 N~

(61)

where

E„(k,) =E„(k,)+E„(-k,)

=4sink, s, sink, s,' cos2k, LM+cos k,L
sin2 k,LM

sin kiL

As M- ~ the first term in the large parentheses above oscillates rapidly around k, =0, and therefore it
does not contribute to the integration in Eq. (61). The second term behaves like the interference function
in Fraunhofer diffraction and thus we have

( )"—
sink L ~ L ' L

l=y

(63)

Hence,

2 . l7Ts~ . l7Ts~ 1
Q(s s' o-o' s) = — sin 'sinI L L (2x)' dree ' ')U —k z9

0
(64)
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It is interesting to note that the boundary condi-
tions which define the film provide us with wave
functions of the form

lQ-„(s)) - e ' 'sin ', 0&l ~L.„;p.g . lns, —U~o~(k g )
cg

(66)

If these are compared with those we obtained for
a semi. -infinite crystal we find, not unexpectedly,
that the introduction of a second plane of traps
has the effect of quantizing the values for k, (i.e.,
we have imposed the boundary conditions for a
one-dimensional box).

As an application of this formalism we now

study a metal film represented by a two-band
bcc structure. In this case the associated random-
walk problem is chosen to have a structure func-
tion

where

a, =(1 —ze') '(f, —z„),
b„=(1—ze") '(g, —z~),

c =[(1-ze')(1 —ze )] ~'z~,

with

z, =zt "/(1-ze'},
z„=zt "/(1-ze'),
z'„= [(y")2/t -t "]z.z„,

(67b)

(6Vc)
- e'+ t"X(k)

e + t" A, (k) . (65) &, =[2z,z, (l-z2~)] '

&& fz, + z~ + [(z, +z„)' —4z, z~(1 —z2~)]'~ j, (67d)

where &' and e are the energies for s- and d-
type electrons, respectively, t" and I;""are
nearest-neighbor hopping integrals, y'~ repre-
sents s d hybrldlzatlon) and

A.(k}=8cosk, cosh, cosh,

(Refs. 17). For the Fourier transform U(k;z) of
the generating function P(s; z), we obtain

(68)U (k &,) = [1—&, A. (k)j ',
which is the Green's function in k space for the
infinite, one-band bcc crystal with nearest-neigh-
bor interactions.

It is possible to obtain the density of states of
our bcc film in closed analytical form. For it
can be shown that"

leg

(2 )2

0, q'&1
(69)

where

q =l8&cos(lv/L)l ',
E is the complete elliptic integral of the first kind, and P is given by Eq. (67d) when the energy E has a
small positive imaginary part (i.e., z =E+le). Then, employment of Eq. (69) into Eqs. (66), (64), and
(20) yields for the LDOS

I, &z ' ~ '
l c(osl/v}lL

with

8$„&z, leos(lw/L) l

(VO)

A. =[2m'L(1-z2~)(f, —f )] ',
&, =[(1-«') '(~, -z,)+(1-«') '(4-z.}],

and where the upper limits in the summations, L„are the larger integers satisfying the condition

I8g, cos(l v/L. ) I
&1.

Furthermore, we observe from Eq. (70) that D(s» E) diverges for those values of the energy for which q
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vanishes, or equivalently, when s~ =1. The energies at which this occurs are easily found to be given by

'(-(e'+ e')+ [(e' e-')'+ 4(r")'] ) (71)

These singularities are nonessential since the elliptic function E diverges logarithmically when its argu-
ment approaches unity. Also, it is interesting to note that in case I. is even, that is, when the film is
made up of an odd number of layers, there are extra divergencies for the LDOS when s, is odd. These are
6 functions, and appear located at the same energies given by Eq. (71). To see this, we consider the
imaginary part of that term of the trace of Eq. (64) for which f = ,L, s, =—s,', and o'=o'. Taking into account
Eqs. (66), (68), and (70), we have

2tr 2 fr

Im-sin' ' „dx[U»(-,'v, p7; )z+I'/»(-,'n, p7;z)]
2 27l'I p p

2Sln 2g 2T ~ «]
=fmdt, sin' ' g (+)B,r, ' lim lim d'k, dk» ', -Scos—"cosk, cosk, —

2 X &g2 ~~~ 0 0 g&+8 L g~+Z

=sdsio — g(s)B,d, 'iiio dk, dk ii~ k -8 cos—cosk cosk jx~L/2 p p ( L

=csin' ' Q (+)B,f, '6(f, '). (72)

Thus, we see that this term contributes to the
LDOS only when s, is odd and when P,-~, in this
limit z~ =1 and E satisfies Eq. (71).

In I"ig. 7 we show the LDOS for the first. , second,
and fifth layers for a film of ten layers. The val-
ues chosen for the interaction parameters were
&'= —e"=1, t =-0.1, andy~=-0. 2 in units of
jf'j. The three curves show the two-peak struc-
ture characteristic of s and d orbitals. The most
interesting feature of the LDOS at the first layer,

l

when compared with that at the center, is the
depletion of the s peak at the expense of an in-
crease of the density for the d peak. This situa-
tion is reversed for the second layer, and we found
this alternate behavior to hold for subsequent
layers. As a consequence of this, the density of
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! &I

I Ij
I

I r
I

I

I

I

jl

I) II

II
I lj

II 05
Il

e

I

Film 10 layers
lst layer
2rld layer
5th layer

I!I

IIII

II I
il!i

I

y

0.
jl

II

II

jl

5-
I

I

I
I

I

8ulk
Ist layer-surface

—~-- Ist layer film

--r~ +
I l I I I I -~k—M

E/It I

FIG. 7. LDOS for the first, second, and fifth layers
for a film of ten layers with a two-band bcc structure.

E/It I

FIG. 8. Density of states for a two-band bcc struc-
ture: — —.— —,the first layer of a ten-layer film;
————,the first 1ayer of the semi-infinite system;

, the infinite system.
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observe too, that the LDOS for the one-surface
system (at its first layer), when compared with the
bulk density, shows a depletion of the s peak and
an increase of the d peak. This effect is even
stronger at the surfaces of the film.

V. SOLID INTERFACES

Let; us consider two semi-infinite crystals with
(100) surfaces. The two crystals, denoted by a
and b, may differ in chemical composition and
lattice structure, but both are characterized by
a sc lattice framework (as described in Sec. II)
of the same lattice spacing. A planar interface
is formed by connecting these two systems al.ong
their surfaces. The geometry of two different
connections for two sc regions is shown in Figs.
9{a)and 9(b), whereas in Fig. 9(c) we show an
interface between a sc and a bcc region.

We first introduce the matrices

)w- i ] r~
\ ( r

\ l ((
) ((' I~L&

1/),

~„(s,s') =

P(s, s') =

P"(s, s')
P"(s,s')'

r+aa(s sg) gab(s se)w

+bc( I) J bb( g)

(73)

(V4)

FIG. 9. Geometry of interfaces: {a) and {b) exemplify
connections between two sc regions, in {c)one region is
sc and the other bcc.

states averaged over all layers was found to be
very close to the LDOS at the center of the film.
The finite discontinuities shown by all curves are
due to the energy dependence of the upper limits
of the summations in Eq. (VO). In Fig. 8 we com-
pare the LDOS for the first layer of the ten™layer
film with those for the surface of the semi-infinite
crystal and for the bulk infinite system. Here we

where 8„"(s,s') is the probability that a walker
starting at s' in region v arrives at s in region p,

after the nth step, whereas p""(s,s') is the tran-
sition probability for a jump from one region to
the other. For simplicity we specialize to the
case where the P""(s,s') vanish if s and s' are not
nearest neighbors. Both quantities, the {4„'"(s,s')J
and the (P""(s,s')j, are supermatrices with ele-
ments similar to those for P„(s,s') and p(s, s').
Now if we denote by Q'„(s„s,', o- a') and
Q~(s„s,', o'- &x') the probabilities for the n-step
walks between sites s' = (s,', o') and s = (s„o)which
are confined to the regions a and b, respectively,
we have that

n j,n2, ns
(n &+n 2+n 3+2=n)

Q„'{s„1,o —o,)p"(1, 1, o, —o,)Q'„(1,1,o, —q, )

xp"(1, 1, o, - o,)Q'„(1,s(, o, —&x') + ~ ~ ~ (V5a)

J'„"(s„s,', v-o') = g g Q„' (s„1, o-o, )p"(1, 1, o, -o)Q„' (l, s„', cr, -o')
ny n2 fy g

(n y+n +y=n)2

+ g P Q„' (si, l, o-o,)p"(1, 1, o, -v5)Q„(1, l, o, -o,)p"(], ],, g, -o,)
n ] f ~ ~ ~ Nn 4 Iy

y y ~ ~ ~ fy

(~ gng+s=n)

Q„' (l, l, q, —o2)p"(I, l, o, -v, )Q„' (l, s,', o, -o')+ ~ ~ ~,
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and simil. arly for J„"and J„' . In terms of the generating functions

J""(s,s', z)=g J„""(s,s')z"
n=p

(76a)

Q"(s, s'; z) = g Q„"(s,s')z",
n=o

(76b)

Egs. (75) become

J"(s„s,', o- o'; z) =Q'(s„s,', o —o'; z)+ g Q'(s„ 1, cr- o„z)p'~(1, 1, o, —o, )zQ'(I, 1, o, —o, ; z)
Qg, ~ ~ Qg

xp"(1, 1, o, o,)zQ'(i, s,', o, -o';z)+ ~ ~ ~

and

(77a)

J"(s„s,', o- cr', z) = g Q'(s„ 1, o - o„z)p"(1,1, cr, —o, )zQ'(1, s,', o, —o'; z)

+ g Q'(s„ 1, o-o6, z)p' (1, 1, o'6- o', )zQ'(I, 1, o'5-o4; z)p "(I,1, o, - o'3)z

ty] s ~ ~ ~ sa6

x Q'(1, 1, o, —o'„z)p'~(1, 1, o, —o,)zQ (1,s,', o, —o', z) + ~ ~ ~ .
Finally, with the introduction of the partial Fourier transforms

(77b)

y„- (s„s,';z) = P J ""(s„s,', o', z)e'"', (78a)

A.-„(1,1) = Q p""(1,1, o)e'"', (78b)'

v„-(s„s,';z) = g Q"(s„s,', o;z)e'"", (78c)

Egs. (77) reduce to

X„"(s„s„z)=v'„-(s„s„z)+v„-(s„1; z)A, „- (1, 1)zv-„(1,1;z)

x [I—Ag~(1, 1)zv-„(l, 1;z)A.'-„(I,1)zv&(l, 1;z)] 'h~p(1, -1)zv~g(1, s,'; z) (79a)

g"„(s„s»z) =v„"(s„1;z)jf —A.„"(1, 1)zv„(1,1;z)Ag™(1,1)zv'„-(1, 1;z)] A, „- (1, 1)zv„-(l,s» z) . (79b)

It can be readily verified that Eqs. (79) satisfy the
Dyson equation K

0 gab

ba
(81c)

XK

ba
'~ XK

ab
Xa

bb
XK &

Xz (spy spy z)

=vs�

(spy spy z)

+v„-(s„1;z)A,-„(l, I)g„-(1,s„z),
where

(80)

(8la)

Thus, to obtain the Green's function for the
interface system we need to construct the coupling
function A.„" from the geometry of the connection
and the interface interaction t. When one con-
siders, for example, two regions of the same
structure joined to form an otherwise perfect
cubic crystal, we find

V K

r a
g

b
VK g

(Slb)
!
t, sc

A, „"(1, 1) = A."„(I,1) =& 2t(cos k, + cos ks), fccab ba

! 4t cos k, cos ks, bcc .
(82)
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The functions v„" and v„- can in turn be calculated
from their respective bulk counterparts u„and
u"„, as indicated in Sec. III.

For computational purposes we find it con-
venient to express Eq. (79a) in an alternative form.
We shall restrict ourselves to interactions, in
the bulk of the regions a and b, which vanish be-
yond nearest neighbors in the s, direction (that is,
up to third, second, and first nearest neighbors
for sc, fcc, and bcc crystals, respectively). We
shall further assume that the interface is formed
by surfaces which represent planes of symmetry

u"„{s,; z) =Ap[zA. „-(l){A„- -di„-)] ', s, &0

and thus Eq. (28) can be written

1S -).
1 1 %'+ &v„«(s„s,'; z) =A.„- A.„" z '&„- (1),

(83)

s~ + s~+0.

Finally, by substituting this last result into Eq.
('79a), we obtain, after some manipulation, that

of the respective perfect crystals. We obtain from
Eqs. (40) -(42) with A„=B„that

m j

X: (s„s(; *. ) = s ' {(d.'-)" "Q (d';)*"'[S.-(&)]'s (d:-)"[S."(()I'S:- IS!'((,()d'-„[S'(&&] '
r=O

x[i-s'„-'((, ()d'„-[s'-„(0] 's'-„'((, ()d';[s':(0] ']'s'„-'0, ))(d'-. ) i[s'."(()1'), s, -s', &o.

For the particular case when both regions a and b constitute one-band sc crystals and the connection is as
shown in Fig. 4(a), aH quantities in (85) are scalars and A."„(1}=t„A.„-(l)=t[„and X'„"(1, 1) = I,"„(I,1) = t, so
that

]t-„(s~,s~;z) =(zt, ) ~ g {d4„)2"). ).'~+ g-„) ).
'

)d4„-I 1-
- r=o g b

For the sc regions we are considering, we have

a COS @~STu-„(s,; z) = — dk,' 1 —2zt, (cos k, + cos k, + cos k, )

= [1- 2zt, (cos k, + cos k, )] '(1 - W') "W ')[1- (1

~2 -].
K

Ways(2]d) s & 0,

(86)

where

W=2zt, [1—2zt, (cos k2+ cos k, )] ',
and therefore

A„- = W '[1-(1-W')"]. (88) (90)

f

From the structure of Eq. (86), we observe that
this system can exhibit localized states, and that
the wave vectors ~ associated with these states
are determined by the dispersion relation

1 —gA. -A."=0,

The LDOS for the interface system we are con-
sidering is given by

D"(s,; E) =- -ImE 'J""(s„s„0;E '),

(89)

where E has a small and positive imaginary part.

where T =t'/t, t, . Moreover, since the boundary
condition u„-(s,; z)-0 as s,-~ implies that IA„-I &1,
a necessary condition for the occurrence of local-
ized states is that v&1, i.e., the interface inter-
action must be greater than the geometric mean of
the bulk interactions.

The contribution to the LDOS from the localized
states is, from Eqs. (89) and (86), given by

ii,"„(s„d)= —,rsi ff ds lim (d-„)" '[i —sd'„-A'"„—i sds(d; )s)]"
0 0 '0~Q

d]TIP I' ' '6(l- rA'-A'„-), s, ~l.
is 0 0

Using the 6-function property

(91)

6(f($))= Q — ~(5 —&i),
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where $; are the zeros of f(g), into Eq. (91), yields after some manipulation the expression

4~4)
(92)

where $ = cos k, + cos k, and K is the complete
elliptic function of the first kind.

We calculated the I DOS for the first two layers
from each side of the interface. The I DOS was
obtained through the numerical. integration of

I

Eq. (86) over the interface Brillouin zone. We
chose two sets of values for the Hamiltonian pa-
rameters. In Fig. 10 we show results when

e, = -e~ = 1.5, t, = -1.25, and t~ = -0.75 in units of
ifi. This set of values represents a metal joint

LDOS (E)

0.2

I st layer
2nd layer

Side a

~a = —~b =1.5
= —1.25

&b = —0.75
= —1.0

E/l t l

LDOS (E)

Side b

~a =~b =1.5

FIG. 10. LDOS for the
first two layers from each
side of the interface between
two sc regions.
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LDOS (E)

I)

I
I

I
I!

0.4!-
I

I

I st layer
2nd layer

0.3i—
Side a

sa=-sb=01
t, = —1.333
tb = —0.333
t= —1

0.2—

0,1—

1st layer
2nd layer

ca=-cb=01
n = - 1 333
tb = —0.333

1 = —1.0

FIG. 11. Same Rs Fig. 10.

where the bandwidths for each region are similar,
the main difference being the location of the band
centers. The shapes of the curves shown in Fig.
10 closely resemble those for the LDOS of one-
band sc (100) surfaces'; nevertheless, they differ
from the latter by not being symmetrical with
respect to the band centers. This distortion re-
flects the mixing of states from each region in-
duced by the interface interaction, the effect being
more pronounced for the first layer. Even though
&&1, the interface does not exhibit localized
states. Our second choice of parameters was

Oe 1~ trf Oe33~ and ty 1o33 ln units of
~t~. In this case the band widths are dissimilar,

but the band centers almost coincide. In Fig. 11
we show the LDOS for bulk states. Now the LDOS
does not resemble the semi-infinite, clean sur-
face properties of each region. With this set of
parameters we found localized states and their
density of states, calculated from Etl. (92), is
shown in Fig. 12.

VI. SUMMARY

%e have presented here a method for the exact
calculation of the electronic Green's function as-
sociated with planar (unrelaxed) defects on crystals
described by tight-binding Hamiltonians. %e
emphasized its use in the study of one-surface
systems, thin films, and sol.id interfaces. The
method is formulated in the language of random-
walk theory, since the electronic Green's func-
tion can also be seen as a generating function for
the probabilities associated with a stochastic
process. By establishing its nature, that of a
random walk on a lattice framework containing
a set of traps, we have been able to derive ex-
pressions of considerable generality for the local
Green's function in terms of that for the infinite
system. This generality allowed us to consider
mixed crystals with various interacting orbitals
per atom and for interactions of arbitrary range.

For the ease of one-surface crystals, we have
shown that, under certain restrictions pertaining
to the symmetry properties of the cleavage plane
and the range of the interactions, the surface
Green's function can be simply expressed as a,

difference of two bulk Green's functions. How-
ever, when these conditions are not satisfied
it becomes necessary to use wave-vector-de-
pendent bulk properties and the surface Green's
function is obtained only after an integration over
the SBZ. For the model of roeksalt we chose
to exemplify surface calculations, we obtained
the LDOS for the (100), (110), and (111)cleavage
planes, and observed that the extent of band
narrowing near the surface increases as the
necessary number of bonds broken per atom to
form the surface increases. As expected, for
clean and unrelaxed surfaces with nearest-neigh-
bor interactions, "the system does not show
localiz ed s tates.

In the ca,se of thin films we obtained the local
Green's function both as a series of bulk Green's
functions and as a compact expression involving
an integration over the SBZ. The latter proved
to be useful for actual calculations, and in fact,
for the bee transition-metal film we examined, the
LDOS was obtained in closed analytical form. This
permitted a precise analysis of the singularities
exhibited by the density of states. The relevant
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COOS (E) LDOS (E)

y 0.3—

sum over layers
I st layer
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~a= —~b =0.1
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ta = —0.333
tb = —1.333

t = —1.0 FIG. X2. Density of local-
ized states for the first bvo
1ayers from the interface,
and for the sum over all
layers of each side.

I I I I

E/I t I E/It I

feature here was the alternating difference in the
density of the s and d peaks, one increasing at the
expense of the other, as one goes from one fil.m
layer to the next.

Our formalism for the LDOS does not require
explicitly of the eigenstates of the system; never-
theless, for both semi-infinite and thin-film sys-
tems, the wave-vector dependence of these states
was determined. Also, it is interesting to note
that for the two-band models we studied, the final
expressions for the local Green's function can be
written in terms of the bulk Green's function for
the corresponding one-band systems. This reduc-
tion can be accomplished in general for multi-
band crystals.

Exact tight-binding densities of states can be
cal;culated for a large class of interface problems
by means of our random-walk approach. Thus,
for exampl. e, if we are interested in studying a
system with two interfaces separating three dif-
ferent crystalline regions, it would be required
to calculate separately the Green's functions for
two semi-infinite regions and that for a film re-
gion. Subsequently, these functions ean be pro-
gressively coupled, first, one of the semi-infinite
regions with the film region to create one of the
interfaces in a manner similar to that shown in

Sec. V. The resulting Green's function would then
be coupled with that of the remaining region to
form the second interface. The method is equiv-
alent to a repeated use of the Dyson equation.

Also, it is clear that the electronic properties
of mono- or multilayer adsorption can be modeled
in this manner. Here we illustrated the procedure
for a simple model of a system with one' solid
interface, and found that the appearance of local-
ized states is controlled by the geometry of the
interface [see Egs. (92) and (90)] and by the rela-
tive strength of the interactions at the interface
when compared with those for the bul. k regions.

These localized states were determined by in-
spection of the singularities appearing in the ex-
pression for the interface Green's function. The
singularities are of two types. First there are
those which originate from the bulk Green's func-
tion and therefore represent bulk states. But
we also found others arising solely from the fact
that the system contains an interface [see Eg.
(90)]. The surface and film models we chose to
study here only show singularities of the first
type, but the consideration of relaxation effects
would give rise to singularities of the second type.
This procedure is equivalent to the so-call. ed
phase-shift method originally developed by
De Wittis and subsequently applied by several
authors to various modeled solid surfaces. "
Also, the theory of Garcia-Moliner and Hubio"
has been derived along similar lines. The main
difference between these formalisms and ours is
that they determine the localized state energies
from a determinental equat;ion involving only the
bulk Green's function and the perturbation poten-
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tiat. , whereas we actually calculate the local
Green's function under consideration.

Finally, we have not considered here the effect
that the relaxation of the surfaces (or interfaces)
has on the LDOS of the system. However, these
effects can be calculated by the method we have
just described to study unrelaxed interfaces.
Thus, for example, first-layer relaxation of a
surface can be incorporated through the coupling
of a monolayer film with an unrelaxed surface of
the same material. The electronic energy at the
first layer and the interaction through the "inter-
face" could then be determined self-consistently
for tight-binding Hamiltonians of the Har'tree-
Fock type.

The emphasis in this paper has been on develop-
ment of techniques and methodology rather than on
specific applications to real materials. In view
of the fact that schemes more realistic than the

tight-binding approximation can be employed with
success to yield an improved LDOS (although few
useful analytic results would be expected), such
an effort might appear unjustifiable. However, the
tight-binding approach shows considerable flex-
ibility in incorporating surface relaxation and re-
construction effects, "'"thus allowing for a de-
tailed analysis of how surface states arise
Furthermore, this flexibility facilitates the study
of such surface properties as, for example, local
vibration frequencies, "where other methods
lead to less tractable calculations. The work
presented here may serve as a basis for these
kinds of studies.
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