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Phase transitions in the Ising square lattice with next-nearest-neighbor interactions
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An importance sampling Monte Carlo method has been used to study L x L Ising square lat-

tices with periodic boundary conditions. The behavior of the thermal and magnetic properties
. was determined over a wide range of R, the ratio of next-nearest- to nearest-neighbor coupling.

From these data we have extracted the R dependence of the critical temperature and a range of
other critical parameters. Within our experimental error the critical exponents are independent

of R but the critical amplitudes are not. The data do however suggest a change in n for R

slightly greater than 2. Variations in critical entropy and internal energy may be as large as

those resulting from changes in lattice or spin dimensionalities, Our results are compared and

contrasted with those obtained by a range of theoretical methods.

I. INTRODUCTION

The Ising square lattice with nearest-neighbor (nn)
coupling is an exactly soluble model' which has
served as a cornerstone for modern critical-point
theory and as a testing ground for many approximate
theoretical approaches. In a previous paper' we used
a Monte Carlo technique to study the finite-size
behavior of this model and showed that the data,
when properly interpreted, could be used to obtain
accurate values of the bulk properties and ordering
temperature of the infinite lattice. With the addition
of an applied magnetic field or next-nearest-neighbor
(nnn) coupling the model is no longer exactly soluble
by presently available theoretical techniques. Dif-
ferent approximate methods have been used to attack
the extended model but the differences in the results
suggest alternative results are needed to check them.
In this paper we shall apply the Monte Carlo method
to the zero-field nnn model:
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more conclusive experimental evidence is unavail-
able, the critical energy or critical entropy is some-
times used to predict the nature of the Hamiltonian
appropriate to the physical system being studied. It is
known that these parameters are strongly dependent
on spin and lattice dimensionalities but the depen-
dence on competing, short-range interactions has not
been determined over a wide range of A.

The ground-state properties of this model can be
calculated exactly and the possible ordered states are
shown in Fig. 1. The bulk properties are independent
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where o-l, a-, , a.k = +1 and the ratio between nnn and
nn coupling will be written 8 = K„„„/E„„.Naive ap-
plication of universality concepts would predict that
the addition of nnn coupling should not affect the
critical exponents. The situation may well be more
complicated, however, since several "similar" models
with short-range interactions" have been shown to
possess "anomalous" exponents due to a special
ground-state degeneracy. The behavior of this model
is of interest, not only because of the existing
theoretical questions, but also because recent experi-
mental work has shown that real pseudo-two-
dimensional systems exist and the model may thus
have physical significance. In addition, when other,
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FIG. 1. Possible ground states which can occur for the Is-
ing square lattice with nearest- and next-nearest-neighbor
coupling. The four sublattices comprising the superantifer-
romagnetic ground state are made of sites displaced by mul-
tiples of two lattice spacings from the sites labeled 1—4. The
dashed lines form one pair of antiferromagnetically coupled
sublattices.
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of the sign of E„„aslong as appropriate definitions
are used, e.g. , the staggered magnetization of the an-
tiferromagnet is equivalent to the spontaneous mag-
netization of the corresponding ferromagnet. For
convenience we shall restrict ourselves to the case of
antiferromagnetic nn interactions (K„„)0) but the
results are of course relevant to the ferromagnetic
case E„„&0. For R & 0.5 the system breaks up into
two pairs of interpenetrating antiferromagnetic sys-
tems. The resultant structure is doubly degenerate
(see Fig. 1) and is given the name "superantifer-
romagnetic" (SAF). (In the limiting cases R + ~
the lattice breaks up into two uncoupled, inter-
penetrating antiferromagnetic square lattices com-
posed of nnn bonds. Therefore the limiting value
kT, /~ K„„„jis known exactly. )

Several theoretical methods have been applied to
the nnn-Ising square lattice [Eq. (1)], but the tem-
perature variation of the thermodynamic properties
for a wide range of R is not really well known. Bit-
terlich and Jellito' used a matrix method to find ex-
act solutions for small L x L square lattices (L ~ g)
with periodic boundary conditions. The results are of
limited value since exact solutions" for finite L && L
square lattices with R =0 indicate that an L = 8 lat-
tice is much too small to allow a reliable extra'polation
to L = ~. The model has also been recast into the
formalism used for many fermion theory' ' but the
partition function could still only be solved approxi-
mately by a variety of perturbational methods. The
greatest progress has been made using series expan-
sions' ' and renormalization-group methods. ' '
Dalton and Wood" have derived series expansions
appropriate for Eq. (1) and have analyzed them in

detail for 0 «R « —1. For R & 0 the series became
erratic; Dalton and Wood were unable to analyze
them although Takase' was able to analyze the low-

temperature series for small positive R. However, on
the basis of an analysis of the low-temperature series
expansions Wu' inferred that the low-temperature
exponents are in general non-Ising-like for R 40.
(Fisher and Camp20 earlier showed that the R =0
model is unique in that the spin-spin correlation
function has a non-Ornstein-Zernike decay below
T,.) A renormalization-group investigation was car-
ried out in a four-cell cluster approximation' and the
critical temperature was computed for —1 ~R ~+1.
Nightingale, "however, introduced a transformation
relating the properties of the model to a finite system
with modified interactions and predicted nonuniversal
behavior for R & 0.5. ' Other theoretical approaches
have also predicted nonuniversal behavior for
R & —,. Preliminary results of our Monte Carlo stud-
ies have been presented elsewhere' and more recent
results' are available for smaller lattices.

The goal of this work has been to determine the
dependence of the thermodynamic properties over
the widest possible range of R. Greater precision for

each data point could have been achieved but only at
the expense of the range of interactions which could
have been treated. In Sec. II we shall briefly describe
the Monte Carlo method and introduce the scaling
theories needed for the interpretation of the data.
Section III contains extensive data for the thermal
and magnetic behavior, and in Sec. IV we shall
analyze these data in order to study the critical
behavior and extract a number of characteristic
cooperative parameters. In Sec. V we shall summa-
rize and conclude.

II. METHODS OF STUDY

A. Monte Carlo technique

We have used an importance sampling Monte Carlo
method to study L & L lattices with periodic boun-
dary conditions applied to eliminate surface effects.
(Only even values of L were used so that no "misfit
seams" were present. ) Successive states were gen-
erated using a single-site spin-flip mechanism where
the transition probability was

W(o.; —o.;) = Woexp ( —AE/kT)

where AE was the energy difference [calculated from
Eq. (1)] involved in the transition. Thermodynamic
averages for the order parameter, internal energy,
and spin-spin correlation functions were then deter-
mined by calculating the weighted statistical mechani-
cal average over the limited number of configurations
sampled. (For R (0.5 the order parameter was tak-
en to be the absolute value of the staggered 'magneti-
zation. For R & 0.5 the order parameter was instead
computed from the average of the absolute values of
the four sublattices. ) Thermodynamic response func-
tions, e.g. , specific heat C, ordering (staggered) sus-
ceptibility X+, and nonordering susceptibility X were
computed from the fluctuations. The technique has
been described in detail elsewhere and the details of
our computational algorithm have been given in Ref. 2.

Data were accumulated over the range —100 ~ R
~+3 (the reason for the large negative value will

become clear in Sec. IV}. The range of R should be
sufficiently broad to answer theoretical questions con-
cerning the critical behavior and to provide results for
comparison with data obtained on physical "two-
dimensional Ising" systems. Since we were primarily
interested in the infinite lattice behavior of the
model, we have only studied systems with L «10.
The inclusion of nnn coupling increased the comput-
ing time needed by almost 30% over the R =0 case
and the number of states sampled is correspondingly
smaller. Nonetheless, at least 600 MCS (Monte Car-
lo steps per spin) were taken for each data point near
T, and in some cases as many as 2000 MCS were
used. The results shown in Sec. III represented the
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average value obtained from anywhere from two to
five repetitions of the same point using different ini-
tial conditions and random numbers. The maximum
lattice size studied was L =60.

B. Finite-size scaling theory

The properties of finite simple Ising lattices are
known to be strongly size dependent near the critical
temperature. A finite-size scaling theory has been
developed by Fisher to describe these effects in
terms of infinite lattice critical exponents. According
to this finite-size scaling theory, the free energy of an
L x L lattice is given by the scaling ansatz:

F(L, T) =L ~S (L' "t) (3)

C. Crossover scaling theory

The possibility of scaling with respect to the in-
teraction parameter for a system with. competing in-
teractions has been studied for a system with isotro-
pic interactions ' and should be appropriate for an Is-
ing model as well. Here we might consider four lim-

iting cases R ~, R —~, and R —, from above

and below. The scaling parameter 5 would be dif-
ferent in each case, e.g. , A=R ' for R ~ and
6 =R —

2
from above. According to the standard

treatments of crossover scaling theory" "we can
write the asympotic variation of the critical tempera-
ture as

T, (A) —T,(h =0)nA't4',

where @ is the characteristic "crossover exponent. "

Following Chang et a/. ' we write the free energy

where %' = (2 —a)/v, t = [I —T/T, (~) ( with T,(~)
being the infinite-lattice transition temperature, and

is a scaling function involving the scaled variable
x = L' "t. The shift of the "pseudo-ordering" tem-
perature T, (L) (usually defined by the location of
the specific-heat peak) is given by

ST, = [1—T,(L)/T, (oo)] =aL ' "

The finite-size scaling of the free energy leads to scal-
ing relations for the bulk properties. For example,
for the order parameter m of a system with periodic
boundary conditions

mLPt"= f(x) BxP .
& ~ao

This approach has proven quite successful in treating
Ising models . although the ultimate reliability of
the analysis obviously depends on the accuracy of the
finite lattice data.

field, and the exponent 4= —,(2 —a+/). From Eq.
(7) expressions for the zero-field critical behavior of
the bulk properties may be readily derived, e.g. ,

t2 —a —vf ( t
—4g)

x+= t' ~g(t 4'a),
C=t h(t 4'5) .

(gb)

(Sc)

In the limiting case of R —~ (5 = —R ' 0),
these expressions must eventually reproduce simple
Ising critical behavior. An analysis of Eq. (8) then
indicates that $ = y = 1.75. In general for 5 & 0 the
critical behavior is given by

m =B(~)ta,
x+=C(h)t &

C =A (h)t
(9b)

(9c)

where n', P', and y' are the new critical exponents
and. the amplitudes are given by

B(g) B g(2 —a —2P' —4 )/2y

C(g) = C g&4 —y &t4

A(A) =Ap

(10a)

(10b)

(10c)

T,(4) —T, (4 =0) [ln(( 6't4') ']'t", (12)

where $, v, etc. , are new exponents. The amplitude
predictions then become

W(~) =~,~=t&

B(b ) = Bph@4'

C(~) = C,~~t4 .

(13a)

(13b)

(13c)

III. RESULTS

A. Thermal properties

For R & —, we certainly expect that the critical ex-

ponents retain their Ising values and the amplitudes
are thus constant as R —~. Since it is possible
that new exponents (continuously variable2'2 ) ap-

pear for R )—, the variation of the amplitudes may

be more complicated.
An alternative formalism ' for the crossover scaling

analysis would be one in which the correlation length
diverges exponentially instead of according to a
power law

(=(exp(ct ")

The variation of T, (d ) may then take on a different
form, e.g. ,

F(h, t, 5) = t F(t+h, t ~h)

where t = ~1 —T/T, (A) ~, h is an applied magnetic

(7)
The data obtained showed qualitatively similar

behavior to those observed for the nn only model. In
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fact, the only significant difference was the appear-
ance of a metastability which occurred at low tempera-
tures for R near 0.5. In this case the SAF and AF
(antiferromagnetic) states are quite close together in

energy and the system can be "trapped" at very low
temperature in a state which is not really much
higher in energy than the ground state. An example
of this metastable behavior is shown in Fig. 2 where
the internal energy data are plotted for an L =40 sys-
tem with R =0.7 in an initial AF state. As the data
showed, the system persisted in the metastable AF
state as the temperature was varied until
kT/K„„= 1.18. It is in fact possible to draw a single
curve through the data shown with a maximum devi-
ation of just over 1%. Any data showing evidence of
metastable behavior were discarded from the analysis.

The finite-size dependence of the thermal proper-
ties was quite similar to that observed earlier' for
R =0. The internal energy showed very little effect
of finite size outside of a narrow region near T,.
Within this region infinite lattice results were ob-
tained using an extrapolation in L '

~ Because of the
similarity to the previously published R = 0 results,
data for various lattice sizes will not be presented
here. The specific-heat peak was rounded and shifted
to higher temperature as the lattice size decreased.
The infinite lattice critical temperatures T, (R) were
determined using a linear extrapolation with L, i.e.,
Eq. (4) with v =1. If the critical behavior is non-
Ising-like, v may take on a different value; however,
the lattices studied here are sufficiently large that we

v, (R)
t;(0)

FIG. 3. Variation of the critical temperature with nnn
coupling. The open circles are the Monte Carlo values.
Theoretical estimates for T, (R) are: series expansions
by Dalton and Wood (Ref. 15); Gibberd (Ref. 13);

Kawakami and Osawa (Ref. 12); ———Fan and Wu
(Ref. 14); + renormalization-group theory (Ref. 18).

estimate the additional error in extrapolation to
L = ~ to be no more than —,% due to uncertainty in
v. (The R dependence of T, will be discussed in
some detail in Sec. IV.) The variation of T,(R) is
depicted in Fig. 3 and the normalized internal energy
results are then plotted versus T/T, (R) in Fig. 4.

Reduced Internal Energy vs. Reduced Temperature
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FIG. 2. Metastable AF state for R =0.7. System was ini-
tialized in the AF state. The inset shows the time depen-
dence of the internal energy Uat kT/K„„= 1.18 as the sys-
tem drops to the SAF state. The arrow shows the mean
value over the entire time interval shown. (Uo is the inter-
nal energy at T=O).
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FIG. 4. Temperature dependence of the internal energy.
The data points are normalized by the internal energy at ab-
solute zero Uo. The solid curves give the variation for R =0.
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(Because of the widely different values of R included
in this study, the temperature range of interest, mea-
sured in units of K„„/k, varies significantly from one
value of R to another. ) Even when plotted in this re-
duced form, the internal energy data show significant
dependence on R. For R & —, the internal energy

values quickly approach the nn only curve as R in-
creases and by the time R = 3 the two curves are al-

most indistinguishable. For R & —, , however, the

data show a much wider variation lying below the nn
only curve for R & 0 and then crossing over to lie
above the curve for R & 0. The data for R & 0 be-
gin to approach the R =0 curve again only when
much more strongly negative values of R than those
shown in Fig. 4 are reached.

The specific-heat results also vary significantly with
R. Data for several different R values are compared
in Fig. 5. For R & 0 the specific heat is no longer
symmetric about T, but is reduced at high tempera-
ture and increased at low temperature with respect to
the nn only curve. For —, & R & 0 the reverse is

1

true. The specific heat behaves yet differently for
1R &
2

but quickly approaches the nn only curve as
R increases.

The case R =
2

is special in that, as shown in Fig.
3, there is no transition at any finite temperature.
The specific heat for R = —, behaves quite differently

than for other R values and it shows no sharp peak.
The results, shown in Fig. 6, indicate only a low
rounded maximum.
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FIG. 5. Specific heat vs temperature. (a) Results for
R & 0.5: solid line, R =0; dotted line with open squares,
R = —3.0; dashed line with open triangles, R = +0.45. (b)
Results for R & 0.5 dashed line with full circles, R = +0.55,
dotted line with open triangles, R =2.0. The behavior for
R =0 is shown for comparison, solid line.

FIG. 6. Temperature dependence of the bulk properties

for R =
2

.'(a) staggered susceptibility; (b) (nonordering)

susceptibility; and (c) specific heat. The arrows show the
location of T,(0) for comparison.
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S. Magnetic properties

The temperature dependence of the order parame-
ter was qualitatively the same for all values of R &0
as for R =0. The low-temperature results showed
very little finite-size effects. Very close to T,(R)
finite-size rounding began to play a role and at a high
temperature a residual lattice size dependent "tail"

remained. This "tail" did of course extrapolate to
zero as I ~. In Fig. 7 we show the resultant esti-
mates for the infinite lattice behavior for various
values of R. These results show that for R near to —,

the order parameter stays quite close to 1.0 until very
close to T,(R). Here too as R is reduced below zero
the order-parameter data fall below the R =0 curve
and approach it only for much more negative values
of R than those plotted here. In contrast, as R in-

creases from 2, the data very quickly approach the
1

R =0 curve.
The behavior of the magnetic susceptibility is

shown in Fig. 8. Again the qualitative behavior is the
same for R A 0 as for R =0. within experimental
error the maximum slope in X T vs T occurs at T, (R)
with a maximum in XT occurring at much higher tem-
perature. There are, however, marked differences in
the values of the critical susceptibility X, and the lo-
cation and magnitude of the susceptibility maximum.
The susceptibility data for R =

2
(see Fig. 6) also

show a very broad maximum.
Typical results for the staggered susceptibility are

shown in Fig. 9 for R ( 2. (Due to the way the or-

der parameter was defined and the computer program
was written, X+ was only determined for R ~ —, .)
The data show a dramatic peak in X+; for R )0 the
staggered susceptibility lies above the R =0 curve,
but for R = —3.0 the reverse is true. For R = —, the

1Q
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FIG, 8. (a), (b) Temperature dependence of the magnetic
("nonordering") susceptibility, The heavy solid curve shows
the variation for R =0.
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FIG. 9. Temperature dependence of the staggered ("or-
dering") susceptibility' . CI, R =—3.0; b, R =+0.45. TI
solid curve represents the R =0 behavior.
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susceptibility rises continuously all the way down to
the lowest temperature studied (see Fig. 6).

C. Spin-spin correlations

in Fig. 10; the data points lie very close to the
equivalent R =0 values. The correlation functions
are clearly strongly dependent on R, particularly
above the ordering temperature.

The spin-spin row correlations I"(r) were computed
out to r = 10, and we show the temperature depen-
dence of the first few r values for R =+0.45 and
—2.0 in Fig. 10. The data indicate that the correla-
tions fall off monotonically for all values of r and
also that the decay with increasing temperature is
much more rapid for R = —2.0 than for R =+0,45.
For R &

2
the row correlations are zero for odd r.

Since the SAF structure is composed of two inter-
penetrating antiferromagnets, the crystallographic
nnn correlation plays the role of the nn correlation
for R (

2
and the crystallographic diagonal correla-

tions play the role of the row correlations. The first
three "row" correlations for R =+2.0 are also shown

IV. ANALYSIS AND DISCUSSION

A. Variation of T, (R)

The results for the dependence of T, on R can be
analyzed using the crossover scaling theory presented
in Sec. II. By considering the variation of T, with R
when E„„„is held fixed and E„„is allowed to change,
we can study the crossover behavior in the limits
R + ~. In this case the scaling parameter
5 = ~R '~ and Eq. (6) can most usefully be rewritten

k[T,(-) —T, (R) l =xoR-'«
nnn
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Since the system separates into two interpenetrating
nnn lattices, the asymptotic critical temperature
kT, (~)/K„„„is identical to the ordinary nn square
lattice value kT, (0)/K„„. In Fig. 11 a log-log plot
shows the variation of [T,(~) —T, (R), ] for both
R —~ and R +~. For R +~, T, (R) very

quickly approaches T,(~) and by the time R =+3,
the difference is essentially negligible. Although
there is no clearly linear region in the plot, it is possi-
ble to draw a straight line through the large R values
with slope ——0.21 corresponding to @—0.48. For
R —~ the results behave quite differently and
smoothly approach a straight line with slope =0.57,
corresponding to @= y = 1.75, as predicted, 3"4 and
are well described by the asymptotic form for
~R '~ & 0.1. Since the results for much less negative
values of R yielded rather large differences
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FIG. 10. Temperature variation of near-neighbor row
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1
mates for R & 2.
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FIG. 12. Variation of T,(R) as R ~. Results are for:

R & 2, 0; R & 2, ~ . Solid lines are the best fits to the
1 1

asymptotic form given by Eq. (12).

k[T,(~) —T,(R)]/K„„„yet were not consistent with

Eq. (14), we continued the calculations all the way to
R = —100 in order to more carefully examine the
asymptotic crossover behavior. The difference in
results for R +~ and R —~ suggests that ei-
ther the critical exponents for R +~ are non-
Ising-like or that the asymptotic behavior occurs so
close to kT, (~)/K„„„that we cannot resolve it.

The same analysis can be applied to the results for
R —, from above or below. Plots similar to Fig. 11

were made but taking 5 =
i 2

—R i instead of
5 =R '. The data were nowhere consistent with Eq.
(6) so we decided to test for the alternative form
given by Eq. (12) by making a semilogarithmic plot
instead. An analysis of the behavior for R =

2
(to

be presented shortly) suggests that v =1; hence, we
shall use v =1 in the following. In Fig. 12 we see
that the variation of T, is quite consistent with this
crossover form for R

2
from below. The results

1

for R &
2 appear to approach an asymptotic loga-

rithmic form (with a modified amplitude) but only for
the smallest values of iR —

2 i studied. (We also

cannot exclude the possibility, however, that asymp-
totic form never becomes logarithmic for R ) —, .)
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cal at all temperatures. ) In Fig. 13(a) we show the
ratio of the two properties for R (

2
. Figure 13(b)

shows an equivalent plot for R & 2 but with
I'(r = 1) = (o;o;)„„replaced by (o.;o,)„„„because
of the interpenetrating lattices which occur for these
R values. In both cases the ratio is very close to 1 up
to -0.95T,. Above T, the ratios quickly deviate,
from one another indicating the difference in the dis-
tribution of energy in the short-range order as sug-
gested by the spin-spin correlation data in Fig. 10.

Previous studies by Stephenson have indicated
that for 0 & R (

2
the spin-spin correlation func-

tions should show a nonisotropic oscillatory behavior
above a characteristic "disorder temperature" T~.
This effect, becomes observable, for example, when
the nnn correlation function changes sign as the tem-
perature increases. Very high-temperature data for
R =+0.25 and +0.45 shown in Fig. 14 show clear
evidence of a disorder point, whereas similar data for
R = —2.0 show no such effect.

I

2.5

8. Short-range order

R &—1
2

%e have already seen that transitions occur for all

R & —, and are therefore interested in the behavior

above T, (R). The data shown in Sec. IV A clearly
indicate that the behavior of the thermal and magnet-
ic properties above T, are quantitatively different.
One very useful way of studying these differences is
to compare the temperature dependence of the inter-
nal energy and the nn spin-spin correlation function
I'(r =1)= (o.;o;)„„. (For R =0 the two are identi-

UiUO

~nnn

1.0— d

0
d d

I

0,5
I

1.0
TiT, (F|)

I

1,5
I

2.6

FIG. 13. (a), (b) Temperature dependence of the ratio of
the internal energy to nn spin-spin correlation function. The
straight line with constant value 1 shows the result for
R =0.
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FIG. 14. Comparison of nn and nnn spin-spin correlation
functions. The arrows indicate the approximate temperature
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lations. The second and third diagonal correlations are
given by + and 0, respectively.
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FIG. 15. Analysis of the behavior of the inverse correla-
1

tion length K for 8 -
2

as T O K.

2. 8=—1

2 &= 0.8

Since no phase transition occurs at a nonzero T,
for this ratio of interactions the short-range order "re-
gion" consists of all T & 0. The variation of T, (R)
for R —, suggests an exponential divergence of the

correlation length. The spin-spin correlations I'(r)
were therefore analyzed assuming a simple Ornstein-
Zernike decay

tr =1.0

tr =1.2

~(„) D exp ( —Kr)
~1/2

(15)
In(X T)

The resultant estimates for K are plotted in Fig. l5.
The data are certainly consistent with an exponential
decrease in K (i.e., exponential increase in /=K )
with v =1

K=Kpexp( —ct ') (16)

The exponential singularity in g then suggests that

X+T=Xpexp(ct ") (17)

instead of the usual power-law divergence. (This is
equivalent to v = 00.) In Fig. 16 we show a semilog
plot of X+7 vs t "for several values of v, The value

00 10 20
t

FIG. 16. Analysis of the behavior of the staggered sus-

ceptibility X+ for 8-
2

as T OK.
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FIG. 21. Dependence of the critical internal energy U, on
R. The solid line shows the series-expansion result (see
Ref, 15}.
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FIG. 20. Critical behavior of the staggered susceptibility.
The solid curve shows the result for R =0, Data are for
R =—2.0, 0; and R =+0.45, A. lr'=ll —T,/TI )

elude the possibility that the variation is logarithmic
but with a drastically altered amplitude.

The staggered susceptibility divergence is studied in

Fig. 20 for several values of R. These data for
R =+0.45 are difficult to interpret unambiguously.
Either fluctuations or rounding dominate near T, or
the data show crossover from an exponential depen-
dence at high temperature to a power law near T,.
Again Ising exponents with variable amplitudes can
describe the results in general. The overall analysis
of the critical behavior for I values near

2 may well

be complicated by crossover effects associated with

the point R = —,, T, =0. This could be particularly

bothersome for R & —, where any change in the criti-
cal exponents could be masked by crossover effects.
For example, if v decreases from the Ising value
v =1 as R is lowered from + ~, crossover to the
point R = -;, T, =0 (which has P = ~) could produce

an effective v, ff = 1, thus obscuring any change from
the Ising value. More detailed Monte Carlo calcula-
tions are underway for several values of R ) 2, in-

cluding a magnetic field, and we hope the data will

fully clarify the situation. The results of this study
will be discussed elsewhere. "

The behavior of several nondivergent bulk quanti-
ties may also be analyzed at T, . The critical internal
energy at T, is shown in Fig. 21. Over the range of
R studied here there are variations by a factor of 4 in
this quantity. Table I shows corresponding values for
other nn models for comparison. Similarly the criti-

TABLE I. Critical parameters for simple two- and three-dimensional lattices. '

Lattice Honeycomb square triangle diamond sc bcc fcc

1s=—
2

fcc
Heisenberg

qb

U, /kT,
(s„—s, )/k

kTx,

quinn Xmax

D
B

3
0.760
0.428
0.121
0.240
0.416

1.265

3
0.623
0.387
0.157
0.277
0.430
0.703
1.222

6
0.549
0.363

0.669
1.203

4
0.320
0.182

1.661

6
0.218
0.133
0,340
0.452
0.464
0.320
1.570

8 12
0.170 0.150
0.107 0.102

0.369
0.465
0.473

0,26 0.25
1.491 1.488

12
0.439
0.220

'Values in this table were obtained from Ref. 9.
Coordination number for nn coupling only.
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we find q =
4

for all R values and the resultant vari-

ation in D with R is plotted in Fig. 22. It has already
been shown9 that D = U, /Uo for the nearest-
neighbor square and simple cubic lattices, so it would
seem interesting to determine whether or not this
remains valid for R AO. The comparison in Fig. 22
suggests systematic differences although the two sets
of points are within experimental error of each other.
The order parameter critical amplitude is also plotted
in Fig. 22 and also shows R dependence. These
results show quite clearly the danger in deducing the
effective dimensionality or interacting by merely
"matching-up" values of critical parameters with
specific model results.

0.5—
V. CONCLUSION

0.6—

S -S
C

R

0.5

oa-
f
I I I I I I I

-5.0 -2.0 -1.0 0 1.0 2.0 5.0
R

FIG. 22. Dependence of critical parameters on R. The
solid line shows the series-expansion result (see Ref. 15).

~here q =
4 for R =0. Within experimental error

cal entropy S, was determined by numerical integra-
tion of C/RT and is shown as a function of R in Fig.
22. Since only data near T, were obtained for
R & —3.0, it was not possible to determine S, for
these R values. The variations of the critical internal
energy and critical entropy are rather striking. Such
variations have usually been ascribed to the effects of
anisotropy (e.g. , Ising versus Heisenberg model) or
change in lattice dimensionality (see Table I). The
spin-spin correlations were also analyzed at T, assum-
ing a simple critical behavior

We have determined the behavior of the thermal
and magnetic properties of the Ising square lattice
over a wide range of R (i.e., competing nn and nnn
interactions). The results show a substantial varia-
tion in a number of characteristic critical "parameters"
and amplitudes. No suggestion of non-Ising critical
exponents is found for R ( —,. The special point

1R = 2, T, =0, however, has an exponential diver-

gence of the correlation length and susceptibility (i.e.,
v and y = ~) and it is quite likely that crossover ef-
fects to this point complicate the analysis of the
asymptotic critical behavior on the nearby phase
boundaries. Although no conclusive evidence of
non-Ising critical behavior is available for R & —,, the

analyses of the phase boundary crossover as R
and R —, from above and of the size dependence

1

of the specific-heat maximum suggest that nonuni-
versal behavior does appear. Much more detailed
data will be needed, however, to definitively resolve
this question.
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