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Dielectric function of the electron gas with dynamical-exchange decoupling.
I. Analytical treatments
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Dynamical-exchange effects in the dielectric function of the electron gas can be described by a frequency-
dependent local-field correction G(q, eo). In an earlier derivation, we deduced an explicit expression for
G(q, ao) as a sixfold integral, which was obtained from the dynamical'-exchange decoupling in the equation
of motion for the Wigner. distribution function, and a variational treatment of the resulting integro-
differential equation. Explicit dynamical calculations were presented. In this paper the formal expression for
G(q, eo) is reduced to a double integral in a convenient form for numerical purposes, using various Fourier
representations in the integrand. Several limiting cases are evaluated analytically, from which it follows that
dynamical-exchange effects drastically influence the structure of the dielectric function. Some numerical
results on the frequency-dependent dielectric function with dynamical-exchange decoupling are presented.

I. INTRODUCTION

Many properties of simple metals can be des-
cribed and calculated from the dielectric function.
In studying the effects that are essentially due to
the electron-electron interactions, the jellium
model is widely used. In this model, the discrete-
ion lattice is supposed not to have essential in-
fluence on the dielectric function e(q, &u) and is re-
placed by a uniform positive background.

In the well-known randon-phase approximation
(RPA), ' ~(q, &u) was first calculated by Lindhard, '
who studied the motion of the electrons in the
presence of an electromagnetic field, under the
assumption that this motion is governed by classi-
cal laws.

Because the RPA only takes into account the long-
range interaction of the classical Hartree poten-
tial, a satisfactory description of the long-wave-
length collective excitations is obtained. However,
due to the neglect of the exchange and correlation
inter actions, the RPA insufficiently des cr ibes
short-range effects, which, for instance, is re-
flected in a negative pair correlation function for
small interparticle distances from RPA. '

By summing up several exchange diagrams,
Hubbard4 introduced a first correction to the RPA,
in the form of a frequency-independent function
G(q), and various improvements on this local-field
correction, going beyond Hubbard's expansion,
have been proposed.

Several approximations have also been. made by
other workers, ' "leading to a frequency-depen-
dent local-field correction G(q, &u), and it has been

shown" that an internally consistent theory of the
electron gas cannot be obtained if this frequency
dependence is neglected. However, the explicit
calculations of G(q, ~) were restricted to the static
limit &= 0 and to a few limiting cases. But even
this partial information from approximate treat-
ments, as well as some interesting general pro-
perties of G(q, v),"already indicate appreciable
effects of the exchange interaction on the dielec-
tric response of the electron gas.

Therefore, the present authors" tried to eval-
uate the dynamical-exchange influence on the di-
electric function explicitly, including the full wave
vector and frequency dependence, and derived
general expressions for the transverse and longi-
tudinal dielectric function of jellium, including
exchange. G(q, &u) was obtained as a sixfold inte-
gral that could only be solved analytically in a
few limiting cases. This solution was obtained by
considering the equation of motion for the Wigner
distribution function, and where dynamical-ex-
change effects were included by making the ex-
change decoupling in the equation of motion. By a
variational procedure, an approximate solution of
the resulting integrodifferential equation was ob-
tained that rigorously satisfies the equation of
motion for the charge and current density. Various
limits were also studied.

The same general form for G(q, &u) as a sixfold
integral is also obtained if one variationally solves
the integral equation for the irreducible vertex
function with linear exchange processes as derived
in Ref. 23, but with a screened Coulomb inter-
action, and without explicit evaluation.
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The same formal expression for G(q, e) which
me derived was afterwards also obtained in Ref.
28 from the equation of motion for the double-
time-retarded commutator of the charge-density-
Quctuation operator s.

The static limit G(q, 0) has been evaluated" and

shows a sharp peak near q =2k+, in contrast to
earlier theories.

The limiting cases in which the sixfold integral
for G(q, (d) can be calculated analytically suggest
that dynamical-exchange effects might appreciably
influence the dielectric function. These indica-
tions are confirmed by our explicit evaluation of
G(q, u&) with dynamical-exchange decoupling. " In

Ref. 31, we presented numerical results for
t(q, (()) and for Im e '(q, (d), obtained by reducing
the sixfold integral for G(q, cu) into a double inte-

gral with elementary analytical methods, and by
evaluating the remaining double integral numeri-
cally. As far as we know, this is the first calcu-
lation of G(q, v) with dynamical-exchange de-
coupling at arbitrary wave vector and frequency.
However, no detailed information was given about
the analytical and numerical methods used.

In Ref. 31 we also deduced an important scaling
property of G(q, v) with respect to density. Ex-
pressing the mave vector in units of the Fermi
wave vector k~, and the frequency in units of
twice the Fermi energy EF '.

k = q/kr, [2 =k(d/2Z~,

we proved the theorem that G (kkz, 2v&r/k) is a
universal function of k and v for all densities.
In these units, we obtained the explicit expression

O{kk, 2rd jk) f(kr) f d'=r t ,d'r , ,- [2'((r +-'k) —2((r —-'k)][2((r' r-,'2)-2((F —-',k)]

1 1 1
X v+i&-r- k v+ig-r' 'k v+ie-r ~ k

with

=1 m2e~

2 v k'k'k' Q'(kk» 2]dF~/5) '

and where Q, is the Lindhard polarizability, given

by

2

Q()(k k~, 2]2ZF/k) = ~,
17 F

t , JI(r +-,'k) —Z(r ——,'k)
v+i5-r ~ k

%ith these definitions, the dielectric function takes
the form

(q, &u) = I+Qo(q, ~)/t. I G(q, ~)Qo(q, ~)] . (6)

Furthermore, we have shown in Ref. 32 that the
high-frequency limit and the static limit of our ex-
pression (2) for G(q, co) are internally consistent,
in the sense that these limits both lead to the same
value of the pair correlation function at the origin.

The sixfold integral (2) forms a key problem in

studying dynamical-exchange effects. Therefore,
much effort has been put into the evaluation of this
integral. The final form we succeeded in obtaining
is quite appropriate for practical applic ations, and

because of its general interest, the derivation of
this final result is given in full detail in the

present paper.
In this paper (hereafter I), we do not develop the

method we proposed in Ref. 31, but present an
alternative procedure, based on Fourier repre-
sentations of the integrand, which allow one to re-
duce the sixfold integral (2) to a double integral,
transformed into a convenient form for numerical
purposes. The method applies to arbitrary fre-
quency and is not restricted to the static limit. The
general dependence of G(q, &u) on wave vector and

frequency is discussed, and in Appendix A the
high-frequency limit of G(q, &u) is calculated ana-
lytic ally.

In paper II, a summary willbegiven of the
various internal-consistency requirements and
sum rules that could be tested and are satisfied
within this theory, and numerical results for the
dielectric function with dynamical-exchange de-
coupling wi11 be presented at arbitrary wave vec-
tor and frequency. The implications for various
electronic densities will also be discussed.

II. ANALYTICAL TREATMENT OF G(q, u)

From our earlier derivation, "'"the influence of
exchange effects on the dielectric function is des-
cribed by the function G(q, (d), given in (2) as a
sixfold integral, which is obviously not appropriate
for numerical evaluation. In order to achieve the
twofold goal of reducing computation time and si-
multaneously solving the accuracy problem, two
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independent methods were worked out.
An outline of our first method, based on the

straightforward evaluation of (2) towards a double
integral, was presented previously. " This proce-

dure, however, requires more computation time
and turns out to be slightly less accurate than a
second method, which is based on Fourier trans-
forms, and which is presented in this section.

A. Fourier transformation

The possible sources of inaccuracies in evaluating (2) from the subtraction of integrals over two dis-
placed Fermi spheres can be eliminated by introducing the Fourier transform of the reduced Fermi func-
tion (3), expressed in cylindrical coordinates. The singular behavior of the factor ~r —r

~
also becomes

easier to treat if one makes use of its Fourier transform. Furthermore taking the Fourier transforms of
the frequency-dependent factors, one obtains a 17-fold integral, where one recognizes the representa-
tions of two three-dimensional & functions.

Performing some of the resulting integrations, Eq. (2) eventually transforms into
()0 00 I

where g, (z, z ) is defined as the fivefold integral

(1)„(z,z') = dP dP' ' dx dx' It,(], ~z —z' ~)e'"*'"'e"""*'sin—sin

x (1 x')'~'Z, [] (1 x')"'](1-x")'"g,[g (1 —x")'"].

We note that in (8), the integration over P would yield a difference of two 5 functions, only allowing for z
to take the values z = —xe-,'k, while ~x~ ~1 because of the integration limits of x. Therefore t/, ( ,zz) only
differs from zero in the region -1 ——,'k &z &1+-,'k. We thus obtain the important property that P,(+~, z ) =0.
This makes it possible to reduce the second-order pole in (7) to a pole of first order by an integration by
parts, using

1 1 d 1
(v+ie —kz)' kdz v+ie —kz'

One then obtains

G(kk~, 2vEF/h) = 4f(k, v) d-z dz', —[(z —z')P~(z, z')] .1 d

Performing next the differentiation with respect to z, and decoupling the products of the denominators in

(10) as

[1/(v +ie —kz)][ 1/(v +i@—kz')] = [1/k(z —z')][1/(v +ie —kz) —1/(v +is —kz') ],
the integrand then consists of four terms

G(). ).', 2«E i)«)= — ' f d«d«')( ' ' «- —(«(««')
V +~E' —O'Z Z —Z V+ZC —kZ dZ

1 g~(z z') 1 d
v+ze —kz z —z v+te —kz' dz " ' j (12)

The last term on the right-hand side of (12) can easily be integrated with respect to z, which gives zero
because („(+,z')=0. The first and thirdterms on theright-hand side give an equal contribution for sym

etry reasons, because it follows from (8) that g„(z,z') = t/r, (z', z). Therefore, (12) separates into two
terms

G(k k~, 2vEv/k) =f(k, v)[G,(k, v) +G, (k, v)],

where

4 " 1 d
G,(k, v) =-— dz . — dz'g, (z, z'),

V+S& - QZ dZ
(14)
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and where )2(z, z ) is defined in (8).
The term G,(k, v) essentially results from the pole of second order in the original sixfold integral and

can be written as a single integral. The term G, (k, v) can be reduced to a double but numerically tractable
integral.

&. 62(k, v) as a double integral

%riting the modified Bessel function K0 of the second kind in its integral representation

~if (c-s')
d(„, „„,=2',(],~z —z' ~), (18)

and performing the integrals over z and z in (15), using (8), one obtains

G, (k, v) = —8 —, 3 dg, dx dx dp [6(p —(,) -8($,—p )]k' 0 h3 -~ -1 1 ~ 00

x dp 2 2»2 exp i (v+i&) e'~'e'2 sin —sin

&( (1 x2)&/21 J [] (1 x2)&/2] (I x'2)&/2g [] (1 x'2)3/2]

where

(18)

The integration over x' then gives (Ref. 33, p. 376)

f
1

dxI i2 2 (1 x12)i/2+ [$ (1 x&2)&/2] —g2 ~
~' [(~2 +pl2)1/2]/(~2 +p~2)3/4

-1

If one subsequently interchanges the integration over P and )„evaluates the integral over $„substitutes
P' by g, and P by 7 —$„ introduces the polar coordinates (F„g) instead of F„and $3, and performs a partial
integration with respect to $, using

J,/2(&) 2 "' d sin]

then (17) transforms into

G,(k, v) =
@

dg dx dv sk '(cot8)exp iT — +x (1-x')"'32~2 1l 1
V +ZE

0 -1 0 k
OO

From the elementary relation

1f/2

dgf(sing, cosg) = dg[f(sing, cosg) +f(sing, -cosg)],
0 0

(21)

the range of the angular integration is restricted to (0, 23/}. The integration over v is straightforward. By
recombining terms, one then finds

27/2 ' SC(z, 0) —X(z, k) 3C(z, 0) —X(z, -k)lik, v+ie —kz —k'/2 v +i@ —kz+k'/2 j
with

fr/2

K (z, k) = -8(1- z')' ' d gsk '(cotg)F((z + k) cos 8, (1 —z')' ' sing), (23)

and where the function F(f), a} is defined as
OO

F(b, a) = d$ d
—[Ji(at') sinb)].

0
(24)
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The integral (24) is explicitly evaluated in Appendix C in terms of elementary functions, giving

Q2 ) 2 1/2 g 2 1/2

F(f, u)=, 8(.-11+kl) 1- „,) -8(.—II-kl»-
g I 1 + k I + [(1+ Q)2 —gP j~~2

'4 (' ~' ~)'" il-ki+[(I -k)'-a]'&'

+8(a- [1+5[) 8(pl —bp —a)ln ~~ ~ ~ I. (25)

One readily shows that the singularity of sk (cote) for 8-0 in (23) is cancelled by the behavior of the
function &, given in (25).

In summary, the formula (22), combined with (23) and (25) expresses G, (k, v) as a double integral. The
integral (23) is easy to treat numerically, and the remaining integral (22) involves a principal-value prob-
lem. However, before considering this difficulty, we first discuss the evaluation of G, (k, v) from (14) as
a single integral that takes the same form of (22).

C. G&(k, v) as a single integral

In order to evaluate G,(k, v) given in (14), with P,(z, z ) given in (8), a useful identity is derived in Appen-
dix D:

, z z' g, , 1 g
p

1 I I

2w(1-x )'& (1 —x' )'&' f I, , p'+p,"—Rp p' cosy'+(z —z')' ' (26)

Noting that in (14) the integral f dz'g~(z, z') is needed, the expression (8) for P~(z, z') is rewritten with
the help of (26), and the integration over P is performed, resulting in a difference of 6 functions

f
I

dz'p, (z, z') =—. dz' dp sin — dxe"l" ' pdp

Xf6(z' + x' + —,'k) —6 (z' + x' ——,'k)
+ p'+p ' —2p p cosy +(z —z }'' (2'I)

One then performs the integral over z with the help of the 6 functions, and defines a vector Q with com-
ponents -(z+ k/2) in some arbitrary direction and p perpendicular tO this direction. The integrations over
z', p', and y can then be considered as a volume integral over a unit sphere,

f dz'P, (z, z') =—. dP dx Odp e'~ ""sin — d'r'%(r')
'+0 21 40 y p lr' —t+I Ir —t I

(28)

where %(r) is the Fermi function on a unit sphere defined above (3), and where t, is a vector of length,

f,-=It, l
= [p"("—.'k)'1"'. (29)

The volume integral over r' is easily performed:

f 1 1 —P, 1+k,d'r'X(r'), , =2m 1+
2

' lnIr'- t+ I

Combining then (14), (28), and (30) and integrating over P, one finds

(30)

dz
G, (k, v) =- —. . — d+6(z+z+ ,'k) —6(z+x- —,'k))-

i u+ie —kz dz

1 —P 1 —t 1 —t', 1 —t,
p

(31)



J. Y. DEVRKKSE, F. BROSKNS, AND L. F. LKMMKNS

Integrating twice by parts one obtains

f dz d
d x 5(z + x+ —,'k)g(x, z)

V +$6 —kZ dZ

1 dx5(z+x+ —,'k)g(x, z)
V +$6 —kz

1 1g(-zv kk, z)
V+ZE —kz

8 =if%/2

~ = -(i»/2)
1%A/2 1

dz . —g(-(z+-', k), z) .
V +Sf kz dz

6'(z, k) —S(z, O}

V +$6 ——,'k' —kz
(33)

where P(z, k) is given by

1 —(1+k'+2kz) 1+[1+k'+2kz]'"
[1+k'+2kz]' ' 1 —[1+k'+2kz]' '

1 —(z+k)' 1+[(z+k)'1"'
[("k)']'" 1 —[("k)']'"

D. Flan form of C~kk, 2vE~ta)

By recombining (13), (22), and (33), the full
expression for G(kk~, 2vE~/ff) is thus given by

G(k kF, 2vEz/k) = f(k, v)
21r'

V (z, k)
v + is —k'/2 —kz

7(z, -k)
v +is+ k'/2 —kz) '

(35)

7(z, k) =[X(z,O) -X(z, k)]-[6:(z,O) —6(z, k)].

(36}

The function 5'(z, k) is given in (34) as an elemen-
tary function, and 3t'(z, k) is a single integral,
given in (23) and (25).

One then easily checks the symmetry property

Applying this more-general result (32) to the
specific case (31), one easily checks that only
the last term of (32) contributes. Furthermore,
substituting the integration variable p by u =p'
+ (z a —,'k)' in order to include all the z dependence
in the integration limits of u, the differentiation
with respect to z eliminates the integration over u.
Recombining terms, one then finally obtains

6'(z, -k) - 6(z, O)k, v +is +-,k' —kz

and thus (35) can be rewritten in the form

G(k k~, 2vE~/fi) = f(k, v)
2H

X

k

~ I

~~

t

~

~

~

~ ~ 1I~ ~
~

~ ~ kZ

1

«r(z11(,
1

I' + IE + lt /2 + kz )
(38)

As discussed above, the evaluation of R(z, k)
presents no numerical difficulties, and the func-
tion is shown in Fig. 1 for several values of k.
The function 7 (z, k), given in (36), can then easily
be obtained, because 6:(z, k) is an elementary func-
tion (34). The result is shown in Fig. 2 for various
values of k. The function V'(z, k) shows no singular
behavior, and thus the numerical evaluation-of
(38) can be performed by standard techniques, ex-
cept when the denominators in (38) tend to cancel
each other, or when one of the poles approaches
the integration limit. But these two remaining
problems can be treated analytically.

Under the condition )v)» )2k'+ k), the denomina-
tors in (38) are almost equal, which might intro-
duce numerical inaccuracy. We considered this
problem previously in the limit k- 0 (Ref. 27),
and now discuss it in general in Appendix A,
where G(kkz, 2vEz/5) is calculated analytically

A second problem in evaluating (38) arises from
the possibility that one of the poles approaches an
integration limit. Because

f(x) „„'d„f(x) -f(p)
P +'l6 —X g P +z6 —X

—f (P) ln . , (39)

a logarithmic singularity might occur for )v)
=)—,'k'+k) if 7'(al, k) differs from zero. From (23)
and (24) it is obvious that K(xl, k}=0, as is clear
from Fig. 1. Furthermore it follows from (34)
that 5:(+1,0) =0. Therefore (36) yields that 1'(+1,k)
= 5'(+1, k), which results in

k+2 1+ Ik+11
I k a 1I 1 —I k + 1 I

1 —(k+ 1)' 1+ Ika 1l
lk+1l 1+lk+1l '

Consequently, G(k k~, 2vE~/k) shows a logarithmic
singularity in the region )v)=)-,'k'+k), because
V'(al, k) e 0, provided that f(k, v) differs from zero:

G(k ky i 2vEF/5) IIpI ~Ikk/kkkI

= +f(k, v) k — ln ln v-2v' 2+k 2+k ' k'

1+0
v(z, k) =-v(-z, -k}, (37) (41)
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FIG. 1. Function K (z, k) defined in (23) and (25) as a function of z for various values of k.

From the expression (4) for f(k, v) in terms of the
Lindhard polarizability Qo, it follows that f(k, v)
-k for k-0 in the static limit v=0. The logarith-
mic singularity (41) therefore smooths out near the
origin. Also in the static limit at k =2, the singu-
larity is cancelled by the factor (2 —k) multiplying
the logarithmic functions.

It should, however, be emphasized that this
singularity (41) might be a mathematical artifact.
Because it is a logarithmic singularity, its influ-
ence extends over a very narrow region in fre-
quency. Furthermore, it would be smoothed out
by any physical effect which removes the cutoff in
the Fermi function.

I& = 0.1——I& = 0.5

1.0

k = 2,0

N.

-0.75 -0.50

I

I
t

Ij
I

~1~+~O~
I

/
/

.r'

FIG. 2. , Function &(z, 4) defined in (36) and forming one of the basic ingredients in the evaluation of G(q, co) fsee
(38)), as a function of z for various values of k.
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FIG. 3. —Im c (q, &) as a function of m at &~=2, for (a) q/k& —-0.2, (b) 0.5, (c) 1.0, and (d) 1.5. The dotted line indi-
cates the RPA, and the full line represents the results from dynamical-exchange decoupling. The circles in Fig. 2(a)
indicate that the magnitude of the peaks is not precisely known, due to numerical inaccuracy.

Two immediate mathematical consequences re-
sult from the singularity (41). At the parabolas
~v~ = ~2k +k ~, the real part of the dielectric func-
tion equals 1, whereas the imaginary part of the
inverse dielectric function becomes 0. This is
readily seen from (6). Thus the dynamical struc-
ture factor, including exchange, has a zero as a
function of frequency at the parabola v = ~k —2k' ~,
whereas in the BPA approximation only a dis-
continuity in the derivative occurs. This pheno-
menon is illustrated in a few plots of -Im e '(q, co)

in Fig. 3.
As a second consequence of this logarithmic sin-

gularity, the zeros of e(q, &u) do not penetrate
into the particle-hole continuum, but only approach
it asymptotically. Near the continuum, their
oscillator strength strongly decreases and is
taken over by the maxima of Ime '(q, &u} in the
continuum. Because at very high frequencies
Q,(q, &o) is negative and G(q, ~) is positive, as

shown in Appendix A, far above the continuum
1 —G(q, ~)QO(q, &u) is positive. At the upper
boundary of the continuum, G(q, &u) = —~ from (41),
and because Q, (q, v) is negative, it follows that
1 —G(q, &u)Q, (q, &o) =-~ at this upper boundary.
Thus, with decreasing frequency, 1 —G(q, &u}Qo(q, u&)

decreases from some positive value at very high
frequency to -~ at co =h(qkp + —,'q')/m, passing
through zero at some critical value u&,. From (6)
it thus follows that e(q, tu) diverges at &u = (u„and
because Q,(q, e) is negative, e(q, u&} tends to -~
for- m decreasing towards w, . However, because
&(q, &u is positive at very highfrequency, a zero in
e(q, (u) has tobefound above', . It should be noted that
a similar singular behavior of Re&(q, cu) also appears
above cu =5(qk~ —&q')/m, butbecause G(q, &u) and

Qo(q, v) have an imaginary part, the pole in Ref {q,&u)

is replaced there by a strongly peaked structure.
In Fig. 4, Re@(q, v) is shown as a function of fre-
quency for several values of the wave vector.
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(a) 33

40

20

s=2
q/kF- 0.2

HARTREE

INCLUOING

EXCHANGE

f5= 2

q/kF-1
HARTREE

INC LUOING

EXCHANGE

0.3 0.4 0,5
0 ~ ~ ~

- QO
11

-20

-40

3 10

8 f5= 2

q/kF= 0,5
...... HARTREE

tNCLUQING

EXCHANGE

3

1.5
CL ~ ~

~ ~
~ ~ ~ ~ ~ ~ ~ ~

:.. O.75
I

1.0
I

I I I

&5"-2
q/kF-" 1.5

HARTREE

JNCLUOING

EXCHANGE

4

(0/U)p

=2 for / = a) 0.2, (b) 0.5, (c) 1.0, and (d) 1.5. The dotted 11.ne ende-
d amical-exchange decoupling The circles ndicate thatA and the full line represents the results from dynamical-exc ange ecoup

k own due to numerical inaccuracy.the magnitude of the peaks is not precisely nown, ue

hasize again that the maximum xn the
m al-structure factor penetrates in the continuum, a-

thou h the zeros of c(q, ~) do not. In approaching
the continuum, the oscillator streng on th of these
zeros decreases and goes over into the maxima

III. CONCLUSION

The equation of motion for the %'signer dxstr~bu-
txon, inc u

't' '
luding exchange effects via the dynami-

ef. 27cal-exchange decoupling, as presented in Hei.

was already deduced in Ref. 20, where an itera-
tion to first order was proposed in order to solve
the resulting integrodifferential equation appr oxi-
mately. n e sI th tatic limit, this iterative result

ion"was also obtained from a diagrammatic expansion.
In a previous paper, we have shown thn that this iter-
ation to first order provides the terms to order e'
in the geometric progression of ouur variational
dielectric function in powers of e .

The variational procedure was also proposed
previously to treat integral equations of the same
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type, "'""where a similar trial solution, as in
Ref. 27, neglecting the momentum dependence,
was used.

But the application we proposed in the equation
of motion for the signer distribution function
clearly indicates that the bare exchange effects
are treated dynamically and to the full extent, and
that all other correlations are neglected.

It should also be emphasized that the derivation
of the dielectric function by Toigo and%oodruff"
is a first attempt to include dynamical-exchange
effects. %e discussed the relation between this
first-frequency-moment conserving method and
the variational procedure in Ref. 32. Along the
same lines as in Ref. 21, a dielectric function
can be derived by conserving frequency moments
to infinite order in the Hartree-Fock (HF) approx-
imation. " The resulting expression for G(q, co)

happens to be identical to the one we derived
earlier in Ref. 27, but in Ref. 28 no explicit
evaluation was performed. The conservation
of the frequency moments in the equation of motion
for the double-time-retarded commutator of the
charge-density-fluctuation operators thus seems
to be equivalent to satisfying the integrated equa-
tion of motion which we obtained by a variational
technique.

The sixfold integral (2) for G(q, (d)), including
dynamical-exchange effects, can thus formally be
obtained by several methods. But as far as we
know, the reduction to a twofold integral and its
explicit evaluation at arbitrary frequency and wave
vector are for the first time presented in Ref. 31.

The sixfold integral (2) is the key problem for
the study of dynamical-exchange effects. In this
paper we derive in detail how, by using Fourier
representations, it is transformed analytically into
a double integral and is written in a simple form,
adapted for numerical purposes. This evaluation
reveals appreciable exchange effects in the diel-

ectric function, having implications on the plasmon
dispersion and on the frequencies of the maxima
in the structure factor.""

Near the boundaries of the particle-hole contin-
uum, the logarithmic singularity in G(q, &v) in-
duces drastic exchange effects. But the physical
significance of this singular behavior is restricted,
because it results from the cutoff in the Fermi
function. Finite-temperature and higher-order
correlation effects would remove the discontinuity
in the equilibrium distribution, and therefore
smooth out the logarithmic singularity in G(q, (d).
The overall exchange effects at arbitrary wave vec-
tor and frequency are thus more important physi-
cally than the singular behavior found in a limited
(q, &) domain.

In paper II, the dynamical-exchange-decoupling
method will be tested for its internal consistency
from several sum rules and consistency require-
ments, and an extensive survey of numerical re-
sults will be pr esented.
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APPENDIX A:. EVALUATION OF G(kk~, 2vEF /h)
IF iv))) )k2/2+ k)

As discussed in Sec. II, the final expression
(38) for G(kk„, 2vE~/k) presents numerical diffi-
culties for frequencies far above the continuum,
because both denominators then tend to cancel
each other. However, this limit can be evaluated
analytically for arbitrary wave vectors.

From symmetry, the sixfold integral (2) for
G( k k~, 2vE~/h) can be r ewr itten

G(k kr, 2vEF/5) =- ,' f(k, v) d'r —d'r', , [(r-r') k]' 1 1
Ir-r I (v+fe-r ~ k) v+ie-r k'

x [X(r + ~k) -X(r ——,'k)][31(r'+ —,'k) —X(r ——,'k)], (A1)

where f(k, v) is defined in (4), and 31(r) is the re-
duced Fermi function in a unit sphere, as given
in (3).

In the limit v» ik /2 a ki, the k dependence in
the denominators of (Al) can be neglected. Then
(A1}becomes

I(- '„'„k)+I( '„—- ,', -k)]-, ---
(A2)

with

1(s, s', k)-=f d'r f d'r'Z(r ssr)k((r' sr'k)

[(r —r') k]'
w( )2

~ (A3)

T ~ k'
1(s, s, k)=f d 1 T(r k, k), sss(A4)

By translation of the integration variable r into
r+r', the integral (A3) can be rewritten
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where

T( bb)—= /dr b((Y+b)b((r'rb). (A45)

f(s, s, k) =8— d'r-42l 2 r k)'
3

x 3I(r+ t)(1- —',ir + ti+-,'ir + ti'),
(A7)

If one introduces the new integration variable
r ——,'(a+b), the integral (A5) can easily be evalua-
ted in cylindrical coordinates, giving

where

t = —,'(s —s')k, (A8)

&(a, b) = xv3!I(-.'(a -b))![I—2 i
2 (a —b)

i

—.'I-,'(- —b) I' f,

and by inserting this result in (A4), we obtain

(A6)

and where the factor 8 preceding (A7) results from
replacing the integration variable r in (A4) by
—,'r. Translating then the integration variable over
—t, and expressing the integral in spherical coor-
dinates, (A7): becomes

f(s, s, k) =8——2v r2dr(I — 2r+—-,'r 2) d24 z'+t' —2gtN

2
=-8—— dr r' —m'+-', r' —3( (r —5'' r' m') +—(r —5'+4")(r'- d)' {n ) . (A9)

Although the further evaluation of (A9) is elementary, it is rather lengthy, and after a tedious ealeulation
one eventually finds

4w' k' 1 181P 7 It 2t'
3 P 2xVx9 2x3x5xVx9 2x5x7x9 5x7x9

2t P 1-P 1 1 3P t t 1 —t
g 2 4 7 9

where t is given by (AB).
It is worthwhile to mention that, for small values of t, a Taylor-series expansion yields

f(s, s', k);; ~'k'(I'v+ -TrP +~" ) .
Inserting (A10) into (A2), and using (A8), one then finally obtains, with some algebra

(A10)

(A 11)

G(k kF, 2vZF/k)
)ItI ~I&2(&&el

f(k, v) 128m 1 38 (ki' 71 k 4

v4 3 2x7x9 3x5xVx9ii2i 2x5xVx9 2

5x7xg 2 5x7 2 9 2)

1 1 3 k)2 1 k14 1 ki' 2 —k'
2k Vx9 5xV 2i 5 2) 3 2i 2+k (A12)

Using (All) in (A2), the long-wavelength limit
4- 0 can easily be found:

G(k kF, 2vEF/ft), p
'4 m'k

15 .f(k, v) , , 8
(A13)

From the definition (4) of f(k, v), one therefore
obtains in the long-wavelength limit, and, in the
original units (q, (d) using (1),

q2 e4$4 $ 3 q
2

' '15 (p4 m2m' q'(q (p) 20 kF
(A14)

which is exactly the result we obtained previously, "
and from which it follows that the slope of the
plasmon branch in the long-wavelength limit is
lower by 10% to 20% compared to RPA in the range

of metallic densities.
Finally, another interesting limit can be ob-

tained from (A12). In the limit of very large k
(but with a frequency still satisfying

ivy�»

)
—2k2+ ki),

a Taylor-series expansion in 1/k yields

f(k, v) 32
G(k kF 012v@F/@!II!&&!22/24)l! v4

41Xgp 1-——+

1 4A.
(A15)3„7 q

This result will turn out to be very useful in

paper II, when the third-moment sum rule will be
dls cus se$.
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APPENDIX 8: EVALUATION OF
~(a.b.c) —= f,

"
dh(&l()& (ta)&,(P)J,(fc)

a&0, b&0, c&0

Quite generaHy, this type of integral can be
written as the fourth-type Appell hypergeometric
function of two variables, "which in this case re-
duces to

bc I' b' c'
A(a, b, c)= +Z, l1, 1;2,2; -+, -+

Because of the special values of the indices, it
is possible to transform (BI) into an elementary
function, by using the integral representation"

The integral A(a, b, c) then becomes

A(a, b, c) =— dy
5c sin gp

m, y (b'+c' —2bc cosy)'I'

x J" d&K, (&a)J,(&(b'+c' —2bc cosy)'~'}.
(B4)

As a function of (, the integrand is now a product
of two Bessel functions, which by integration
yields an ordinary hypergeometric function (Ref
33, p. 410)

bc 1
A(a, b, c) =—— d y sin'y,

E,(1,1;2, 2; x —xy, y —xy)
1 1 1 —ux —5)&

1-ux' 1 —ny
' ' B2

which is valid if lxl- p lyl- p' ~h~~e p and p'
are some numbers, satisfying the conditions
p+p ( I and [p(1+p')]' '+[p'(I+p}]"'&1.

The fact that one has to consider the analytic
continuation of (Bl) and (B2), if these conditions
are not fulfilled, makes it easier to follow another
procedure, which is based on an integral represen-
tation for the product of two Bessel functions of
the same order (Ref. 33, p. 367):

z'g"
,( ) .( ) = .

(

Z, ((Z'+z' —2zZ cosy)' ')f 4{psin (Z' +z' —2z Z cosy) '"
(B3)

+c —2bc cosy'
6 4

(B6)

By using a standard integral representation for
the hypergeometric function, one obtains

1 1

A(a, b, c) =— dt dy sin'y
4g

a'+(b'+c')t
x —cosy

l
. B6

2bct
The integral over y can then be done by elemen-

tary methods:

1 ' dt 8 +{b'+c')t
4, t 2 bet

cP +(b'+ c')t&t'
(B"t)

FinaHy performing the integration over $, one
obtains

{a,b, c}= —(W —a —b' —c') + b' ln ~
—+ c' I

1 1, »
5' —c'+cP +W» c' —b'+a'+8'

4bc 2
(B8a)

where

W =([2+{b—c}'][a+{b+c}']P'.
Comparing (B8}with the result of Appendix D, we find the relation

"d$
J

—&0()a)J',($b)~, (gc) =4b p pdp p'dp' dy dy' —,
0

1
o o p +p —2p p cosg+

This transformation (B9) has been very useful in Sec. II for reducing the contribution of the second-order
pole in G(k kz, 2vF~/I) to a single integral.

APPENMX C: EVALUATION OF
F(b,a) = f"d$(sin//$)(d/dg)tJ, (ag)sinb(] a,b & 0

In Sec. 11, the contribution to G(k k~, 2vEF j5)
from the product of factors containing first-order
poles, could be expressed as a double integral,
because E(b, a) can be expressed in terms of

elementary functions (22)-(25).
Applying

d (&,(ah) =
2
—[&.(a&) —~2(ah)1,

a

the integral F(b, a) can be written as

(C 1)
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F(b, a) = ,'aE—,(b, a) +bE', (b, a) —,'aE—,(b, a), (C2a)

where
F,(b, a) = d& —sin( sinb& J,(ag).

1

0
(C2d)

F,(b, a) = d$ —sin( sinb) Jo(a)),
1

0

F,(b, a) = dg- sing cosbg J,(ag),
1

0

(c2b)

(C2c)

By expressing the product of tr igonometric func-
tions in (C2c) and (C2d) as a sum of trigonometric
functions, both the integrals for E,(b, a) and

E,(b, a) are sums of integrals of the Weber-Schaf-
theitlin type (Ref. 33, p. 405), yielding

=1 ) 2 1/2

E)(b, a) =—2 —O(a- lb+1I)(b+1) 1—
2a 1+5)

F, (b, a) = — -4b +e(a —
I
b + 1 I)(b + 1)' 1—1 a

~n

2 1/2-e(a- Ib-11)(1-b) 1- 1-Q
2 1I2 ( 2~ 1/2

8(. Ib ll)(1 b) 1
I

'
I1 —5

(c3)

(c4)

(C5)

(C6)

where the 8 function is defined as in (18). How. -
ever, this procedure fails in evaluating E,(b, a)
because both terms that would result from writing
the product of trigonometric functions as a sum
would diverge. We therefore use the integral

t
I1+bl—sing sinb) =—

~l dy singy

to rewrite (C2b) as
PI1+bl

Eo(b, a) =-
Jl dy d$ singy Jo()a).

I1-bl 0

The integral over $ is again of the Weber-Schaf-
theitlin type:

I1+bl

E,(b, a) =2 dy e(a -y). . .),/, ,
l1-bl

(C7)

and this integral can be done by elementary meth-
ods. Combining the result with (C4), (C3), and
(C2a) one finally obtains

Q2 )] 2 1/2 ) 2 1/2

E(b, a) = e(a-I1+bl) 1- '
I

-e(a-Il-bl) 1-
4a 1+&

& 1-5& .
+4 e(a —I1 —bl)» 1 2 a &/2 e(a —I 1+bi)8(l 1 —bl -a) ln

a 1 +b+[(1+b)' —a']'/' 1 + b + [(1+ b)' —a']'/'

(CS)

APPENDIX D: EVALUATION OF
(u,y e ) = (m y fb pdp Jc p''dp' J2~dyf ~dp'(p + p'2-2pp'co~+a ) abc&0

Because of the inequality p'+p '+ a ~ 2p p', the integrations over y and cp' are straightforward:
b C

J(a, b', c') =4 .pdp p dp [(p'+P '+a)' —4P p '1
0 0

The remaining double integral is not very difficult, if one introduces the new integration variables

'O=P Pk=P -+P

yielding
0 9+2c b2 —yt+ 2b

J(a, b, c') =— dq dg(]i'+2a')+a ) ''+ — d]7 dt(q'+2cP]+ad) ' '
2 -c2 -g 2 0

'g+2C

dq d](rP+2a &+a') "'. (D3)
b -c -g+2b

performing the integrals over g, one obtains
I) 0 b2 b

Z(d', )')= ] ndnf(n+d, )'+4d'c']' ' — dn]n —a ] +f dn[]n —d)'+ddn ]" —f dn( +o'))', '

(D4)
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which again is rather elementary.

c' —5 +2+W b — + a' +S'
(Dsa)

gr t'(y2 c2)2 +2+(y2 + c2) + Q4]l/2

Comparing this result with the result (88), one readily finds the relation

b c 27k 28' ] 1d5-&.(~()J,(~t)&,(c(),
0 0 0 p p +p pp coscp+ o

which is used in Sec. H to calculate the contribution to G(k k~, 2vE~/I) from the poles of second order as
a single integral.
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