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We consider dissipative processes involving both chemical reaction and physical diffusion in systems for
which the influence of boundaries and system size on the dynamics cannot be neglected. We report the
results of Monte Carlo simulations on an irreversible reaction in a confined system subject to two sorts of
finite boundary conditions. The problem is posed in such a way as to take maximal advantage of two earlier
studies: Montroll's work on random walks on d-dimensional periodic lattices with traps, and the work of
Sanders, Ruijgrok, and ten Bosch on random walks on two-dimensional finite lattices with traps. Our

results are used to discuss the concept of reduction of dimensionality @s introduced by Adam and Delbriick
in their study of biological diffusion processes.

I. INTRODUCTION

At the recent Solvay Conference' on "Order and
Fluctuations in Equilibrium and Nonequilibrium
Statistical Mechanics, "a problem which received
much attention was the role of boundaries and the
effect of system size 0 in influencing the dynamics
of chemically reacting systems in the far-from-
equilibrium regime. This and other problems in
the general theory of dissipative processes have
been studied extensively in recent years' ' using
a variety of theoretical approaches; e.g. , master
equations for discrete stochastic variables,
Fokker -Planck equations for continuous stochastic
variables, or reaction-diffusion equations. The
formal relationships among these three approaches
have been investigated in some detail. It has been
shown that in the limit of large system size (4-~), provided one is well away from phase transi-
tions and critical points, a mapping from one rep-
resentation to another can be carried through and
that results obtained in different formulations of
the same physical problem are in correspondence. '
Some progress has also been made in determining
the extent to which this correspondence persists
in the description of chemically reacting systems
in the neighborhood of first- and second-order
transition points. For example, Horsthemke and
co-workers' have obtained a nonlinear Fokker-
Planck equation, derived as an asymptotic rep-
resentation of a stochastic master equation for
large system size, and have shown that results ob-
tained for the Schlogl model' using this Fokker-
Planck equation are in accord with the exact solu-
tion of the master equation for this model, the lat-
ter result obtained recently by Nicolis and Turn-
er. ' Moreover, the Fokker-Planck results are
found to constitute an excellent approximation to
the exact results even in the neighborhood of first-
order transition points. A conceptual. question

that remains, however, is whether it is possible
to pass from a master equation to a Fokker-
Pianck equation (or reaction-diffusion equation)
in the situation where it is not possible on physi-
cal grounds to construct the asymptotic limit 4

In particular, it is not known whether a sat-
isfactory correspondence can be realized in the
description of far- from- equilibrium chemical dy-
namic processes involving molecules confined to
a reaction volume whose size is not orders of
magnitude larger than the size of the reacting
molecules. Such a question is of more than just
theoretical interest: The considerable emphasis
today on studying the kinetics of processes in or-
ganized molecular assemblies (micelies, bilay-
ers, and monolayers) has stimulated the search
for a theoretical framework within which the in-
fluence of boundaries on the chemical dynamics
can be properly assessed. Moreover, with re-
spect to a problem treated initially by Montroll, "
the motion of excitons and their trapping in photo-
synthetic uncs (modeled as networks or lattices
ot chlorophyll moiecuies interspersed with traps),
the present study is not without interest. This is
because Montroll's analysis was carried out using
periodic boundary conditions and it would be in-
structive to compare his estimates for trapping
with those obtained in a study in which it is as-
sumed that the photosynthetic units are isolated
and of finite extent.

To address the problem posed in the preceding
paragraph we have initiated a study in which the
dynamics ot elementary and (eventually) coupled
chemical reactions are studied via numerical sim-
ulation. We consider both reactants and products
to be confined to a reaction volume (a, lattice) sub-
ject to finite boundary conditions, and then study
via the Monte Carlo method the influence of spatial
extent and dimension on the evolution of the sys-
tem. The problem is constructed in such a way as
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to take maximal advantage of Montroll's results"
on random walks on periodic lattices with traps.
In particular, we consider here the dynamics of a
single, irreversible reaction: A+A- C, where A

is the migrating species (a single molecule under-
going random displacements on a given lattice)
and B is the fixed trap (a single molecule posi-
tioned near the center of the given lattice). The
coordinates of the trap for each of the lattices
studied here are specified in a later figure. We
compute the average number (n) of steps required
for trapping (walk length) subject to the con-
straint that upon reaching the boundary the dif-
fusing species A experiences either (i) periodic
boundary conditions (the Montroll case) or (ii)
finite boundary conditions. The latter conditions
were chosen to be of two types and will be de-
scribed in the following section. Questions of
convergence of our Monte Carlo calculations are
also dealt with in Sec. II and the results obtained
in our simulations are reported. In Sec. III, we
correlate these results with those obtained in
earlier, analytic studies on the problem of ran-
dom walks on finite two-dimensional lattices with
traps. Finally, on the basis of these compari-
sons, we offer in Sec. IV some overall conclusions
and discuss the relevance of our results to the
physical problems mentioned earlier.

II. NUMERICAL SIMULATIONS

Here we describe the numerical method em-
ployed in our study, present relevant data on con-
vergence of our Monte Carlo scheme, and then

display the results obtained. Since what distin-
guishes this work. from earlier studies on the
problem of random walks on lattices with traps is
the emphasis on the role of boundaries, and in
particular, the interplay between dimensionality
and spatial extent in walks on finite lattices, we
describe first the sorts of boundary conditions
employed.

The first type of finite boundary condition, which
shall be referred to as the confining boundary con-
dition, is implemented by imposing the restric-
tion that if the walker attempts to step onto the
boundary, he must return to the lattice site from
which he started. The second type of finite bound-
ary condition, referred to as the reflecting bound-
ary condition (following Chandrasekhar"), is im-
plemented by the restriction that if the walker at-
tempts to step onto the boundary he is displaced
to one (interior) lattice point further removed
from the boundary than the lattice site from which
he started. For a simple, graphical realization of
these two possibilities for the case d= 2, see Fig.
1.
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FIG. 1. Monte Carlo determination of the average
number &n & of steps before trapping on a simple (chain,
square', cubic) lattice of d dimensions with% sites and
one trap, where periodic or confining or reQecting
boundary conditions have been imposed. In the figure
we illustrate these three types of boundary conditions .
for the case of two dimensions; the dashed line denotes
the trajectory of the walker as it encounters the boun-
dary, while the solid lines represent alternate paths
accessible to the walker.

The number g of steps needed for trapping is av-
eraged over a large number (up to -10000 of indi-
vidual walks), each starting at a particular non-
trapping site; in these simulations it is assumed
that all nontrapping sites are equally weighted
(this restriction will be removed in subsequent
work). To gauge the reliability of our calcula-

. tions, three convergence criteria were imposed:
(i) convergence of the average walk length (n)
from a given nontrapping site; (ii) convergence of
the associated standard deviation o„; and (iii) con-
vergence of the symmetry of the r esulting lattice
with respect to walks from individual lattice sites
to the trap. Qualitatively, it was found that the
average walk length (n) for all sites converged
fairly rapidly, while the standard deviation a„of
the average walk length per walk converged some-
what more slowly.

As a quantitative illustration of the convergence
properties of these simulations, we note that the
average walk length (n) on an 8 x 8 lattice sub-
ject to confining boundary conditions converges to
within 0.1 steps after 3555 walks have been made
from each site; on the other hand, approximately
4300 walks are required for convergence of the
standard deviation to within 0.1 steps. A histo-
gram for this case is presented in Fig. 2.

Considering next the convergence properties
for walks on lattices with periodic boundary con-
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FIG. 2. Histogram for walks on an 8x8 lattice subject to confining boundary conditions.

ditions, one can estimate theoretically the mag-
nitude of the standard deviation by extending Mon-
troll's first moment procedure (for obtaining the
average walk length) to the evaluation of the sec-
ond moments, and from these, to construct esti-
mates of the variance and standard deviation (see
Appendix). For dimensions d & 2, it is found that
the standard deviation of the walk length is of the
same order of magnitude as the average walk
length and. this feature is also found in the numeri-
cal simulations (see Table I and Fig. 3). Note that

since the lattices considered in our Monte Carlo
studies are taken to be even (e.g. , 4 x 4 x 4, 8 x 8,
etc. ), the consequence is that the trap, located at
an interior point of the lattice, is thereby asym-
metrically positioned with respect to the boundar-
ies. The reasons for this choice of lattice were
twofold: first, the even lattice provides the most
stringent test of Montroll's original theory and

second, with respect to problems involving micel-
lar assemblies, the experimental evidence sug-
gests that tha guest molecule is not usually lo-

TABLE l. Determination of the average number (n} of steps before trapping on a simple
(chain, square, cubic) lattice with N sites and one trap, where periodic boundary conditions
have been imposed: a comparison of results derived using Montroll's theory with those ob-
tained via Monte Carlo simulation.

Dimension Unit cell (n)
Montroll

0(' '')' Monte Carlo
&n) b

1x8
1x64
8x8

12x12
8x8x8

12.0
693.33
98.62

257.54
776.4
691.33

0
0
2 x 10+
5x10+

22.6

12.0
694
98.50

258.0
691.4 .

16.9
808
99.47

260.8
691.9

Montroll's result in one dimension is exact; in two dimensions the error is O(N ), while
in three dimensions it is O(N ).

"The error estimate for the Monte Carlo simulation is reported in terms of the standard
deviation 0„.' Montroll's original estimate.

Result obtained by refining Montroll's original estimate (see text}.
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TABLE II. Average number (n) of steps required for
trapping from each site (nearest integer only) on an
8 && 8 lattice subject to confining boundary conditions.
( (n) should be symmetric with respect to the principal
diagonal (starred) .J
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FIG. 3. Effect of ~eduction of dimensionality on the
determination of the average number &n& of steps be-
fore trapping on a simple' (chain, square, cubic) lattice
of d dimensions with% sites and one trap, where con-
fining boundary conditions have been imposed. For
even lattices, the trap is asymmetrically positioned
with respect to the boundaries; in each case, the fixed
trap is located at the intersection of the coordinate axes
(only axes in the positive quadrant of each coordinate
system have been labeled). CaseA is not drawn to scale.

cated at the exact geometric center of the mi
celle." Even for such "asymmetric" lattices,
however, since one anticipates that the walk
length from sites symmetrically positioned mith
respect to the trap should be approximately equal,
we also required for asymmetric lattices that the
average walk length to the trap from such sym-
metrically disposed sites should be the same to
within al step (see Table II). If this was not
achieved after 10000 walks/site, the simulation
was terminated. In none of the cases reported
later was the symmetry worse than +5 steps.

In Table I we present data on the average number
(n) of steps needed for trapping on a simple
(chain, square, cubic} lattice with N sites and one
trap, where periodic boundary conditions have
been imposed. The Monte Carlo results can be
compared directly with results derived using Mon-
troll's theory. We remark that Montroll's esti-
mate for (n) for walks on three-dimensional lat-
tices can be improved by summing over the struc-
ture function (specific for a periodic lattice with

the appropriate edge length and dimension) re-
ported as Eq. (13) in Ref. ,10. Overall, the two
sets of results are in excellent accord.

In Fig. 1 we present Monte Carlo data an the av-
erage number (n) of steps required for trapping on
a simple (chain, square, cubic) lattice of d dimen-
sions having fII sites (where E is even} with one
trap. Three types of boundary conditions mere
considered, namely, periodic, confining, and re-
flecting boundary conditions (see earlier text)
Systems subject ta confining boundary conditions
are characterized by an average walk length (n)
which is slightly longer than the one obtained on
the correspanding periodic lattice. This result
implies that the effect of imposing confining
boundary conditions is ta exclude a class of walks
which mould otherwise be available to a malker on
a periodic lattice (specifically, those classes of
walks for which the walker passes across the
boundary and re-enters the system on the oppo-
site side). In contrast to the behavior found on
lattices subjected to periodic or confining boundary
conditions, results obtained for the case of re-
flecting boundary conditions reveal a significantly
shorter walk length in all cases, a result in quali-
tative accord with the known role of reflecting
boundaries in the simpler random-walk problem. "
In effect, the reflecting boundary condition in-
creases the probabil. ity that the walker is away
from the boundary, and thereby provides a focus-
ing effect which enhances the eventual trapping of
the walker. It is likely that this effect is of sig-
nificant importance in intramicellar kinetic pro-
cesses,"specifically those reactions involving en-
ergy transfer between two completely compart-
mentalized species.

III. TYCHO-DIMENSIONAL CASE

The conclusions presented in the preceding sec-
tion can be sharpened up by considering the prob-
lem of determining the average walk length on a
lattice with a trap (sink, target) for the particular
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case where the dimensionality of the system is re-
stricted to d= 2. Here, important contributions
have been made by Avery, Bay and Szent-
Qyorgyi, "ten Bosch and Buijgrok, "Pearlstein, "
Robinson, "Knox" and, of course, Montroll. "
Qiven the emphasis in this paper on lattices of
finite extent, we wish to compare the results ob-
tained in our Monte Carlo simulations with the
averages reported by Sanders, Ruijgrok, and ten
Bosch" (SRB) in their study of the random motion
of an exciton on a two-dimensional finite square
lattice with (2n+ 1)' sites. These authors formu-
late the problem in terms of finite difference
equations and, for the finite system case, der ive
the following recursion relation:

(x y)

D (2)(x y) I + D (2)( lxy I)
c(x, y)

with (x, y) W(0, 0) and D'"(0,0) =0. In deriving this
result, SRB assume that the exciton spends a
fixed time v on each lattice site, and contrast this
with the situation, first considered by Knox,"
where the time spent on a lattice site is inversely
proportional to (or otherwise dependent on), the
number of neighbors of the site. It is the former
case that is closest in spirit to our calculation.
As regards the latter case, SRB prove that the re-
cursion relation for this problem

(x,y).

D"'(x, y)= (+ — I, a"'(x', y')), (2)
c(x, y}

with (x, y) 4(0, 0) and D'"(0, 0) = 0 is identical with
the one obtained for a system wiSh periodic bound-
ary conditions, a result they verify by making con-
tact with Montroll's earlier work. ' In expressions
(1) and (2), D(x, y) is the average walk length
starting from the site (x, y), the coefficient c(x, y)
is the number of nearest neighbors of the site
(x, y), and the sum extends over all nearest neigh-
bors of the site (x, y). These recursion relations
are valid for all planar lattices with (2n+ 1)' sites
centered at the origin. To mobilize the relation
(1) for the case of a square planar lattice of
(2n+ 1)' sites, the following further properties
must be specified:

(a) Three types of sites are identified: central
sites, edges and corners.

(b) Central sites have four nearest neighbors
[c(x,y) =4]; thus, a walker on a central site may
walk to any of four adjacent sites with equal prob-
ability.

(c) Edge sites have three nearest neighbors
[c(x,y}= 3]; a walker starting from an edge site
may walk to any one of three sites with equal
probability.

(d) Corner sites have two nearest neighbors

+ D~(x, y —1)] .
If (x, y) is a corner site, and if (x+ 1,y) and

(x, y+1}are outside the finite system, then

(4a)

Ds(x, y) = 1+ 2 [Ds(x —1,y) + D„(x,y - 1)] . (4b)

Once again, the expression (1) is the recursion
relation for the interior sites.

[c(x,y)=2]; here, a walker starting from a corner
site may walk to either of two sites with equal
pr obability.

Qiven these specifications, the average number
of steps required for trapping starting from a site
(x, y) is simply related to the average number of
steps required for trapping from each of those
neighboring sites that can be reached by a single
step from (x, y), with the overall summation
weighted by a factor c(x, y) which characterizes
the site (x, y) as being a central site, an edge site
or a corner site.

The construction introduced by SRB for a finite,
planar lattice, and the explicit way in which the
role of the boundary is taken into account, differs
somewhat from the constructions considered ear-
lier in this paper. In order to compare similari-
ties and differences between our results and those
derived using the recursion relation (1) it is nec-
essary to develop expressions analogous to Eq. (1)
for lattices subjected to confining boundaries and
r eflecting boundaries.

%e consider first the case of a finite lattice with
(2n+ 1)' sites subject to confining boundary condi-
tions. Here, we require that a walker situated on
a boundary site (edge or corner), on attempting to
escape the lattice, returns to the (same) boundary
site. Thus, if (x, y) is an edge site, and if (x —l, y)
is outside the system, one may write

D,(x, y) = 1+—,
'

[D,(x, y) + D, (x+ 1,y)

+ D,(x, y+ 1)+ D,(x, y —1}] .
If (x, y) is a corner site, and if (x+ l, y) and

(x, y+ 1) are outside the system, then

D,(x, y) = 1+—,
'

[2D,(x, y) + D,(x —1,y) + D,(x, x —1)] .

(3b)
The interior sites are treated in the same manner
as specified by the SRB expression (1).

Considering next the case of a finite lattice with
(2n+ 1)' sites subject to reflecting boundary condi-
tions, we require that each attempt to leave the
finite system from a boundary point results in a
displacement of the walker by one lattice site in
the direction of the interior Thus, if ('x. , y) is an
edge site, and (x —1,y) is outside the finite sys-
tem, then one has

D„(x,y) = 1+ —,
' [2D„(x+1,y) + D„(x,y+ 1)
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TABLE III. Comparison of the average number (n) of
steps required for trapping on a planar lattice with (2n
+ 1)2 sites and with the traps symmetrically positioned
relative to the boundaries.

TABLE IV. Comparison of the average number (n) of
steps required for trapping a planar lattice with (2n)2

sites and with the trap asymmetrically positioned rela-
tive to the boundaries.

Type of boundary condition imposed on the lattice
Periodic ~ Confining SRB" Reflecting

Type of boundary condition imposed on the lattice
Periodic Confining SRB ReQecting

1
2c

8.92
31.64
(31.61)
71.60

130.6
209.9
310.6
433.6
579.5.
749.1

9.00
31.67
(31.72)
71.61

130.6
209.9
310,5
433.3
578.9
747.8

5.50
24.50

60.22
114.6
189.0
284.5
401.9
542.0
705.3

3.50
19.06
(19.08)
50.75

100.7
170.3
260.9
373.1
507.8
665.7

1
2
3
4 cL

5
6a
7
8
9
10

3.22
18.26
49.34
98.63

167.7
257.6
369.3
503.6
661.3
842.7

6.67
20.72
51.58

100.8
169.7
259.6
371e2

505.3
662.5
843.3

3.33
15.01
42.07
86.93

151.2
236.0
342.4
471.1
622.7
797.8

3e33
11.73
34.83
75.39

135.0
214.9
316.3
439.7
585.9
755.5

Results calculated from Montroll's equation (31),
Ref. 10.

"Results calculated fx'om the SRB recursion relation,
Eq. (1).

'slumbers in parentheses are the results of Monte
Carlo simulation; the standard deviations 0„ for periodic,
confining, and reflecting boundary conditions are, re-
spectively, 31.55, 31.59, and 18.12.

Calculations based on Egs. (3) and (4) were per-
formed for the case where the trap at (x, y) = (0, 0)
is symmetrically positioned with respect to the
planar boundaries. In Table III we list the results
obtained using the recursion relation D'"(x, y),
those calculated for lattices subjected to confining
and reflecting boundaries, and for completeness,
those obtained using the recursion relation
D"'( yx) and/or Montroll's Eq. (31)." Also in-
cluded in Table III (see footnote c) are the results
of a representative Monte Carlo calculation for a
5 x 5 lattice subject to periodic, confining and re-
flecting boundary conditions. As is seen, the av-
erage number of steps required for trapping de-
creases in the order: confining boundary condi-
tions, periodic boundary conditions, the SRB
bound lattice [D'"(x,y)], and reflecting boundary
conditions. In other words, a lattice with confin-
ing boundaries has the "softest" boundaries where-
as a finite lattice with reflecting boundaries pre-
sents the "hardest" boundaries. These results
may be understood by noting the fate of a random
walker attempting to step on a lattice site which
lies on one of the edges. For a walker encounter-
ing a confining boundary, the probability that the
walker will return to an interior point is —„in the
SRB bound lattice it is 3 and for the ease of a re-
flecting boundary it is 2.

Ne have also generalized the approach taken by
SRB to consider the case where the trap at (x, y)
= (0, 0) is not symmetrically disposed with respect

Results may be compared directly with the Monte
Carlo results in Fig. 1.

to the boundaries of the finite system, i.e. , the
case of even lattices. The results displayed in
Table IV show that the general trends found in the
previous case (odd lattices) are sustained. The
data reported in Tables II and III may also be
compared with the results obtained in our Monte
Carlo simulations, Fig. 1, and it is seen that the
agreement is good.

In conclusion, for the particular case of planar
lattices, the average number of steps required for
trapping can be calculated either from analytic
expressions, or via numerical simulation; both
for the case of finite systems subject to various
confining boundary conditions and for systems
subject to periodic boundary conditions. The re-
sults obtained are in good agreement with the
Monte Carlo simulations. Accordingly, we may
suggest that the numerical results reported in.

this paper for finite lattices of dimension three
may be taken as data against which the predic-
tions of theoretical studies on the random-walk
problem may be compared.

IV. DISCUSSION

In this paper we have reported the results of
Monte Carlo simulations on an important problem
in lattice dynamics: Given a finite lattice which
contains a trap at a (fixed) internal site, if a
random walker has the same probability of start-
ing from any nontrapping point, how many steps
(n) must be taken on the average before he is
trapped. As was pointed out in the introduction
to this paper, several lines of research (both
theoretical and experimental) raise questions
which can be cast into the above language (e.g. ,
the role of dimensionality and spatial extent in
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influencing cooperative phenomena far from equi-
librium, and the motion of excitons and their
trapping in finite photosynthetic units), and hence
the Monte Carlo results reported herein may be
taken as a first quantitative assessment of the
role of boundaries on the dynamics. Since our
ma, in objective in this paper has been to provide
numerical evidence on the (relative) importance
of boundary effects, no attempt will be made here
to access the various theoretical approaches to
the problem pf far-from-equilibrium phenomena.
This will be done in a later note where our objec-
tive will be to examine the Fokker-Planck equation
(including both diffusion and'drift contributions) in

light of these (and subsequently obtained) data.
Our more modest goal here, however, is to re-
organize the data presented in this paper in such
a way as to illustrate the concept of reduction of
dimensionality in reaction-diffusion process, an
idea whose importance was emphasized by Adam
and Delbruck. " These authors proposed that
"organisms handle some of the problems of timing
and efficiency, in which small numbers of mole-
cules and their diffusion are involved, by reducing
the dimensionality in which diffusion takes place
from three-dimensional space to two-dimensional
surface diffusion. " We now discuss this concept
in light of results obtained in our Monte Carlo
simulations.

In the reaction-diffusion approach taken by
Adam and Delbriick one imagines a target (or trap)
fixed at the origin of a coordinate system and
considers the diffusion of a molecule to the target.
To assess the importance of reduction of dimen-
sionality, they solve the corresponding (Fickian)
diffusion equation for the three-, two-, and one-
dimensional problems, keeping the target (or the
number of traps) fixed. In terms of our lattice-
dynamic problem, this is the case diagramed in
Fig. 3, case B, where our Monte Carlo results
confirm independently the predictions of the
Adam-Delbruck theory Note t.hat this case (fixed
number of traps in spaces of different dimension-
ality), may be contrasted with the case where one
maintains a fixed concentration of traps. This lat-
ter case is the situation considered initially by
Montroll and, as can be seen from Fig. 3, case
A, very different predictions are obtained on the
importance of dimensionality in this case; quite
simply, the average number (n) increases with
increasing dimensionality if the concentration of
traps is beld constant.

The results presented in the preceding para-
graph stress the obvious point that dynamical ef-
fects in rea, ction-diffusion problems depend cru-
cially on the specification of both spatial and tem-
poral boundary conditions. Regarded as an initial-

value problem, the two different assumptions on
the concentration of traps at time t= 0 are seen to
change in a qualitative way the predicted effects
due to reduction of dimensionality in the problem.
Whereas this interplay between spatial and tem-
poral constraints is very easily displayed in the
type of reaction-diffusion problem considered in
this paper (where the kinetics is first order, i.e. ,
linear, and analytic results may be obtained), it
may be anticipated that when nonlinear kinetic
processes are considered, then given the difficul-
ties in solving exactly the Fokker-Planck equation
even for the simplest nonlinear models, the type
of Monte Carlo study presented in this paper may
be the only way of obtaining reliable results on
the importance of dimensionality and spatial ex-
tent in reaction-diffusion processes.

APPENDIX

The generating function developed by Montroll '
for a d-dimensional lattice with n points on an
edge is

(A1)

where N= n~ and P(0, t) is the generating function
for all walks from the origin. The mean number
(n) is given by

BG~ 1 8 1tt, , N —1 tt (1 —z)P(0t)), ,',(A2)

while the second moment is

826~ 1 8 1tt', N-1 tt* (1 —t)P(0, t)), ,
For a planar lattice (d= 2) with periodic boundary
conditions

1 C, C4P(0, t)=
(

)+)ttN+. , + +, .+ )

+ 0((1 —s)'~') (A4)

Simple differentiations then yield the result

(tt')= C N 1 N+ CQ+ 0t,t+" )t2N 2

N —1 N

Hence, given the definition of the variance v,
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v= (n') —(n)',

we find that

v= [(~+ I.)/(W -S)](n)',

and the standard deviation, o, is then

~= [(~+ 1)/(X-1)]"2(n),
which shows that the standard deviation for peri-
odic lattices is somewhat greater than the mean.
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