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By making the dynamical-exchange decoupling in the equation of motion for the Wigner distribution
function, exchange effects in the dielectric function of the homogeneous electron gas were, in an earlier
derivation, described by a frequency-dependent local-field correction G(q, co). In paper I, details were
provided how the sixfold integral for G(q, co) can be reduced analytically into a double integral. , adapted for
numerical purposes. In this paper, the consequences of dynamical-exchange effects are studied, and the
theory is tested for its internal consistency. The evaluation of the pair correlation function g(r) at the origin
from both the static limit and the high-frequency limit of the frequency-dependent local-field correction
G(q, co) leads to the same value g(0) = 1/2, in contrast to other theories where, from both limits, different
results are obtained. Also, the compressibility, calculated from the dielectric function including exchange,
agrees with the Hartree-Fock result. Furthermore, it is shown that the high-frequency limit of G(q,e)
satisfies the general properties iniplied by the third-frequency-moment sum rule, resulting again in

g(0) = 1/2 and leading to the Hartree-Fock ground-state energy. This consistency between the static and
high-frequency behavior of G(q, co} cannot be fulfilled by any static approximation to G(q, co}, because an
adequate treatment of dynamical-exchange efFects involves excited states that are consistent with the Hartree-
Fock ground state. In the static limit, G(q, co) exhibits a relatively sharp peak near q = 2k+. This peak
induces an instability of the homogeneous electron gas, quite similar to and in the same density range as the
instability of the spin susceptibility discussed by Hamann and Overhauser. For r, ) 10.6, a supplementary
instability relative to charge-density deformations occurs. The frequency dependence of G(q, co} is examined,
and numerical values for ReG(q, co) and ImG(q, co) are presented. The real part of the dielectric function
and the imaginary part of the inverse dielectric function are plotted for several densities in the metallic
range. Compared to the random-phase approximation (RPA), the frequencies of the maxima in the
structure factor obtained in the present work (i.e., with dynamical-exchange decoupling) are shifted to lower
frequencies. The pl@smon dispersion is considerably closer to recent experimental data in aluminium than
with RPA. Finally, it turns out that the inclusion of frequency-dependent exchange effects results in the
natural occurrence of spin- and charge-density waves. These are the dynamical extension of the instability
relative to magnetic perturbations, found m the static limit at low densities.

I. INTRODUCTION

In Paper I, the present authors studied an
earlier-derived expression for the frequency-
dependent local-field correction G(q, ~), which
accounts for dynamical-exchange effects in the
dielectric function e (q, &u) of jellium:

e(q, ~) =1+@0(q, u&)/t1 —G(q, ~)Q,(q, ur)], (1)

where Qo(q, ar) is the Lindhard polar izability. The
local-field correction G(q, e) depends not only on
the wave vector, but also on the frequency in con-
trast to the local-field correction, introduced by
Hubbard. Paper I was merely devoted to reducing
an explicit expression for G(q, &o) as a sixfold in-
tegral into a tractable double integral by analytical
methods. To the best of our knowledge, this is the
first detailed study and explicit evaluation of G(q, ~)
at arbitrary frequency and wave vector. Some re-
sults for Ree(q, cu) and Ima '(q, v) were displayed,
and new analytical expressions for G(q, &u) were ob-
obtained in some limiting cases.

In the present paper (Paper II), this study of the
dynamical-exchange effects is continued. In Sec.
II, the internal consistency of t.he dynamical-ex-
change-decoupling method and its relation to
several sum-rules is investigated. In Sec. III, the
static limit of the dielectric function with dynami-
cal-exchange decoupling is examined, and it is shown
that an instability of the homogeneous paramagnetic
state at low electron densities arises quite naturally.
A similar instability was discussed previously by
Hamann and Overhauser in studying the spin sus-
ceptibility. In Sec. IV, a number of numerical re-
sults are presented. Furthermore, it is shown
that the dynamical-exchange effects shift the fre-
quencies of the maxima in the structure factor
towards lower frequencies compared to tne ran-
dom-phase approximation (RPA). If exchange is
included, the agreement with recent experimental
data on the plasmon dispersion in aluminum4 is
substantially closer than in HPA. Finally, spin-
.density waves originate automatically from the
dielectric function with dynamical-exchange ef-
fects.
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H. CONSISTENCY REQUIREMENTS

In. comparing theoretical predictions from the
dielectric response function of the homogeneous
electron gas to experimental results in metals,
two fundamentally different sources for possi-
ble discrepancies can arise. The description
of a metal with the jellium model, i.e. , replacing
the discrete lattice of atoms by a uniform neutral-
izing background, is an oversimplification. But
even this simplified theoretical model is not
exactly soluble, and several approximations have
to be made within the framework of the model to
derive the dielectric properties. The nature of the
jellium model and the mathematical approximations
made in the study of the model both influence the
results, and comparison to the experiment does
not provide a unique way to judge the validity of
the theoretical assumptions. Therefore, exact
interrelations among various quantities in the
electron-gas model, which also can be calculated
fx'om the dielectric func"ion, form a powerful tool
for studying the consistency of the approximations
made in deriving e(q, &o).

A. Staticlimit w = 0

In the static limit w =0, the compressibility sum
rule' relates the long-wavelength static dielectric
function to the compressibility x of the electron
gas:

e (q, 0),—01 + (kr T2/q~)1(:/)(:0,

where jwt~T is the Thomas-Fermi screening wave
vector, and Ko is the compressibility of the non-
interacting Fermi gas. The long-wavelength limit
of the static local-field correction including dy-
namical exchange is given by

G(q, o);o (q/k„)'.

This leads to

4me ~k' 1
)Tk kr q 1 —(r~/7r)(4/9m)

where ~, is the dimensionless Wigner-Seitz pa-
rameter. As is well known, the long-wavelength
result (4) is also obtained by using in (2) the com-
pressibility from the Hartree-Fock (HF) ground-
state energy.

On the other hand, in the limit q -~, one easily
proves that, with dynamical-exchange decoupling,

G(q, o). =. k,
in agreement with the large-q limit of the first-
order HF correction, ~ which is dominant at large
g,

Furthermore, the pair correlation function g(r)
at the origin r= 0, is related to the large q limit
of G(q, 0) by

g'(0) = — lim q'[S(q) —1] . (9)

Combining (7) and (9), one deduces the Kimball-
Niklasson relation

g(0) = — limq [S(q) —1]. (10)S~n,.„
The fluctuation-dissipation theorem' relates the

static structure factor to e(q, v),

S(q) = —
2
— d&o Im
k 1

4' nm f(q, (d).

G(q, o), =-'[1 -g(o)].
This is a rigorous relation for the electron gas,
derived by Niklasson. '0 The limit' (5) combined
with (8) thus implies that g(0) = —,with dynamical-
exchange decoupling. As is well known, the same
result is also obtained from the static structure
factor in the HF approximation.

The frequency-dependent approach to G(q, (d),
worked out by Toigo and Woodruff' (hereafter
referred to as TW), does not reproduce the large-
q limit (5). This is discussed in detail in Ref 12, .
where it is suggested that this discrepancy is due
to an implicit averaging over all frequencies in the
TW method.

The agreement between the HF approximation
and the static limit of the dielectric function with
dynamical-exchange effects in deriving the com-
pressibility and the pair correlation function is to
be expected, because, in the static limit, the
dynamical-exchange decoupling reduces into the
HF decoupling, This agreement simply indicates
that the internal consistency of the decoupling
method in the static limit is not disturbed by the
variational procedure used to solve the equation
of motion for the induced electron density.

8. High-frequency limit

An interesting consistency requirement, in-
volving the high-frequency behavior of e(q, u&), can
be derived from the work of Niklasson" and
Kimball. ' By noting that for a small interparticle
separation the many-electron problem reduces to
an effective two-body problem, these authors
show that

g'(o) =- =—g(o),dg(r)
dr, =o ao

where ao is the Bohr radius.
The pair correlation function in terms of the

static structure factor S(q) is defined by

(((~) - ) = -„2, , I d'e(&(s) - )l~"', (8)

where n is the electron density. From the proper-
ties of Fourier transforms, (8) leads to
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and thus (10), combined with (11), allows one to
calculate g(0) from the frequency-dependent di-
electric function in the long-wavelength limit.

On the other hand, in an independent way, g(0)
also follows from the static limit G(q, 0) by (6).
Obtaining the same result from (6) and from
(10)/(11) imposes severe conditions on the fre-
quency dependence of G(q, ~). For instance, with
any static approximation G,(q) for G(q, ~) used in
the frequency-dependent dielectric function (1),
(10)/(11) leads to'3

lim G, (q) =1-g(0) . (12)

This relation (12), proposed by Shaw" from a
static local-field model, thus neglects the dynami-
cal-exchange and correlation effects, and is incom-
patible with the rigorous relation (6), except for
g(0) =1, which from (7) would imply that g(r) ex-
ceeds 1 near the origin. In order to satisfy (6)
and (10)/(11) simultaneously, the frequency de-
pendence in GQ, v) has to be included explicitly.
Any static approximation to G(q, e) which differs
from zero for q- ~ violates at least one of both
conditions, as discussed in Ref. 16 for several
specific cases.

For our dielectric function with dynamical. —

exchange decoupling, the integral (11) can be per-
formed analytically in the limit q —~. This de-
rivation is given in the Appendix, and results in

lim q4[S(q) —1]= — w4/na~.

We have already presented this result in Ref. 16
without derivation.

It should be noted that the frequency-dependent
approximation by TW also leads to the llmltlng
behavior (13), and therefore g(0) = —,

" is also ob-
tained from the high-frequency limit of their di-
electric function by combining (10) and (13). At
co =0, however, the TW local-field correction
becomes —', '(Ref. 12) in the large-q limit, and the
static relation (6) then implies g(0) =0. With the
TW approximation, one thus obtains a different
value for g(0) if derived from the static limit or
from the high-frequency limit of G(q, ar). To the
best of our knowledge, the dynamical-exchange-
decoupling method presented here is the only
method leading to the same value for g(0) from
both the conditions (6) and (10)/(11). More details
are given in Ref. 16.

Another consistency requirement can be obtained
from the third-frequency-moment sum rule, and
the general analytical properties of G(q, &o) from
which the following exact relations are derived"

22
G(q, ").=- — „2 (&&g —&Ep&0) + a[1-a'(0)]

22
) „=,— 2 (&& ) —&~ & + i5&I &), (16)

where &V& and &E~& denote the average potential
energy and the average kinetic energy per particle
in the interacting electron gas, and where &E~&0 is
the average kinetic energy per particle in the non-
interacting electron gas.

In Appendix A of Paper I, the high-frequency
limit of G(q, &o) was derived, including dynamical-
exchange effects. For large and small wave vec-
tor, respectively, the following expressions were
obtained:

G(q, -);.'[1-~7(~.-/q)'+ "], (16)

G(q, ~).=0 ~~0 (q/&p)'+' ' ' (17)

Because (16) contains no term in q2, (14) and (16)
are only equivalent if the dielectric function (1)
with dynamical-exchange decoupling implies that
&E~& =&E~&0. Comparing then (17) with (15), it
follows that

& V& = —
~&~ m&@2/k2~ = —(3/4w)e'k~, (18)

III. STATIC LIMIT OF e(q, w) FROM DYNAMICAL-
EXCHANGE DECOUPLING

From the two-dimensional integral for G(q, u&),

given in Eq. (38) of Paper I, numericalvalues canbe
obtained by elementary numerical methods. Some
results for G(q, ar) in the static limit &o =0 have

which is precisely the exchange energy in the HP
approximation. Furthermore, the identification of
the q-independent terms in (16) and (14) then again
leads to g(0) = —,', in agreement with the above re-
sults for the value of g(0) obtained from the Nik-
lasson relation (6) and the Kimball-Niklasson rela-
tion (10).

In summary, the static limit of the dielectric
function obtained with the dynamical-exchange-
decoupling method, presented in Paper I is con-
sistent with the HF results for both the compres-
sibility and the pair correlation function at the
origin. This is quite treasonable, because the HI'
aPProximatiqgs is the static limit of the dynamical-
exchange decoupling, Furthermore, as shown
above, this dynamical-exchange treatment in the
high-frequency limit is internally consistent with
the static results for the energy and the pair cor-
relation function, which gives confidence in the
procedure used to solve the equation of motion for
the Wigner distribution function. It is therefore
not surprising that the dielectric function with dy-
namical-exchange decoupling conserves frequency
moments to infinite order in the HP ground state
as shown in Ref. 8 by an alternative derivation of
the same formal expression for G(q, u).
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I/r, '~(k) = G(kk, 0)[Q (kk, 0)I I (19)

2.0
O

1.6

1,2

been published previously. ~8 In Fig. 1, G(q, 0) is
plotted and compared to the local-field correction
of other theories. G(q, 0) canalsobe obtainedformal-
ly by considering the susceptibility from adiagram-
matic expansion' as the first two terms in a geo-
metric series in powers of 82. A theoretical
justification of this procedure is given in Ref. 18.

As discussed in the previous section, the be-
havior of G(q, 0) in the long-wavelength limit q-0
is given by (3), leading to the HF compressibility.
With increasing q, G(q, 0) first increases until its
maximum near, q = 2k„. For q &2k~, G(q, 0)
decreases and smoothly reaches its asymptotic
value G(q, 0)--, (as q-~), which leads tog(0)
= -„as is consistent with the high-frequency limit
of G(q, &u).

In the HF approximation, the electron gas is
unstable for r, ~6.0292, as reflected in the sign
inversion of the compressibility modulus. The
compressibility sum rule relates this instability
to a singularity in the static dielectric function@ (q, 0)
for q 0. As shown previously, 7 and as is readily
seen from (4), the static dielectric function with

dynamical-exchange effects indeed diverges in
the limit q- 0 at r, =6.0292. This instability
originates from a zero in the denominator
[1—G(q, 0)QD(q, 0)j of e(q, 0) in (1) for q-0 at r,
=6.0292.

Due to the peak in G(q, 0), a zero in the de-
nominator of (1), not only occurs in the long-
wavelength limit, but also at finite wavelength.
Because G(kk~, 0) is a universal function of k for
all densities as shown in Paper I, and Q, (kk~, 0),
considered as a function of k, is proportional to
r„ the critical r, value for this singularity at
finite k is found from

GH. &(q) = .-'q'/(q'+ k.'), (2o)

where the screening constant k', is put equal to
2k~ in order to satisfy the compressibility sum
rule.

Because of this choice of k„ the singularities
in e(q, 0) resulting from the Hubbard approxima-
tion and from the dynamical-exchange decoupling
coincide at r, =6.0292 in the long-wavelength
limit. For increasing wave vector, the critical
r, value increases monotonically in the Hubbard
approximation. This is in contrast to the dy-
namical-exchange-decoupling method, where the
rapid increase of G(q, 0) to a peak near q =2k~
results in a decrease of the critical r, values to
a minimum at r,=5 near q= 1.85k„. With the
dynamical-exchange decoupling, the increase in

G(q, 0) as a function of q overcompensates the de-
crease in the Lindhard polarizability, so that the
product Q, (q, 0)G(q, 0) equals 1 at smaller r, than
for q-0. As will be discussed below, these
critical values of &, are related to an instability,
derived by Hamann and Overhauser~ (hereafter
referred to as HO).

Another consequence of the peak in G(q, 0) is the
occurrence of a zero in the static dielectric func-
tion for r, ~10.6. One readily obtains from (1)
that e(q, 0) is zero if Q, (q, 0)[G(q, 0) —Ij=1. Be-
cause Q, (q, 0) is positive, and G(q, 0) exceeds 1 in
the peak near q =2k~, this equation has been
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In Fig. 2, these critical values for r, are plotted
and compared to the critical r values, as obtained
from the Hubbard approximation

0.8

0.4

0.5 1.0 1,5 2o0 2.5

q/kF

q/kF

FIG. 1. J ocal-field correction G(q, o) in the static
limit as calculated from the present dynamical-exchange
decoupling ( ), compared to the. approximations of
Hubbard (Bef. 2) (-'-'- ), Toigo and Woodruff (Bef. 11)
(—-), and Vashishta and Singwi (Bef. 22) at r, =3( ~ ~ ~ ~ ~ ),

FIG. 2. Critical. r, values as a function of q/kz for
which e (q, o) with dynamical exchange diverges ( )
compared to these critical values from the Hubbard
approximation (—-). The dotted curve indicates the r~
value for which e (q, o) has a mero, and thus 1/~ (q, o)
diverges;
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solved for r, in the region where G(q, 0) & 1. The
r, values for which e(q, 0) =0 are also plotted in
Fig. 2. A minimum in these critical values of &,
as a function of q is found for r, —10.6 near q
~1.94k'~. These critical r, values determine. a
(q, r,) region with 1/e(q, 0) negative, and thus where
the electron gas is unstable relative to the occur-
rence of charge-density waves, because I/e(q, 0)
is the ratio between the total effective potential
and the external applied potential. If e(q, 0) is

negative, the induced charge density overcompen-
sates the external charge density.

In Fig. 3, I/e(q, 0) is plotted as a function of q
for r, =3, 4.92, 5.64, 7.67, and 12.79. These r,
values are chosen for comparison with HO later
in this paper. At ~,= 3 [Fig 3.(a)J, no special
structure in I/e(q, 0) arises from exchange effects.
But at r, =4.92, i.e. , just below the minimal criti-
cal value of r, defined by (19), pronounced struc-
ture compared to RPA appears for q &2k~ [Fig.
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FIG. 3. inverse static dielectric function with dynamical-exchange decoupling as a function of wave vector (- — -), and
compared to BPA (—-) for (a) r~= 3, (b) 4.92, (c) 5.64, (d) 7.67, and (e) 12.79.
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3(b)]. For x, ~ 5, the dynamical-exchange decou-
pling, combined with a paramagnetic homogeneous
ground state, becomes meaningless, and a region
appears where I/e(q, 0) is negative, as shown in
Fig. 3(c) for r, =5.64. With still increasing r,
(&6.0292), the region of negative 1/e(q, 0) spreads
out and includes q = 0, according to the compressi-
bility sum rule, as shown in Fig. 3(d) for r, =7.67.

Furthermore, if I/e(q, 0) is negative, it shows

a steep structure near q =2k~.. The negative peak
increases in magnitude with increasing &„and
tends to —~ at x, =10.6, where e(q, 0) has a zero.
For r, & 10.6, a region of positive I/e(q, 0) appears
inbetween the two q values satisfying e(q, 0) =0,
as is shown in Fig. 3(e) for ran=12. 79. In Fig. 4,
the corresponding plots for e(q, 0) are given for
r, =3, 4.92, 5.64, 7.67, and 12.79.

An instability, similar to the one obtained here
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21 DIELECTRIC FUNCTION OF THE ELECTRON GAS. . . . II. 1369

from the dynamical-exchange decoupling, has
been derived and discussed by HO. These authors
studied the stability of the electron gas in the para-
magnetic state, relative to small deformations of
the spin. magnetization.

In a first approximation, using the Thomas-
Fermi screening with a small screening param-
eter, HO obtained a static dielectric function which
behaves very similar to the one we obtain from the
dynamical-exchange decoupling. (Figure 2 in HO
corresponds to &, =4.92, and Fig. 3 to r, = 5.64.)
However, at larger p", (see Fig. 4 in HO, which is
at r, =7.67), HO found a supplementary diver-
gence in the dielectric function, arising from the

q —0 limit, whereas with dynamical-exchange de-
coupling the unstable region has then spread out
to include the limit q-0. For still larger r, (see
Fig. 5 in HO, corresponding to &, =12.79) HO
again find the same qualitative picture as is ob-
tained with the dynamical-exchange decoupling.
The fact that the HO approach is not completely
compatible with the dynamical-exchange decoupling
might be due to the use of the Thomas- Fermi
screening by Hamann and Overhauser, which
seems not well adapted at finite wavelength.

In a second approximation, HO then tried to in-
clude some correlation effects by considering the
excitations near the Fermi sphere as independent
quasiparticles, interacting with an applied test
charge which is screened by the electron gas. It
is remarkable that this attempt to take correlation
into account, stabilizes the paramagnetic state
relative to infinitesimal magnetic deformations.
However, it is not clear whether the disappearance
of the instability with this approximation is due to

correlation effects, or to the mathematical ap-
proximation of averaging out the momentum de-
pendence in the integrals over the effective inter-
action.

It should be noted that the static dielectric func-
tion discussed here does not provide a reliable de-
scription of the instability. Its critical behavior
only indicates that, in the critical region, the
possibility of spin- or charge-density waves
should already have been included in the equilib-
rium distribution function of the electron gas. In
the present paper and in Paper I, a homogeneous
equilibrium distribution function was assumed,
and the critical behavior of the dielectric function
determines the region where the instability has to
be built in, but does not describe it. A discussion
of the consequences of this instability on the equi-
librium properties is given in Ref. 19 and refer-
ences cited there. Up to now, we did not investi-
gate their effec t on the dielectric response proper-
ties.

IV. FREQUENCY-DEPENDENT e(q, u) WITH DYNAMICAL-
EXCHANGE DECOUPLING

A. Dynamical behavior of G(q, u)

Our frequency-dependent expression for the
local-field correction G(q, ~) has been evaluated
numerically in two independent ways, as described
in Paper I.

In order to save computation time, it is worth-
while to remember the theorem that, in the units
q =kk» and &u = 2vE»/5, G(kk», 2vE»/k) is a uni-
versal function of k and v for all densities. In
Paper I, it was shown that

(21)

where f (k, v) and F'(z, k) are given in Eq. (4) and

Eq. (36) of Paper I, and where F'(z, k) can be ob-
tained by performing a single integral numerically.
It thus follows that tabulating V'(z, k) at given k as
a function of z for —1 & z & 1 allows one to compute
G(kk», 2vE»/k) at arbitrary v by performing a
single numerical integral for each ~. Numerical
results for Re@ and ImG are plotted in Fig. 5 for
several values of k. Numerical values are listed
in Table I.

For v=0, G(kk», 2vE»/k) tends to the static
limit, displayed in Fig. 1 as a function of k. At

) v~=
~

k2+k, the real part of the integral in (21)
diverges logarithmically, as discussed in Paper I.
Because the factor f(k, v) contains I/Q'p(kk», 2 vE»/k),
this divergent real part contributes to
ImG(kk», 2vE»/h) at v=

~
2k —k (, where

Imgp(kk», 2vE»/h) differs from zero. Consequent-
ly, with dynamical-exchange decoupling, both
ReG(kk», 2vE»/h) and ImG(kk», 2vE„/i) show a
logarithmic singularity at v =

~
—,'k —k ~.

Ontheother hand, at v=pkP+k, ImQp(kk», 2vE»/k)
equals zero, and thus only the imaginary part
of the integral in (21) co ntr ibutes to ImG (kk», 2 vE»/)I).
At the upper boundary of the particle-hole con-
tinuum, the divergence only appears in
ReG(kk», 2vE»/k), while ImG(kk», 2vE»/K) remains
finite.

For frequencies above the continuum, both

ImQp(kk», 2vE»/8) and the imaginary part of the
integral in (21) are zero, and thus ImG(kk», 2vE»/5)
is zero above the continuum, resulting in a dis-
continuity at v= ~,'-k2+k ~.

With further-increasing frequency, G (kk», 2vE»/k)
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approaches the high-frequency limit, calculated
in Appendix A of Paper I.

B. Dynamical behavior of e(q, u) and plasmon dispersion

Because G(kk~, 2'~/k) is a universal function
of 4' and v for all densities, the density dependence
inc (kkz, 2pEz/ff) as afunction of k and v only enters
via the Lindhard polarizability Q,(kkz, 2vEz/I),
which, as a function of k and v, only depends
on the density by the proportionality factor r, . There-
fore, the numerical evaluation of e (kk~, 2vE„/I)
at an arbitrary density is rather straightfor-
ward, given the values of G(kk», 2~E~/I) in Table
I. Because of the logarithmic singularity, it is
rather important that this table contains many
points near v=

~
k sk~.

For relatively small r„ the dielectric function
with dynamical exchange included is not much dif-
ferent from RPA, except for the exchange eff ects
near v= ~-,'k ak~. But with increasing x„overall
exchange effects appear in the numerical values,
as is manifest from the plots of Res(q, v), pre-
sented in Paper I for r, = 2 and in Ref. 20 for r,
=3.

The singularity in Re@ (q, &u) near co =$(~q'+qk~)/m
is related to the logarithmic singularity in G(q, &u),

which is an artifact due to the cutoff in the Fermi
function. Although a singularity also occurs in

G(q, ur) at e=k
~

—,'q' qkz~/I, it does not produce
a pole in Res (q, e), but only a. strongly peaked
structure, because Qo(q, &o) has an imaginary part
in this region.

In Paper I and in Ref. 20, 1m[1/e (q, &u)] has been
shown for r, =2 and r, =3 for several values of q.
The logarithmic singularity in G(q, &u) at &u =k

~

—,'q
—qk~ ~/m induces a zero in Im[l/e(q, ~)]. How-

ever, the width of this dip is so small that one
hardly expects it to be important for comparison
with experiment.

Another consequence of the logarithmic singu-
larity is found in the behavior of the plasmon dis-
persion. As already mentioned in Ref. 20, the
plasmon, defined by Res (q, w) = 0 outside the con-
tinuum, does not penetrate into the particle-hole
continuum, but approaches it asymptotically. How-

ever, the physically relevant property is the fre-
quency at the maximum in the structure factor.
The oscillator strength of the plasmon is pro-
portional to [de(q, v)/du&] ~ at the plasmon fre-
quency. Res(q, e) is a very steep function of e
near its zero when this zero approaches the con-
tinuum. Consequently, the derivative with respect
to frequency at the plasmon frequency becomes
very large, and thus the plasmon oscillator
strength decreases rapidly with increasing wave
vector. The maximum in the structure factor is.

then no longer defined by the plasmon peak posi-
tion, but by the maximum of the inverse dielectric
function inside the continuum.

At finite wave vector, the frequencies of the
maxima in the structure factor with dynamical-
exchange decoupling are appreciably lowered com--
pared to RPA." This is atrend which is confirmed
by recent electron scattering experiments in Al.
In Fig. 6, the maxima in 1m[I/e(q, v)] with dy-
namical-exchange decoupling are shown for r, =2,
and compared to RPA and to the experimental data
for Al (r, =2.07). The position of the plasmon
peak in both the exchange and the RPA treatments
are also indicated. Keeping in mind that the os-
cillator strength of the plasmon peak with dy-
namical-exchange decoupling disappears when it
approaches the continuum and is taken over by the
maximum in 1m[1/e(q, &o)], Fig. 6 clearly shows
that, at finite q, the exchange effects considerably

2. 5

~ p p

yp

1.5

Cl.

3
3

0.5

I I I I I I

2 4 6 8 10

q~(R~ j

FIG. 6. Plasmon frequency as defined by Bee (q, &)
= 0 and peak position of the dynamical structure factor
S(q, cu) versus the square of the wave vector at x~=2.
(See also Bef. 21. ) The RPA plasmon is indicated by (C)),
and the plasmon including dynamical-exchange effects by
(+). When the plasmon including exchange approaches
the particle-hole continuum (thin line), its oscillator
strength is taken over by the maxima of ~(q, cu) (o), which
are at substantially lower frequencies than the RPA max-
ima (x). The experimental data ( ) for Al (r~=2.07) are
taken from P. E, Batson, C. H. Chen, and J. Silcox (Ref.
4}. The triangles (~) indicate the maxima of S(q, cu) as
obtained from the approximation of P. Vashishta and
K. S, Singwi (Bef. 22).
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improve the agreement with experiment, com-
pared to RPA.

C. Remark on spin-density waves

In the derivation of G(q, (o) via the dynamical-
exchange decoupling in the equation of motion for
the Signer distribution function, it has been as-
sumed, in line with RPA, that the ground-state
distribution of the electron gas is homogeneous in
space. This does not seem unreasonable, because
it is generally accepted that the transition to a
%igner lattice occurs at densities far below the
metallic range. '.

Furthermore, it was assumed that the ground
state is paramagnetic. This assumption is in-
spired by the fact that the HF ground state in the
ferromagnetic state has only lower energy than
the paramagnetic HF ground state for x, ~5.45.
Moreover, the inclusion of correlation presumably
shifts the transition into the ferromagnetic state
to r, ~6.03.'~ However, spin-density waves lower
the ground-state energy of the electron gas in the
HF approximation. " Therefore, it is indicated to
examine whether the. dielectric function including
dynamical-exchange effects, reflects an instability
relative to deformations of the paramagnetic state.

Following the derivation of the dielectric function
with dynamical-exchange decoupling, as given in
detail in Ref. 7, the variational procedure of Ref.
7 can easily be applied for each spin state sepa-
rately, by introducing a spin-dependent function
r. (P) in Eq. (26) of Ref. V:

f.(P, q, &)=f.'(p, q, ~) r,'-„(p). (22)

Again determining a momentum-independent func-
tion y~„by the variati. onal principle, one then ob-
tains„along the lines described in Ref. 7,

and spins down to the density remains undeter-
mined. The condition (25) implies a singularity in
the dielectric function.

For the static limit, the instability (25) has
already been discussed in Sec. III. In the dy-
namicali case &+0, however, G(q, ~) has a
logarithmic singularity at ar =K(-,q +qkz)/m for
all densities, which is responsible for the fact that
e (q, &o) with dynamical-exchange decoupling has a
pole slightly above the particle-'hole continuum for
all densities. The occurrence of this pole is ex-
pressed by condition (25), which is the dynamical
extension of the static instability discussed by HO.

The occurrence of this pole in e(q, u) does not
necessarily imply the existence of spin-density
waves from dynamical-exchange effects in the
homogeneous electron gas. It only means that the
stability of the paramagnetic state has to be re-
examined with respect to small density deforma-
tions. This possibility of an instability already
should be included in the initial state. Up unti1
now, the consequences on the dynamical-exchange
decoupling have not been studied.

Furthermore, the question arises whether this
possibility for the occurrence of spin-density waves
is a property of the electron-gas model, or is a
consequence of the neglect of correlations.

Although in the static limit these correlation
effects have, to some extent, been studied in Ref.
3, the existence of a pole in the dynamical dielec-
tric function, and its relation to the possibility of
spin-density waves, has not been pointed out be-
fore. This pole is due to dynamical-exchange ef-
fects starting from a paramagnetic ground state,
but the influence of dynamical-correlation effects,
and of deviations from the paramagnetic initial
state, remains to be studied.

2(&V;. + ~;.)Qo(q, ~) —(4~e'/q') .
—,'& q;„Q',(q, ~)G(q, ~)/I. I + @0(q, &)1

' (23)
V. CONCLUSION

1 —G(q, ~)Q, (q, &o) = 0 (25)

is fulfilled, the relative contribution of spins up

which replaces Eq. (30) of Ref. 'f Subseque. ntly
calculating the density for both spins from (22),
one obtains two coupled equations:

~; [QA(q, ~)G(q, ~) —I — %0(q, &)] —.-'s; Q0(q, &)

gt 2

=lsd;. 4„2@0(q,~), (24)

and the same equation with n~„and n~„ inter-
changed. From these equations, one readily ob-
tains n~„=-n~„+n „. However, both equations are
only linearly independent, with n „=,n „, if
1 —G(q, &u)QO(q, re) differs from zero. If, however,
the condition

In this study (Papers I and II), the bare exchange
effects in the electron gas have been included in the
equation of motion for the %igner distribution func-
tion f, (p, R, t) using the dynamical-exchange de-
coupling. The variational solution for f,(p, R, f)
rigorously satisfies the equation of motion for the
induced charge and current density including ex-
change. Therefore, the dynamical-exchange ef-
fects in the dielectric function are adequately de-
scribed by the resulting frequency-dependent ex-
pression for the local-field correction G(q, &o), as
is confirmed by the analytical evaluation of several
limits in the present paper.

The dynamical- exchange- decoupling method is
the only known method leading tog(0) = ~, both from the
static limit of G(q, &a) and from the frequency de-
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pendence of e (q, &o).

In the static limit, it is also shown that the com-
pressibility, obtained from the dielectric function
derived here, is consistent with the HF results.

Furthermore, also if the third-frequency mo-
ment is used, the high-frequency limit of G(q, v)
leads to g(0) = —,'. Moreover, this high-frequency
limit is shown to be consistent with the we11-known
HF ground-state energy.

This internal consistency of the dynamical-ex-
change treatment, which we proved from severa1
analytical limits, seems consistent with the con-
servation of frequency moments to infinite order,
in the HF approximation. '

The numerical evaluation of G(q, &u) in the static
limit reveals a peak in G(q, 0) near q =2k+, con-
firming Sham's conjecture. ' This peak has impor-
tant effects on the behavior of the static dielectric
function. Apart from the instability of the elec-
tron gas in the long-wavelength limit at r,
=6.0292 (which one expects as a. consequence
of the compressibility sum rule), the structure
in G(q, 0) yields a divergence in e(q, 0) at fi
nite wave vector for r, ~ 5, and thus induces
an instability at low densities. This instability is
of the same nature as the one due to the spin sus-
ceptibility, discussed in another context in Ref. 3.
Moreover, a supplementary instability shows up
at still lower densities (r, ~10.6), corresponding
to induced deformations in the charge density.
The effect of including correlation on these in-
stabilities remains to be examined.

In the present work, the frequency dependence
of the local-fieM correction was also studied nu-

merically, and several plots of ReG(q, &o) and

ImG(q, &o) are presented. This frequency depen-
dence has pronounced effects on the dielectric
function, which is also shown for several densi-
ties. One of these effects is that, compared to
RPA, the inclusion of dynamical-exchange effects
lowers the frequencies of the maxima in the dy-
namical structure factor, yielding relatively good

APPENDIX: STATIC STRUCTURE FACTOR FOR q ~ ~

In Sec. II, the consistency of the high-frequency
limit and the static limit of the frequency-depen-
dent local-fieM correction has been established by
using the static structure factor S(q) in terms of
the dielectric function e(q, &u):

S(q) = —
2
— d&u Im
I 1

4~8' nn 0 ~(q, ~) ' (A1)

S(q) was needed in the limit of large q, e(q, &o) is
given by (1), and thus the inverse dielectric func-
tion is

1
1 Qs(q, M)

(A2)
~(q, ~) I+ Qo(q, ~) —G(q, ~)@0(q,~) '

In the units q =kkF and k&o =2vEv, (Al) can be re-
written

S(kkv) = ——,
' aokvk2 dvIm 1

0 e kkv, 2vEv k

(A3)

In these units, it has been shown in Paper I that

overall agreement with experimental data in Al. -

A very striking feature of the dynamical-ex-
change decoupling in the dielectric function is a
pole in e (q, v) outside the particle-hole continuum.
This pole is attributed to spin-density waves in
the electron gas, as predicted from static con-
siderations by Overhauser. " Also, in this re-
spect, the correlation effects should be studied,
as they might influence this critical behavior
substantially.

emote added in Proof. The present authors already
reported plots of ReG(k, ~) as a function of fre-
quency in Bull. Am. Phys. Soc. 22, 438 (19VV).
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( k /
1 dq gt(r+ ~k) —st(r —~k)

0 p'y F —
&2a

0 a v —r-k+
(A4)

G(kkv, 2vEv/R) =f (k, v) dan d'r' 1 1 1 1
Ir —r'I v, —r k v, —r" k v, —r k]

x [%(r + k/2) —R( r —k/2)] [st( r' + k/2) —st( r' —k/2)], (A6)

with v, = v+i0' and with

1 1
&4a2k2k2 Q2(kk 2vE /k)

&(r) is the Fermi function, normalized to 1 if [r~ ~1, and zero elsewhere. From (A4) it follows that

(A6)
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Im dvQp(kk», 2vE»/5) =—.4 1 1
(A7)

Furthermore, by using the identity
1 1 1 1 1

v, —r. k v, -r'. k v, —r k v, —r'k k (r —r')
and after performing some elementary translations in the integration variables, Qp can be written

Pr(kkr, krkr/k)= . . . , k r k rkr(r)ki(r ) . . .—-, )
2 2 3 3, ,

' 1 1 1
vr a0k~k v, +-,k —r k k r —r'

1 f 1 1
r, 'kr —r'ki)r (r —r') k'(r —r'+k)

Expressing the integral over r in cylindrical coordinates, with the z axis along k, (A9) becomes

2 d / L(z, —k) —I (z, 0) L(z, k) —L(z, 0)
4azpk 'k

&
~( v +k /2 —zk v —k /2 zk

where
(i-g), 2r2 i/2

1L(z, k) = p dp dy dPr'R(r')
0 0 z- z'+k'

From (A11), L(z, k) has the symmetry property

L(- z, k) =- L(z, —k),
from which it immediately follows that

l i
dzL (z, 0) = 0

(A8)

(A9)

(A10)

(A11)

(A13)

Using (A14), (A10) can be rewritten

Qp(kk»k 2vE»/5) — 4 7 2 5 dz[L(zk k) —L(zk 0)] k 2 k 2pea, . v +;k +zk v, —;k zk&'-
Therefore,

f OO i 00

dvImQ2p(kk», 2vE»/ff) = —
4 2 2 p dz[L(z, k) —L(z, 0)] dv[ (v+ —,'k +zk) —5(v — k —zk)]. (A16)

0 0

For k &2, the first 5 function yields no contribu-
tion, while the second 6 function contributes for
all z under consideration. Because of (A13) we
thus obtain

r dv ImQ', (kk», 2vE»/5)
0

= —4. . . d'r d'r'Dt(r)3t(r')
~2 W tZ0kpk z —z'+k '

(A17)
where the expression (A11) for L(z, k) has been
used again. In the limit of large k, the leading
term in 1/k becomes

We now evaluate fp dvImGQp starting from the
result (38) of Paper I,

G(kk», 2vE»/K) Qp2(kk», 2vE»/k)

1
p dzv'(zk k) —k k2 kna0 ~ v» —

g
— z
1

v, + &k +kz
(A19)

where, from (36) of Paper I

7(z, k) =[5(z,k) —S(z, 0)] —[X(z,k) -K(z, 0)],

dvImQ()(kk» 2vE»/I') q
'

2k2 kp . (A18)
32 1

0
0 F~ P 0 9&+2k2 k8 with $(z, .k) given by (34) of Paper I:

(A20)
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(1 +k2 ~ 2zk)2/2 '

1 ~ (1 ~k2+ 2zk)1/2 1 (z yk)2 1 + [(z + k)2)4/2

(1+k +2zk)4/ 1 —(1+k +2zk)2/ [(z+k) J4/ 1 —[(z+k)2] /2 (A21)

For X (z, k) we use an expression which is easily derived by combining (8), (15), (22), and (26) of Paper I:
n-g'&'/'

td(z, k)=~ f dp f'pdp f p dp f''dpf dtd

1
p +p' + (z-z'+k) —2pp' cost/'

From the symmetry property, similar to (A13)
but for X(z, k) and &(z, k), it immediately follows
that

becomes

J i 16 1
dzX (z, k) ~

„=„—k2.
1

dzX (z, 0) = dz 5 (z, 0) = 0 .
~f -i

Next, defining

(t)t-=f d ppt(r)'
Ir —ti

1 —t 1+5
=2m' 1+ ln

(A23)

(A24)

Using (A23), (A26), and (A28) the imaginary part
of (A21), integrated over v becomes

d2plmG(kkr, 2vE~/h) Q20(kk~, 22 E~/k)
0

i
dz v'(z, k)«0k''

one easily shows that

i+1 +2gk

P(z, k) = 2z ——— d24V'(V 44 ) . (A25)
2 4

Therefore, from an integration by parts, (A25)
leads to

dzp(z, k) =0,
i

t
~~

t-i
which is an exact result, valid for all k.

From (A22), it follows that

1

dktt (z, k) =—, dtp fd t'pp(tr) t(pp)1l'

1 1
z-z'+k Ir- r'+k~2'

(A27)

and the leading term in 1/k for very large k thus

4 1 1
S(kk~) ~=„- 1 „„4,377 ap

which is precisely Eq. (13) of Sec. II.

(A31)

dp & p —~k —kz —6 p+ 2k +kz . A29
0

For k&2, the second 6 function in (A29) yields
no contribution and the first 6 function contributes
for any z under consideration. From (A20), and
using (A23) and (A26), the term in X(z, k) survives,
and the result of the integral is then given by
(A28):

r d2pimG(kk~, 2vE~/ff)Q, '(kkF, 22pE~/f4)
0

16 1
4 =-

8 2k2 ke (A30)
m'ap ~

Combining (AV), (A18), and (A30), an expansion
of the integral (A3) for S(kkz) in powers of (1/k)
using (A2) leads to
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