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An examination is made of the one-electron theory of x-ray transitions in metals. A question is raised
whether the one-electron theory should be calculated using the potential of the central atomic core which
does, or does not, include the screened core hole. It is suggested that one should use the potential of the
final state, which has the core hole in absorption and not in emission. This suggestion agrees with emission
data, as well as Mahan-Nozitres-De Dominicis theory which is solved numerically for a square-well

potential.

I. INTRODUCTION

A great deal of attention has been given to the
edge singularities in the x-ray emission and ab-
sorption of simple metals.!™ In this paper we
wish to discuss the other parts of the spectra. The
edge singularities, even when they exist, occupy
only a narrow energy range of 0.5-1.0 eV near
threshold, so another theory is needed for the
other parts of the spectra. It is often assumed or
asserted that these remaining parts of the spectra
can be described by a one-electron theory. We
will assume that this is the case, and then address
ourselves to the issue of which one-electron theory
is suitable. One must perform many-body theory
in order to answer this simple question.

In either absorption or emission, one-electron
theory has the rate of transition as the square of
a matrix element and, summed over all initial
and final states consistent with energy conserva-
tion,

A(w), E(w) =0 |M ,[?8(w+ E,~ E,), (1)
if
M= f % () Kp (). )

The matrix element is an integral between initial
and final one-electron states, with a standard
DA kernel, where A is the vector potential. The
core wave functions 3, are fairly well understood,
and the only question is the continuum wave func-
tion #,(7) for particle states in the conduction
band of the metal. In a one-electron theory, this
continuum wave function is a solution to a one-
particle Schrodinger equation,

[-92+ V(7)) = 2] (r)=0.

The only remaining question is which potential
V(r) to use in this equation. That is the subject
we wish to discuss.

There are several potentials that one might

choose. The first one that comes to mind is the
ordinary ground state of the metal. This pre-
sumably is a regular lattice of ions of charge Z,
with nearly-free-electron s*ates in the conduction
band. The ground-state potential has all atomic
core states filled and is the potential one uses to
find the Bloch states of the solid. This potential
we call V(7).

The x-ray absorption removes an electron from
the core state of an atom. This atom, which we
call the central atom, will have a potential which
is now different from the others, since it appears
as an ion of charge Z+ 1. The potential of this
core of Z+1 could also be used in the one-particle
Schrodinger equation. Another feature that has
been discussed several times is the nature of the
screening of this extra positive charge on the ion.
The simplest model assumes that the electron
screening is infinitely fast, so that one should use
the statically screened potential, which we call
V().

A more realistic calculation would include the
dynamic nature of the screening. Minnhagen'!
has demonstrated this to be an important feature
of x-ray-photoemission (XPS) spectra, and pre-
sumably it plays some role in x-ray spectra.

This is certainly obvious for energetic transitions
in absorption but is less obvious nearer to the
absorption or emission edges, say within half of a
plasmon energy. . Any treatment of this effect is
certainly not a one-particle calculation. The cal-
culations we report here do not include the re-
sponse time of the screening but instead take the
core hole potential to be switched on fully screen-
ed. Further work is required to see whether this
approximation has any validity and, if so, over
what frequency range.

In emission spectra, another important question
is the degree of relaxation. After the core hole is
created, the electronic system relaxes around the
core hole to form the screening charge and to
dissipate the transients associated with absorption.
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The question is whether these transients have
died away, and the electronic system become fully
relaxed, before the average x-ray emission event
occurs:. Examples have been found where the
phonon system is not fully relaxed before the
emission event, and partial relaxation effects were
predicted and confirmed experimentally.!2-14
However, the electronic system is expected to re-
lax more quickly than the phonon system, roughly
in the ratio of the plasma frequency to the Debye
frequency. For the outer shell core holes of sim-
ple metals, whose lifetime is roughly 7 ~7%/(0.04
eV), one finds that w,7> 1, so that the electronic
system is expected to be fully relaxed before the
average emission event. We shall follow custom
and assume this to be the case.

In absorption, the initial state of the system is
described by the potential V, and the final state
by V,. From the relaxed state, the emission is
from the initial state V, to the final state V,.
These assighments are summarized in Table I.

A major point is the following observation: a con-
sistent selection of potential for both emission and
absorption calculations would be to use either the
initial-state potential in both cases or the final-
state potential in both cases. The conclusion of
this paper is that one should use the final-state
potential for both emission and absorption. This
is the choice V, for absorption and V, for emis-
sion.

This conclusion, although fairly simple, is not
in accordance with the conventional method of cal-
culation, which is to take one potential, usually
V., and use it to calculate both an emission and
absorption spectra. We argue that this calculation
is satisfactory for emission but not for absorption.

The choice of final state potential is supported
by the calculations which we are reporting. We
solve the s-wave part of the Mahan~-Noziéres—

De Dominicis (MND) equations numerically for a
hole potential which is approximated as a square
well. The solutions, of course, show edge singu-
larities, but further from the edge the emission
and absorption potential can be described as one-
electron spectra with a final-state potential -V,
in absorption and V, in emission. A new feature,
which emerges from the numerical solution, is

TABLE L
Absorption Emission
Initial :
state Ve Va
Final
state Va Ve

that the emission spectra is uniformly enhanced
over that simply calculated with V,. That is, the
one-electron spectra is multiplied everywhere by
a constant, which we call )\, which typically has
values between 1.5 and 2. This enhancement fac-
tor is a consequence of the sum rules that apply to
the emission spectra. These state that the area
under the emission curve must be that of the in-
itial-state potential. Since the spectra of the final-
state potential V, has a smaller area than this,
the total theoretical emission spectra is uniformly
multiplied by the constant A. This appeais to be a
new prediction which has emerged from our com-
putations. It is probably difficult to detect ex-
perimentally, since experimentalists never mea-
sure the absolute emission rate from a solid.

Before describing our calculations, we wish to
note that there is an abundant amount of other
evidence to support the choice of final-state po-
tential. The evidence is both theoretical and ex-
perimental. The first theoretical evidence is the
observation of Noziéres and De Dominicis® that
the long-time asymptotic limits of their theory go
to that of the final-state potential. This is not as
strong a conclusion as the one we are proposing,
which is that one can use the final-state potential
about 1 eV from the edge. However, their asymp-
totic results provided us with our first clue to the
nature of the answer. Another theoretical clue
was in the recent numerical calculations of Gre-
bennikov et al.” They solved the MND equations
for a narrow band and a separable potential. The
many results they report are entirely consistent
with the choice of final-state potential. The pres-
ent calculations do not use the separable potential
model, but, in fact, retain all off-diagonal matrix
elements. There have been other numerical solu-
tions to the MND equations.®™®

The experimental evidence favors the choice of
emission spectra as calculated using V,. This be-
came apparent after calculations were done for
emission spectra using the other potential V,.
These have been of three types: mean spherical
model,!'® atoms in jellium,® and periodic cluster
calculations.® There is a common feature to all
of these calculations. The screened core hole po-
tential V, describes a system with a screening
charge of electrons close to the central core hole.
The extra electron amplitude near the core hole
raises the low-frequency transition rate. It makes
a low-energy resonance in the theoretical spectra
of the L, , emission of Na, Mg, and Al which is
totally lacking in the experimental spectra. The
conclusion is rather obvious that one should not
calculate the one-particle emission spectra using
V, but instead by using V,. The attempt to provide
a theoretical justification for this choice was the
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motivation for the present research. The conclu-
sion is further reinforced by the important obser-
vation of von Barth and Grossman® that the satellite
spectra—a transition from Z+2 to Z+1 ion states—
is also described well by the final-state potential
with Z+1. In this case it is V,, the potential with
a single core hole. Thus, the available emission
data, when compared with these theories, strongly
favors the choice of final-state potential. von
Barth and Grossman have also deduced the need

of the final-state rule in emission from their one-
particle calculations.

II. ABSORPTION AND EMISSION THEORY

In the MND theory,'™ the only perturbation is
from the conduction electrons interacting with the
transient potential of the control core hole. This
transient is assumed to switch on infinitely fast.
The theory of the x-ray transition is a study in
how the free-particle system responds to the po-
tential suddenly switched on in the core of the
atom. In absorption, the sudden switching is of
the screened core hole. In emission, where the
relaxed state has the core hole and the electron
system fully adjusted to it, the sudden switching
is of a negative hole. That is, the core hole is
switched off. There are two Hamiltonians in the
problem. They correspond to the one-particle
Hamiltonians of the system with, and without, the
core hole. Alternately, they are the one-particle
Hamiltonians for the potentials V, and V,, respec-
tively. We call these one-particle Hamiltonians
H, and H,.

H,=E,,+V,=Y £CLC,, (3)
%

Hy=Ey,+V,= E Excxcx . (4)
Y

Each may be solved exactly for the static poten-
tials. The*eigenstates of H, are denoted with the
subscript k for energy £;, operators C; etc. Sim-
ilarly, the eigenstates of H, are denoted with the
subscript A.

In the theory of absorption, one begins by ex-
panding all operators in the initial-state basis.
This is because the 10?® particles in the conduc-
tion band are eigenstates of this Hamiltonian H,
before the occurrence of the x-ray transition. The
current operator d, which is used in describing
the optical absorption rate, is also expanded in
this initial-state basis. From the Kubo formula,
the optical transition is described by the theoreti-
cal formulas

A= ED8(0))= (" Ie 1),

3:? M(C,d+d'Cl), (5)

M,= f A3 r ,NPA (7).

Since we will limit our numerical solution to s-
wave final states, it is possible to specify that all
wave functions i, and matrix elements M , are
real. The operators d ' and d are for a core hole,
whose one-particle wave function is given by ¥(»).
The matrix element M, is the same as mentioned
earlier in Eq. (2). As shown by Noziéres and

De Dominicis,® the correlation function for ab-
sorption may be reduced to the time correlation
function

Af)=eort 2 M M {eetC e HntCl). (6)
RrE'> kR

As shown by Combescot and Noziéres (CN),* this

correlation function is given exactly by

A(l‘}=p(t) Z Mk(¢kk/(t)" Z ¢kp¢;lp'¢p'k’>Mk‘!

kE'> kg bp'<kp
M

bue=E| e[k, (8)

p(1) = ¢*Est det [, ()] = det((p | e'Fste™at [p7)) . (9)

The term p(¢) contains the Anderson renormaliza-
tion catastrophe, while the other factors are the
one-particle processes plus the excitonic en-
hancements. Although (7) appears more compli-
cated than (6), in fact it is far simpler. This is
because (6) is a many-particle equation and |) is
a many-particle wave function, while (7) is basi-
cally a one-particle equation. One may evaluate
('7) by simply evaluating the matrix elements

b uel)= 2 (| M| emitrt (10)

and then inverting the matrix ¢,,(f) to obtain the
final function of time in (7). At finite times, the
off-diagonal matrix elements ¢,,(¢) exist because
the one-particle states |%) are not eigenstates of
H, but rather H,. These off-diagonal matrix ele-
ments were evaluated numerically using (10) in or-
der to do the absorption calculation. Another im-
portant feature of (7) is that the inverse matrix is
only taken over the set of states which are occupied
in the ground state of the system—this is the
ground state before the perturbation of the core
hole is switched on. The determinant p(¢) is
evaluated over the same set of states.

The MND theory of emission proceeds along
similar lines. The problem is initially solved in
the basis states of the initial-state potential—in
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this case the states ) of the potential V,. For
example, the current operator is

g =; M, (dC,+Clat).

The emission spectra can be shown to be described
by the time correlation function

E()=)_ M,M,.(g| e'#1Cle"iteC, | ) , (11)
vy
which has the exact solution of CN,

E@O=p'(t) 2 MMuASL, (12)

W< kg
ApdD) =] e e )= (| R)( A Demiter,  (13)

p'(£) = e'Ent det| A, (1) |.

The Fourier transform of time is obtained by a
matrix inversion of A,,. over the occupied states
(A, X' <kg). :

The emission formula (12) of CN has a different
form than the absorption spectra (7), since one
contains two terms while the other contains one
term. The two formulas can be made to resem-
ble each other by the following procedures. First,
we view the absorption theory as an emission
process. This is done by viewing the unoccupied
states of the conduction band as being due to
holes. This is a conventional picture in a semi-
conductor or a band of finite width—indeed it is
used for the core hole. Now we use the hole pic-
ture for the conduction states, and the picture is
valid whether or not the conduction band has a fi-
nite width. This is shown pictorially in Fig. 1.
The absorption process puts an additional electron
in the conduction band with energy £>0. This is
the same as removing a hole state, so that it cor-
responds to the emission of a hole. The hole en-
ergy is measured with the opposite sign as the

ELECTRON

STATES
E &—

HOLE

STATES

.

Ep—&

FIG. 1. The top figure is the conventional view of the
conduction band, where the shaded region is the band
of occupied electrons. The bottom figure is the same
band in the hole picture, where the shaded region is the
band of occupied holes.

particle energy. With this in mind, the rate of
“hole emission” is given by

AD=p) 25 MM, G,
kb‘)kF (14)
Bo= (k| €0 ).

p(t)= e ' B det| @ | = det(Ck| e rte et |£7)) . (15)

This result can be derived in complete analogy
with (12) and (13). The absorption formula (14)
is identical to Eq. (7): the two formulas are
shown below to be equal. The notation in (14)
means that the matrix ¢,,(¢#) is found over the
occupied set of hole states (k,k’>k,) and then
the inverse is taken over this occupied set of
states. The inverse is not taken over the complete
set of k states, since that leads to the trivial re-
sult ¢~ =e"##r?, The determinant p(¢) is taken
over the occupied hole states. One can derive a
simple relationship between this determinant and
the previous one in (9).

In a similar way, the conduction-band-hole pic-
ture can be used to describe the usual emission
theory as “hole absorption.” Thus the emission
formula (12) can be written as

B(D=5(t) 2o MAMX.(qSM,m— 2 q%,,é;;lé,,w),

W <kp nn’>kp

(16)

(1) =det| &, (1)] e it ,
By (£) = 1] eiHst| 1)

These formulas demonstrate that emission and
absorption can be written in a symmetrical fash-
ion.

The new formulas derived from the conduction-
band-hole picture are numerically less useful for
systems with free-electron behavior. This is be-
cause the matrices ¢ and ¢ must be inverted over
the semi-infinite set of states (k,%’>k,) or
(A, X">Fp). Of course, the fall off of M, at large
%k makes the higher states less important for the
absorption or emission process.

The derivation of these formulas is by using an
identity for certain determinants. First, let A be
a matrix of dimension N, and A™ is its inverse

AA1=1,
det(A)det(A™)=1.

(17)

Let det(A), denote the determinant of A over any
n-by-n subset of its rows and columns. The
theorem is

det(A),=det(A™)y_, det(A)y, .

This is used to derive Eqs. (14)-(17).
First let us review how CN derived their ab-



21 FINAL-STATE POTENTIAL IN X-RAY SPECTRA 1425

sorption formula (7). It is the determinant of a
matrix of order L +1, where L is the number of
particles in the ground-state Fermi sea. The
matrix has elements ¢,, where the indices p,p’
run over the L ground states and one excited state
(p=Fk, p’=F’). An evaluation of this determinant
leads to (7). We call this the n=L + 1 determinant
A in the theorem, and N —# are the remaining
elements. The inverse of A = ¢ =t is just
Al=¢illnt= ¢, This gives

det(¢,,), = det(d ,,)y-, det(d)y ,
or

o0 (ot - 2 Bun3 ) - BIFi (D)

o0’ < kR
The theorem can be used in the same way to re-
late the ground-state determinants of the particle
and hole states :

p(#) =p(¢) det(o)y ,
which proves that (K,k’>% )

St = 23 Dupbin o= Fry
o0’ < kR
where ¢,,= (k| e #|k"), and ¢}, is its inverse
over the occupied ground states, and ¢,,
=(k|e*r'|k"), and ¢, is its inverse over the
unoccupied ground states. For a full band, the
determinant over the band is just a phase factor.

det(¢)y =exp[-iNtV(0)].

This theorem establishes the relationship between
the two absorption formulas (7) and (14). Simjlar
steps provide a link between the emission formulas
(12) and (16).

IIl. SUM RULES AND A

The emission spectra does not go into the one-
particle spectra of the final state potential. In-
stead, it goes into a multiple A of this one-parti-
cle spectra. This multiplication by A is a conse-
quence of the sum rules. These sum rules had
been shown earlier by Grebennikov et al.,” although
they did not deduce the necessity of \. The sum
rules state that the total area under the emission
curve is not altered by the many-body effects—by
the switching on of the core hole.

[ aw ) =E=0)= X M2, (18)
g

The total area of the emission spectra is given by
the area under the curve of the one-particle spec-
tra using the initial-state potential. But if we
now say that the shape of the emission curve (ex-
cept for the edge singularities) is given by the
one-particle spectra of the final-state potential,

the area in this spectra is

2 M. (19)

< kp
There is no reason why the values of (18) and (19)
are equal. In fact, (18) is larger, so that the
shape of the emission spectra must be multiplied
by A. To summarize this effect, the area under
the emission curve is given by one potential while
the shape is given by another. At the moment,
we do not have a method of calculating X, except
by solving the MND equations numerically and
then empirically fitting the computed spectra.

IV. NUMERICAL METHODS

At first the numerical procedures sound straight-
forward. We are going to evaluate the single-
particle matrix elements (10) and (13) and invert
them over a grid of points in the Fermi sea of oc-
cupied states. This produces, in (7) and (12),
functions of time which are Fourier transformed.
Each of these steps is a standard computer oper-
ation, so that the calculation looks easy. It is
actually difficult because of the singular nature of
the edge singularities. These introduce long-time
behaviors in the correlation functions which are
slowly converging. This makes the numerical
computation difficult, since other round off errors
make it impossible to go to very long times. Thus
we shall discuss the numerical methods at greater
length than usual, as the techniques employed
were unusual.

The calculations were only done for the s-wave
channel of the final state. Since the MND theory
factors into orbital components, the sum rules
and other features all pertain to each ! component
as well. The potential V, was taken to be zero,
while V, was an attractive square well. Its radius
a was taken to be ak,=1, while the square-well
depth was taken to be V=-vE,, where v=1.0, 1.5,
or 2.0. The case v=1.0 is relatively weak, since
26/7=0.22 and the Anderson parameter a=0.025,
which is small. The case »=1.5 is more like a
metal, since it has 26/7=0.37 and a=0.07.

The single-particle matrix elements in (10) and
(13) were done by integrating over the set of
states which are indicated. More explicitly, the
matrix element ¢,, is

O (1)=(1/2)8(k — k") xt + [n(, k") = (R, )]
XP/(R*-F"),

h(k, k') = cosd,(k’| V|R e st + %f: ap e’ (k| V|R,)
x (k'|V|R)P/(p? - 1?), (20)

where (k| V|R,) is normalized so that R,~
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sin(pr+8,) as pr ~~. These were evaluated over
a grid of thirty points from zero to k5, so that the
matrix inversion was 30X 30. The function M (%)
= exp(-7/b) with b=4a=}%%;* was used for the s-
wave part of the optical matrix elements, M,
= f dvyM(7)R,(¥). The wave functions R ,(») for the
square-well potential are easily found to use in the
matrix element M, and the matrix (2| V|R,) in
(20).

In the emission calculation, some of the trans-
ients were eliminated by writing (12) as

E(f) =Z g, (Deit@r s
>

£D=p"(D)e @ O, D0 M AL, (21)
2
7
A= E ; 6)‘ k)_ .

This choice makes g,(#) a slowly varying function
of time. The Fourier transform was taken of
this quantity, for each X value, and the final
spectra is obtained from a summation over

E(w)=2ReZ glw—¢,-A4),

7.(0)= fo dt e, (1)

The time integrals do not converge rapidly, since
g,(t) is not oscillatory but has long-time asymp-
totic behavior associated with the edge singulari-
ties. Therefore one always has to truncate the
time integrals, which we typically did at {E,=10
or tE =15. Sinqe the complex function gx(t) is not
zero at this maximum time ¢,, we actually Fourier
transformed the quantity g, (¢) - g,(¢,) and assumed
that the function g,(#) had the value of g,(t,) from
ty to infinity. With this assumption, we obtain the
formula

E(w)=2Re )_{n(w—e, - A)+g(t,)
A
X [78(w — € = A)—iP(w - € - A)'l]}

m)= [ "t e a0 - 5001 (22)

This was integrated to various ¢,, and the maxi-
mum value selected which was consistent with
having a minimum of round off errors in the time
integrations. Since the time integrals were not
carried to infinity, we obtain a rounded edge sin-
gularity and some “noise” in the computed spec-
trum.

The factor A in (21) is from Fumi’s theorem®®
for the ground-state energy of the core hole. This
arises from the Anderson term, which at large

time has the approximate asymptotic behavior

lim p(t) = exp[iAt — @ In(iLE,)].

oo
The oscillatory behavior exp(iAt) is eliminated
from g,(#) by the multiplication by exp(-itA), as
is indicated in (21). Since all our results are
plotted with the energy zero as the bottom of the
band, we have renormalized A out of the figures.
We also have computed the spectra both with and
without the factor p(¢£). This is to demonstrate
that the final-state potential arises from the ex-
citon term, rather than from the Anderson term.

Before doing the absorption calculation, (7) is

manipulated into a slightly different form. The
summations over the complete set of states k and
K’ are eliminated and replaced by summations over
the complete sets A and A’. To this end, the matrix
element M, is written as [ d»M ()i, so that we
have for the first term in (7)

Z Mk¢kk‘Mk'=E M\ et [ XM,
73 T

Mgfd»rM(y)]x).

Since the states |A) and |A’) are eigenstates of H,,
this first term may be replaced by

E Miem®t,
X

which is just the one-particle spectra for the final
state basis. Similar manipulations on the other
term in (7) bring us to the alternate equation

40=p0 T (Mzeets- T M,00p)
b

w' b <kp
X @5 p' | NI M, e et Ex”) .

The first term is just the one-particle spectra in
the final-state basis. This is trivial to calculate,
so that only the second term causes difficulties.
This was treated like the emission term in (22).
This second term has interesting characteristics.
Since the absorption is zero for w<Ej it exactly
cancels the first term of w<E,. For w>E, it
gives the edge singularities and then dies away
slowly at higher frequencies.

V. RESULTS

The absorption and emission curves for »=1.0,
1.5, and 2.0 are shown in Figs. 2—-4. The main
conclusions are drawn from the emission spectra.
This is because with our choice of core hole po-
tential parameters the various one-particle absorp-
tion spectra are asymptotically similar. Thus
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FIG. 2. The theoretical emission and absorption spec~
tra for a square well of depthv =1.0 Er and width
1.0 ;. The top part is emission. The solid curve is
the theoretical spectra. The dashed curve marked p =1
is the theoretical curve without the Anderson renormali-
zation factor and with only the exciton term., The effect
of the Anderson term is mostly to reduce the magnitude
of the edge singularity. The points marked with diamond
(v =1.0) are the one-particle spectra calculated for the
initial state potential. The curve marked with triangles
(v =0, A=1,64) is the one-particle spectra calculated
with the final-state potential and multiplied by the factor
1.64. This fits the full theoretical curve (solid line) ex-
cept in the edge singularity. The bottom curve is ab-
sorption, and the points are marked as in emission.
The effects of numerical round off are evident in the
emission for w >Ep and absorption for w <Ep.

it is hard to decide which one-particle spectra is
resembled by our MND spectra, since the one-
particle spectra are similar. One could formally
decide the issue by using a repulsive core hole
potential, which would make the various absorp-
tion spectra different. However, since we have
shown that the absorption and emission theories
are formally identical, then any conclusion drawn
from emission must also apply to absorption. Thus
we concentrate on the emission spectra..

In the top part of Fig. 2, the solid line shows the
MND spectra found from (12). The dashed line is
the spectra found from (12) with p=1 so that the
Anderson term is absent. The two curves are
very similar except in the edge region, where the

20 [ -
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06208/ 10 12 14

FIG. 3. The theoretical emission and absorption spec-
tra for a square well of depth v =1.5 Ep and width
1.0 k;i, The top part is emission. The solid curve is
the theoretical spectra. The dashed curve marked p =1
is the theoretical curve without the Anderson renormal -
ization factor and with only the exciton term. The ef-
fect of the Anderson term is mostly to reduce the mag-
nitude of the edge singularity. The points marked with
diamond (v =1.5) are the one-particle spectra calculated
for the initial state potential. The curve marked with
triangles (v =0, A=1.91) is the one-particle spectra cal~-
culated with the final-state potential, and multiplied by
the factor 1.91, This fits the full theoretical curve
(solid line) except in the edge singularity. The bottom
curve is absorption, and the points are marked as in
emission. The effects of numerical round off are evi-
dent in the emission for w>Eg and absorption for
w<Ep.

solid line is lower because the Anderson term
causes the expected reduction of the edge singu-
larity. Our edges are not singular, as mentioned
earlier, which we ascribe to the Fourier trans-
forms being truncated at finite times. The Ander-
son term also introduces a uniform shift of the
spectra by A, which we have omitted in the figures.
Also shown, for comparison, are the one-particle
spectra calculated with the core hole—this is the
curve labeled “v=1.0” and shown by diamonds ¢.
This does not resemble the MND spectra in any
way. The curve marked by triangles A is the fi-
nal-state spectra (no core hole) multiplied by the
empirical parameter A=1.64. This is an excellent
fit to the MND spectra except in the region of edge
singularities. It is this rather good agreement
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FIG. 4. The theoretical emission spectra for a square
well of depth v =2.0 E and width 1.0 23, The solid
curve is the full theoretical spectra. The dashed curve
marked p =1 is the theoretical curve without the Ander-
son renormalization factor but with the exciton term.
The other curve labeled v =2.0 is the one-particle spec-
tra calculated for the initial -state potential. This is
quite different from the theoretical curve.

which causes us to deduce that the MND spectra,
away from the edge singularities, is well de-
scribed by the final-state spectra multiplied by .
The emission spectra shows emission for w> E,
and this is due to round off error. Similarly, the
emission spectra with p=1 for w<0 is also due to
round off error. The Anderson term p(t) intro-
duces some spectral weight in this area, due to
electron-hole emission. Fig. 3 shows the same
kind of result calculated for »=1.5. The conclu-
sions are similar: the spectra away from the
edge singularities is better described by the v=0
curve multiplied by X=1.91 than by the »=1.5 one-

particle curve. |
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APPENDIX: SCATTERING THEORY

In this Appendix the CN equations are derived
by scattering theory. The correlation function for
absorption in (6) is solved by directly expanding
the S matrix, deducing the xnth term, and then re-
suming the series. The same result (7) is ob-
tained as was found by CN. The present derivation
is longer than theirs and only of academic in-
terest. It can be used to prove the “conduction-
band-hole” results.

The correlation function in (6) is written in terms
of an S matrix

Folt)=(| e's'C e i¥ntCl] ),
Fodt) ={| TCDS()CLO) ),

S(t):Texp(-ijo.tdth(tl)> s

(A1)

V=§ V(k,k)CIC,

which is expanded and evaluated term by term.
The first several terms in this expansion are

) t
Fyp () = €7 1%¢ <5kkl(1—n)+(—i)V,,(k,k')(1—n)(l-n’)f dt ettt
[

£
+ (=P =)L =n") D V(o k) V(Rrs ) f dt ettt
Ry 0

X ftdtze“Z‘fl'f"[e(tl = by) =y [+ (=)*(1 = m)(1 =)

Ry ky

¢ t
X Z V;,(k,kl)Vh(kn k2) Vh(kgyk /) f dtleitl(e'fl) f dtzeitz(ll'tz)
0 0

x [e(t, - tz)—nl]ftdtse“fi“z“')[e(tz—-t3)—n2]+ ) , (A2)

where n=n, n'=n,, n;=n,, £=t, £'=§&,, §,=&,;, etc.
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Beginning with the third term in the series, the
kernel of the time integral contains the Green
function G (¢) = e"#*[0(f) = n;]. We have kept only
the exciton terms in this expansion and have ig-
nored the terms which make electron-hole pairs
in the electron gas, and hence lead to the Ander-
son renormalization catastrophe. The series of
terms are exactly summed with the following in-
tegral equation:

t
Fou(t)=e*4(1 —n)(ﬁw— i(1-n") f dt, F oty t)) ,
0

(A3)

. , t
F b3 1) = V(e ket ’-z'f dt, 2 ettt

0 By
XV (k) &y (b3 nlelt, -t,) -n,]. (A4)

We need to determine the function F ,,(¢;1). It is
expressed in terms of an integral over another
function ¥,(7; £,, ):

EFkk,(tl; t) = eitlek fdg’r (l):(?‘)vh(’}’)‘l/k:(’}’, tp t) ) (AS)
U7, by, 0= g(re i I ¢, (eIt
By

t .
xf dtzifklk(tz;t)[e(tl—tz)—nl]. (AB)

We have written the equation for ¥,(r;#;¢#,), which
is deduced from (A4). We evaluate the function
¥, by operating upon it with (;8/6¢, - H,). The
eigenfunctions ¢, are eigenstates of H, and thus
give zero with this operation. This yields

9 . .
(’ A "H> U (ry t51,) = =i D b, (Peminta
1 "
t
x f dty0(t, - 1,)F 5, (15 1)
(o]
= Z ¢k1(r)e‘“lflff,zlk(tl; 7).
kl

<z % - H) (7, t,1) =V (") (r, £,,1),

9
(ia——Hh) V. (v, ¢,1)=0. (A7)
2

Thus the function ¥, is an eigenstate of the final
state potential H,. We define ¢,(7) as the set of
eigenfunctions of H,, H,¢,=¢€,,, and expand &,
in terms of these eigenfunctions.

Vr, 1y, 0= 2 dy(r)e a0, (k, 1), (A8)
X

F pu (11, )= 2 (R | V| Metttera, (k, 1) . (A9)
A

The equation for ¥ is deduced from the definition

of ¥, in (A5). The expansion coefficient o, (%, )
now needs to be determined. It is a function of ¢
but not ¢,, so we may choose any value of #, in or-
der to find @,. Choose {,=0. From our other
equation (A6) for ¥, we have

‘I’k(’)f, 0, t)-.: ¢k(7’)+ Z: d)kl(y)nl@klk(t) )
! (A10)
t
@ (0=if atF it ).
0]

The next step is to do the integral over ¢,, for
which we define the special symbol @k L#). This
uses the equation for &,, in (A9)

aklk(t):i2<k1|Vl)‘>a)\(k1t)f dtzeitz(ekl-el)’
A 0

= Z M Clx(k,t)(e”(ekl_el)— 1).
1y -

By
From the definition of the equation for the wave

function for ¢, one can deduce that value of
(B|V [N/ (€, €)

o T oy

r— € € —€y+ib’

(lel‘x)

(JRI=3,, —€pt+i6’

@8 =; (By| May (B, 1)(1 = e¥tee™),  (Al1)
from which it follows that
0,02 940+ 2 9 (rIm s | 0
»
X o, (B, 1)(1 = et er"e0),
T (7,0, = 5;‘ o (P, 1)

We have written above the two equations for
¥ (7,0, ) which are deduced from (A8) and (A10).
We multiply them both by f ¢, equate the results,
and finally derive the equation for the coefficient
a,:
(B, = AR+ 2 O k) my(ley | 1)
Y
X aydk, £)(1-e

itlepmerny

This may be written in a shorthand notation by
defining two operators

P= Z ENEXCAN
L3

& =githggithy

The first is the projection operator on the ground
state of the system described by the initial state
Hamiltonian H,. The second is an exponential
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operator in the form of an S matrix. Together,
they permit the equation for «, to be rewritten as

ax(k,t)=<>\|k>+; (R|P(1 = &) |\)a,.(k, 1) .

We now iterate this equation and obtain the series
of terms

a,(k, )= | {1+ P(1- @)+ [P(1 - &)}
) +[P(1-@)P+---}R).

They may be summed to the desired result by
using the property of projection operators P*=P,
to prove that

[P(1-@)]"=(1-P8)"P(1-9),

= <x (1+Z:o 1 - PayP(1 - <I>)>|k>,

@, = <x‘(1 + 1—_—(—11_—1347), P(1- <I>)>lk>,
so that

a,(k, t)=<x‘ (1 + ﬁthT P[1- <I>(t)]>|k>‘.

The term (1/P®)P gives zero since it acts on a
state |k) which has 2>%,. Therefore we finally
prove that

al(k,t)=<>\| (1 - e P@(t)>|k>. (A12)

At first it looks as if the numerator and denomi-
nator in the last term are equal and should can-
cel. This is not the case. The inverse operator
1/P® is not the full inverse of ® but only an in-
verse over those states P <k, beneath the Fermi
surface. This is the role of the projection opera-
tor, which is also in the denominator—perhaps
this would be clearer if we wrote it in the equiva-
lent manner (P®P)*P®. The numerator is evalua-
ted to the right on the state |§>, which is not in the
set of inverse states, since 2>k,. Thus the pro-
duct of these operators (1/P®)P® gives unity if
acting upon the occupied states but not if acting
upon the unoccupied states. This point was also
shown by CN.

The result for a,(k,¢) permits us to evaluate
the various quantities we have defined along the
way. Comparing (A3), (A10), (A11), and (A12)
gives

J

Fop()=e % (1 = n,) [0,y — (1 —=n,)@, (1],
@l8)= 2 (k| (1= @) | Ve, (e, 0),
X

=20 k|11 39| 0y (1-1_,151:@) b,

The intermediate summation 2 | V(x| can be
eliminated, and gives

@ (t)= <k ’(1 - @)(1 - 513 p@)[ k'>,
Fw(t)=<k eit(1 - P)

x [1_(1_<I>)(1 - —I;lapé)(up)]lk')
(A13)

Most of the various factors in F,,(¢) cancel or
give zero. For example, terms such as

(1-P)(1/(P2)P&=0
give zero because they are effectively the combi-
nation (1 — P)P=0. This leaves us with the re-
maining combination

(1-P)@[1-(1/P2)P2](1-P).

The factors (1 — P) on each end are unnecessary
because the center part in brackets vanishes for
states k <kp. Thus we have the final result

Foult)= (k| e ed(t)[1 - (1/P2)P2]|R").

This is just the CN result which was given earlier
in (7). We have derived the term in brackets,
since ¢ =exp(-itH,)®(¢). This is multiplied by

the matrix elements and the Anderson renormali-
zation factor to give the final absorption spectra.
Thus we have shown that the CN result, obtained
from matrix arguments, can also be found by ex-
panding the S matrix.

The next logical step would be to show that the
CN emission formula also can be derived from
scattering theory. This we will do, but for a
special case. Since we also wish to prove the
electron-hole symmetry, whereby absorption into
electron states can also be viewed as emission
from conduction-band-hole states, we will evalu-
ate emission from conduction-band-hole states.
Thus we define the hole occupation number 7,
=1-n, and the hole energy as ,= -£,. The ab-
sorption correlation function F,,(¢) in (A2) can be
rewritten in these hole variables

- - t _ ¢ N o 1 _
Fw<t)=e‘“kﬁk[ﬁkk'—iﬁaf("h(k,k’) f dte s T P4i Y Vo, k) Ry, k) f dtle“l“l“’f dte’td¥
0 LI 0 0

X [9(t2 - tl) - ﬁl]"’ (7/)2 Z Vh(k, kl)vk(knkz)vh(kz, k1)

kiR

¢ L ¢ o t . _
X f dtle‘ltl(!l"l) f dtzeztz(tz-tﬂ J‘ dtaezt:;(t -62)[e(t2 - tl)—nll[e(ta - tz) _ﬁ2]+ .o ,)] .
0 o 0
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The argument of each Green’s function has been
rewritten as
olt,-t)—n == [0, - t,) =7, ].

The formulas can be made more familiar by re-
labeling each of the dummy time variables ¢, ¢,,
t5, etc., in the inverse order ¢;, ¢,, #,. Then it is
easy to see that we have the integral equation for
this series of

- t pu—
Fkk'(t) = e'tekﬁk(ékk’_ i’—zk' f dtlgk' k(tl’ t)> ’
0

F ot =V (k" R)eF Dy 3 gt
ky

t
X V(' R,) f a6 F u e
)

X (ty, [0t = 2,) =7, ].

This integral equation is solved by the same basic
techniques as before with only slight differences.

Again one defines a type of wave function ¥ which
obeys an equation

Fuite=e? [ a gHAV T, 150,
T (7, 1y, )= ¢ (r)e i Z ¢k1(1f)e'”151
By
t —
x [ at, by D066, - 1) -7 1,
0

9 -\ - I
(i Bt, —H‘) Wk=i2§ bu (Ve 0T, (8, 1)

The hole potential is subtracted from H, since in

the emission process the hole vanishes. The
function ¥, can be expanded in the complete set
of states ¢, which are eigenstates of H,, with co-
efficient @,. Then an equation is derived for this
coefficient a,, which is solved again by iteration.

(7, t,,1) =Z a, (B, 1), (r)e it
x

@, = |10+ 25 [k ny (k7| (= B AR, 1),
T=eitﬁge-iﬂ7h’
3 pa-a)r)

a,(e, )= |[1+(1/P®)P(1-8)]|k).

By following the same steps used to derive (A13),
one gets to the similar equation

F,(t)= (k[e”’—’eﬁ[l +(1-9)]
X(1+(1/P8)P(1-8)]P|k",

which can be shortened by eliminating the combi-
nations which vanish. This finally produces the
desired result

Foplt)= (k| ¢*:B[1/58 (1) | B| ).

This is the same result which is expressed in (14),
where exp(itH,)®™ = $™'. One takes the inverse of
this operator over the range of occupied hole
states (k,k’) >k, and then evaluates the indicated
matrix elements.  This is precisely the CN pre-
scription for the emission spectra. Thus we have
shown that the CN emission equations can be de-
rived from scattering theory, and also that the
absorption into electron states is mathematically
equivalent to the emission from hole states in the
conduction band. The same symmetry applies to
the other process, and the emission from the elec-
tron states is equivalent to absorption into the
hole states of the conduction band.

a,(k,t)= <x
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