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Magnetic phase boundaries of CsMnF3. Xi'-to-Ising crossover and the virtual bicritical point
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The ordering temperature T, of the easy-plane hexagonal antiferromagnet CsMnF3 was mea-

sured as a function of magnetic field H, up to 120 kOe. T, was determined from the thermal

expansion anomaly at constant H. At H =0, T~= T,(0) =51.4 K. When H is in the hexagonal

plane, the boundary T, (H) is bow shaped: with increasing H, T, first increases, then passes

through a maximum, and later decreases. The maximum T, is -3l mK above T~, and it oc-

curs at H =—29.5 kOe. The bow-shaped phase boundary is attributed to the XY-to-Ising cross-

over which is induced by the magnetic field, as discussed by Fisher, Nelson, and Kosterlitz.
Fits to the phase boundary T, (H) give a crossover exponent @=1.185 +0.03 for one sample

and @=1.184+0.025 for another compared to the theoretical value @(n =2) =1.175 +0.015.
When H is perpendicular to the hexagonal plane, T, deci'eases monotonically with increasing H,

but the decrease is not in accordance with mean-field theory, which predicts a decrease propor-
tional to H2. The deviation from mean-field behavior is attributed to a virtual bicritical point

(VBP) with Heisenberg symmetry, which exists mathematically at a negative value of H2.

Although the VBP cannot be observed directly, it affects the behavior in the observable region

of H ~0. Physically, a magnetic field applied perpendicular to the easy plane enhances the
Heisenberg-to-XY symmetry breaking, which at H =0 is solely due to the weak easy-plane

uniaxial anisotropy. The enhanced symmetry breaking causes a non-mean-field dependence of
T, on H. An equation derived on this basis gives a good description of the phase boundary

T,(H). This equation contains three adjustable parameters, two of which can also be estimated

without recourse to the phase boundary T, (H). The values for these two parameters obtained

from a best fit to T, (H) agree with the independent estimates.

I. INTRODUCTION

Second-order phase transitions are divided into
universality classes. ' Each universality class has its
own critical exponents and scaling functions. In the
last decade, attention has focused on situations in

which a small perturbation X~ breaks the symmetry
of the original Hamiltonian Xo, and thereby causes a
change of the universality class. The perturbation BC'

is then said to cause a "crossover" between two
universality classes.

In many cases the universality class is determined
by only three factors: the lattice dimensionality d,
the spin dimensionality (or number of components of
the order parameter) n, and the range of the interac-
tion. Within this subset of cases, a crossover occurs
when the perturbation VCR' changes either d, or n, or
the range of the interaction. In the present paper we
are concerned with a crossover due to a change of n;

the lattice dimensionality (d =3) and the range of
the interaction (short) are assumed to be fixed. In
particular, we study the effect of a crossover due to a
change in n on the ordering temperature T, of the
antiferromagnet CsMnF3.

The basic theory of such crossover effects in weak-
ly anisotropic antiferromagnets is that of Fisher, Nel-
son, and Kosterlitz (FNK). 2 4 Earlier, similar cross-
over effects in ferromagnets were discussed theoreti-
cally by Riedel and Wegner, ' Pfeuty et al. ,

' and oth-
ers. ' The first detailed experimental test of the FNK
predictions was carried out by Rohrer, who studied
the bicritical point in GdA103. References to later
experimental works on the bicritical point of several
antiferromagnets, and on the phase boundaries of
isotropic antiferromagnets, can be found in a receipt
review. This review, and also Ref. 10, outline some
of the results of the present work. Monte Carlo cal-
culations of phase boundaries near the bicritical
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point, and of isotropic antiferromagnets, were carried
out by Landau and Binder. "

In many antiferromagnets, a change in the spin
dimensionality can be produced by applying a mag-
netic field H. Physically, the magnetic field favors
configurations for which the staggered magnetization
L is perpendicular to H. Thus, the field suppresses
that component L~~ of L which is parallel to H. In a
simple three-dimensional fully isotropic antiferromag-
net, the transition at H =0 is Heisenberg-like
( n = 3), because all three components of the order
parameter L are involved in the transition. The H-

induced suppression of L~~ then leads to an XY-like
transition (n =2) at finite H. Thus, for a fully iso-
tropic antiferromagnet the application of a magnetic
field leads to a crossover from Heisenberg symmetry
to XYsymmetry. According to FNK, this crossover
is similar to that discussed earlier for ferromagnets, '6
with H playing the role of the symmetry-breaking
parameter g. The extended scaling hypothesis im-

plies that as g increases from zero, T, should in-
crease by an amount proportional to g' @, for small g,
where Q is the crossover exponent. Thus one conse-
quence of the theory is that in a fully isotropic anti-
ferromagnet, T, should increase with increasing H,
for low H. For very low H, the increase of T, should
be proportional to H @. This prediction is in a strik-
ing contrast to mean-field theory in which T, de-
creases with increasing H. Measurements of the H
dependence of T, in the isotropic antiferromagnet
RbMnF3 confirmed the prediction of FNK, "' The
experimentally determined P in RbMnF3 is in good
agreement with the predicted value @(n = 3) = 1.25
for a Heisenberg-to-XYcrossover.

In the present work we studied the phase boun-
daries T,(H) of the easy-plane antiferromagnet
CsMnF3, in which the anisotropy in the easy plane is
extremely small. Neglecting this in-plane anisotropy,
the transition at H =0 is XY-like because only the
two spin components in the easy plane become criti-
cal. The situation at finite H is illustrated in Fig. 1.
When H is perpendicular to the easy plane, no partic-
ular direction in that plane is singled out, and the
transition remains XY-like. On the other hand, if H
is the easy plane the component L which is parallel to
H is suppressed, and the transition becomes Ising-
like (n =1). The XI'-to-Ising crossover in the latter
situation affects the H dependence of T,. According
to FNK, the phase boundary T, (H) when H is in the
easy plane (and for low H) should be given by

XY H=

ISING

effect of the crossover on T,. This term is analogous
to the term (const) ( g'~~) in the theory of crossover
in ferromagnets. By itself, this term leads to an in-
crease of T, with increasing H. The second term,
—bH', is a mean-field-like term which appears in the
theory of FNK as the leading nonlinear correction to
scaling. 4 This term will be discussed in Sec. VI D. By
itself, the term —bH' leads to a decrease of T, with
increasing H. The competition between the two
terms, aH' @ and —bH', leads to a bow-shaped phase
boundary T, (H); as H increases from zero, T, first
increases, then passes through a maximum, and later
decreases.

When H is perpendicular to the easy plane of an
antiferromagnet, the transition remains XY-like.
Then, in the strict sense, the magnetic field does not
induce a crossover from one symmetry to another.
Nevertheless, if the uniaxial anisotropy which favors
the easy plane is very small compared to the ex-
change energy, the phase boundary T,(H) will depart
from mean-field behavior. The physical reason for
this departure is similar to that which causes a non-
mean-field behavior when a genuine crossover takes
place. This reason is basically the following. A
uniaxial anisotropy of the easy-plane type suppresses
the criticality of the spin component which is perpen-

T,( H) —Tjy = aH2~~4' —bH2

where T~ = T,(0) is the Neel temperature, a and b

are positive constants, and @= @( 2n). The
predicted value for $ (n =2) is 1.175 +0.015.6 The
two terms on the right-hand side of Eq. (1) have the
following meanings. The term aH'~& represents the

FIG. 1. Schematic illustrating the configurations of the
sublattice magnetizations M~ and M2 of a simple uniaxial
easy-plane antiferromagnet for: H =0; H perpendicular to
the easy plane; and H in the easy plane. The tipping of M~
and M2 toward the direction of H is neglected, . The sym-
metry of the ordering transition is indicated,
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dicular to the easy plane. For a weak anisotropy, the
degree of suppression is relatively small. A magnetic
field, applied perpendicular to the easy plane,
enhances the suppression of the same spin com-
ponent (i.e., the out-of-plane component, which is
parallel to H). This enhanced suppression has an ef-
fect on the phase boundary T,(H). That is, the
boundary is no longer given by the mean-field ex-
pression (for low H)

r, (H) —r, = b'H'-, (2)

II. SOME PROPERTIES OF CsMnF3

CsMnF3 is a hexagonal crystal with symmetry
which is described by the D6I, space group. The unit
cell contains six Mn + ions, two of which occupy
sites with one local symmetry (A sites), and four oth-
ers occupy sites with a different local symmetry (8
sites). The magnetic properties of CsMnF3 were first
investigated by Lee et al. ,

' and later by others. "
These investigations showed that the material is an
antiferromagnet below Tn =53 K. (Our own value

for 1N is somewhat lower, as discussed later. ) The
antiferromagnetic order may be described as a series
of ferromagnetic layers, perpendicular to the hexago-
nal axis [0001], with the spins in adjacent layers

pointing in opposite directions. Thus, the six spins in

the unit ceil, on the A and 8 sites, have the following
orientations relative to each other: A (+), 8 (—),
8 (+), 2 (—), 8(+), and 8 (—). In the ordered

phase, and when H =0, the spins lie in the hexago-
nal plane.

where b' is a positive constant. In Refs. 9 and 10 we
introduced the concept of the virtual bicriticai point
to account quantitatively for the phase boundary
when H is perpendicular to the easy plane. Here we

present a fuller discussion of the virtual bicritical
point in CsMnF3. In addition we present the data for
the phase boundary when H is in the easy plane, and

show that these data are in good agreement with the
FNK theory for thc case of an XY-to-Ising crossover.

This paper is arranged as follows. In Sec. II, the
relevant properties of CsMnF3 are discussed. In Sec.
III, the experimental techniques used to determine
the phase boundaries T, (H) are outlined. The
results for T, vs H, for H both in the easy plane and
perpendicular to it, arc presented in Sec. IV. In Sec.
V, the phase boundary r, (H) for H in the easy plane

is analyzed quantitatively, and is compared to the
FNK prediction for an XY-to-Ising crossover. An ex-
perimental value for the crossover exponent $(n =2)
is obtained. The phase boundary for H perpendicular
to the easy plane, and the virtual bicritical point, are
discussed in Sec. VI.

The earliest analysis of the magnetic properties of
CsMnF3, by Lee et al. ,

'" used a simple two-sublattice
model in which the distinction between the A and the
B sites was overlooked. This analysis led to the fol-
lowing values at T =0: The exchange field is
HE=3.5 & 10 Oe. The uniaxial anisotropy field is
H~ = —7500 Oe, where the minus sign indicates that
the anisotropy favors the (0001) plane rather than
the [0001] axis. The anisotropy field in the hexago-
nal plane is H, =1.1 Oe. In some later analyses of
the magnetic data, the distinction between the A and
B sites was explicitly taken into account, and a four-
sublattice model was used. One such analysis, by
Yamaguchi and Sakuraba, ' led to exchange fields of
7.9 x 10 and 4.7 x 10 Oe for the A and 8 sites. An-
tiferromagnetic resonance data" indicated that the ac-

,tual gap in the high-frequency branch of the spin-
wave spectrum is ~2HEHq ~'~2=41 kOe, rather than
the value 72 kOe obtained from the values for Hq
and H& given by Lee et al. Finally we mention that
the value H, =1.1 Oe of Lee et al. is the highest
quoted in the literature. Apparently, sample imper-
fections and small strains can affect the (very small)
in-plane anisotropy field H, At any rate, .H, /Hs is
smaller than 10 5.

The possibility of a canted magnetic moment in
CsMnF3 was discussed in the literature. The thermo-
dynamic potential of an antiferromagnet is often ex-
pressed as a Landau-type expansion in powers of the
staggered magnetization and of the magnetization.
The symmetry of CsMnF3 forbids the existence of
the lowest-order term which can give rise to a canted
magnetic moment in an antiferromagnet. ""How-

ever, the symmetry allows a higher-order term which
gives rise to a canted moment along the [0001] direc-
tion when the staggered magnetization is near some
directions in the (0001) 'plane. 2' Evidence for such a
canting of the spins on the B sites was reported by
Mil'ner and Popkov who performed magneto-optic
measurements on CsMnF3. However, both mag-
netization and resonance measurements show no evi-
dence whatsoever for a net canted moment. To
reconcile the latter data with their own conclusions,
Mil'ner and Popkov considered the possibility that
the spins on the A sites are canted in the opposite
direction, leading to a compensated structure with
zero net canted moment. A model for a compen-
sated-moment structure in CsMnF3 was discussed
later by Gredeskul and Mil'ner. ' In the interpreta-
tion of our data we shall assume that there is no net
canted moment.

The ordering transition of CsMnF3, at H =0,
should belong to the XYd =3 universality class. Evi-
dence in support of this prediction was presented by
Ikeda who performed specific-heat measurements.
The data suggested that when CsMnF3 was cooled to-
ward T~, a crossover from a Heisenberg behavior to
an XYbehavior took plane as T approached T~.
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III. EXPERIMENTAL TECHNIQUES

A. Samples

Experiments were conducted on three. single crys-
tals of CsMnF3, grown by the Crystal Physics Group,
Center for Materials Science and Engineering, MIT;
The Czochralski technique was used. Each of the
samples was x rayed, and then cut and lapped to a
rectangular parallelepiped. A typical linear dimension
was 6 mm. The' faces of each of the samples were
the (0001), (1010), and (1210) crystallographic
faces. The three samples will be referred to as No. 1,
No. 2, and No. 3.

B. Thermal expansion measurements

The ordering temperature T,(H) was determined
from thermal-expansion measurements. The length
l(H, T) of the sample was measured as a function of
Tat constant H. A capacitance dilatometer, made of
copper, was used to measure the change in I. ' The
data for I vs T were recorded on a punch tape, which
was subsequently fed into a computer for processing.
Figure 2(a) is an example of I vs T data, taken in this
case at H =0. To determine the transition, the data
were differentiated numerically, to obtain the thermal
expansion coefficient I = (I//) (1)I/r) T).

Because I is proportional to one of the second
derivatives of the thermodynamic potential
&p( T,H p„,p~ p, ), where p, is a uniaxial pressure, the
ordering transition appears as a X anomaly in I vs T.
The ) anomaly at the Neel temperature, obtained by
differentiating the data in Fig. 2(a), is shown in Fig.
2(b). This example covers a temperature range of
several degrees. Usually, data were taken only over a
range of several tenths of a degree near T,(H). A
typical example is shown in Fig. 3(a). An expanded
view of the same data in the vicinity of the maximum
of the A. anomaly is shown in Fig. 3(b).

Ideally, a A. anomaly with a sharp maximum at
T,(H) should be present. In practice, the peak of
the X anomaly is rounded both by the nonideality of
the sample and by the numerical differentiation of I
with respect to T. (The derivative Bl/r)T is obtained
from a fit of I vs T over a finite temperature inter-
val. ) Because of the rounding, the precise identifica-
tion of the transition temperature is difficult. We
used either of the following two criteria to locate T,:
(i) T, = T,„, where T,„ is the temperature at which
I is maximum, and (ii) T, = T,„„where the extrapo-
lated temperature T,xi is at the intersection of the
two tangents at the inflection points of the I vs T
curve [see Fig. 3(b)]. The value of T, depended on
the criterion which was used; the two criteria led to
T, 's which differed by several mK. However, the
difference T,(H) —T~ did not show any systematic

I l
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T(K)

I I

55

FIG. 2. Thermal expansion of CsMnF3 (at H =0) near
the Neel temperature T~. (a) The length I of the sample
(measured along the I. 1120] direction) as a function of tem-
perature T. (b) The thermal-expansion coefficient,
(I/l)(()l j()T), as a function of T. The thermal expansion of
the sample is always measured relative to that of the copper
capacitance cell.

dependence on the criterion. We used both criteria
in the analysis of each set of experimental data.
However, the results obtained using the criterion
T, = T,„,were given a greater weight because usually
T,„& could be determined with greater precision.

In a typical experimental run, some 10—20 sets of I
vs T data were taken at various values of H. Of
these sets of data, five were usually taken at H =0.
For nonzero H, two sets of I vs T data were usually
taken at the same H. The reason for taking more
sets of data at H = 0 was that any error in TN = T,(0)
propagated to all final values of T,(H) —TN, whereas
an error in a particular T,(H) affected only one final
value of T,(H) —T~.
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D. Magnetic fields

Text

Two different magnets were used in the present
experiments: a Bitter-type water-cooled magnet with
fields up to 120 kOe, and a NbTi superconducting
magnet w'ith a maximum field of 88 kOe. The data
in sample No. 1 were taken in the Bitter magnet,
whereas the data in samples No. 2 and and No. 3
were taken in the superconducting magnet. The ad-
vantage of the Bitter magnet was the higher field.
The advantage of the superconducting magnet was
that it was free from the slight mechanical vibration
of the Bitter magnet (caused by the cooling water).
The absence of vibrations reduced the noise of the
dilatometer, which, in turn, improved the precision
of the results for T,(H) —T~ This led t.o smaller
rms deviations of the data points from the best fits
which described the phase boundaries.

All values of the magnetic field were corrected for
the demagnetizing field. The magnitude of the
demagnetizing field was between 0.2% and 0.3% of
the applied field, depending on the shape of the par-
ticular sample and its orientation in the field. All
values of H which are quoted below are for the inter-
nal magnetic field.

IV. EXPERIMENTAL RESULTS

A. Neel temperature

FIG. 3. T dependence of the thermal-expansion coeffi-
cient 1 1/ll(BI/BT) for a fixed magnetic field, H =74.9 kOe,
directed parallel to the [0001] axis. The unit vector I indi-

cates the crystallographic direction along which I was mea-
sured. (a) Results for a comparatively wide temperature
range. (b) Expanded view of the results near the max-
imum. Tm,„ is the temperature at the maximum of
(1/0(BI/BT), and T,„, is the temperature at the intercept of
the two tangents at the inflection points on both sides of the
maximum.

The Neel temperature T~ was determined from the
)i anomaly in the thermal-expansion coefficient 1'( T)
at H =0. The thermal expansion was measured
along both the [0001] and [1010] crystallographic
directions in sample 1, along the [0001] direction in
sample 2, and aiong the [1120] direction in sample 3.
The values for TN are 51.38 +0,02, 51.38 +0.02, and
51.385+0.02 K for samples 1, 2, and 3, respectively.
Here, the uncertainties represent the absolute accura-
cy, rather than the precision.

B. Phase boundaries for Hx )0001]

C. Thermometry

High-precision thermometry at high magnetic fields
was essential in these experiments. We used
thermistor resistance thermometers attached directly
to the samples with G.E. 7031 varnish. The experi-
mental setup, and the methods used to correct for
the small magnetoresistance of the thermometers
were described earlier. The precision of T in the
present experiments was -1 mK, or 2 x 10 for
T/Tw

The dependence of the ordering temperature T, on
H, for H in the easy plane, was measured in samples
1 and 3. For sample 1, H was parallei to the [1010]
direction. For sample 3, H was parallel to the [1120]
direction. The data for T, (H) —Tjy as a function of
Hare shown in Fig. 4. An expanded view of the
low-H portion of the same data is shown in Fig. 5.
The results in Figs. 4 and 5 indicate that the phase
boundaries for H II [1010] and for H II [1120]are
identical, within the experimental precision.

The striking feature of the phase boundary (for H
in the easy plane) is that it is bow shaped. That is, as
H increases continuously from zero, T, first in-
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120 C. Phase boundary for H II [0001]
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The phase boundary for H parallel to the [0001]
direction (i.e., perpendicular to the easy plane) was
measured in both samples 1 and 2. The results are
shown in Fig. 4. An expanded view of the low-H
portion of these data is shown in Fig. 5. Note that
the data for the two samples are in very good agree-
ment with each other, and that the phase boundary
for this direction of H is not bow shaped. That is, T,
decreases monotonically with increasing H. A de-
tailed analysis of these data is presented in Sec. VI.

20
V. XY-ISING CROSSOVER

I

-I.O -0.8 -0.6 -0.4
T-TN (K)

-0.2 0.2

creases, and only later decreases. The maximum
value of T, is approximately 37 mK above T~, and it
occurs at approximately 29.5 kOe. On a reduced
temperature scale, r =. ( T —T&)/T&, the maximum
of T,(H) is at t = 7 x 10 . The fact that the phase
boundary is bow shaped is attributed to the XY-to-
Ising crossover, as discussed in Sec. I. A detailed
analysis is given in Sec. V.

0—IOO —50 0
T-TN (mK)

FIG. 5. Expanded view of the low-H portion of Fig. 4.

FIG. 4. Phase boundaries, T, vs H, of CsMnF3 for H

parallel and perpendicular to'the hexagonal axis [0001]. The
solid line for Hz[0001] is the best fit to Eq. (1) of the data
points for sample 1. The solid line for H II [0001] is the best
fit to Eq. (7) of the data points for sample 1. The best fits
are discussed in the text.

In this section the phase boundary for H in the
easy plane is compared with the FNK theory. This
comparison is preceded by comments concerning our
value for the Neel temperature.

A. Neel temperature

Our value for the Neel temperature TN =51.4 K, is
lower than those quoted by other workers. Lee
et al. ' give T~ =53.5 K, based on the temperature
where the torque vanishes. Yamaguchi and Sakura-
ba' quote TN =53.5 +0.5 K from susceptibility mea-
surements. Borovik-Romanov et al. ' obtained
TN = 53.6 +0.3 K from the temperature dependence
of the antiferromagnetic resonance (AFMR) frequen-
cy. Finally, Ikeda quotes T =53.06+0.02 K,
based on a fit to his specific-heat data. In spite of
these earlier results, we feel confident that our value
for T~ is accurate, at least for our samples. We have
checked the calibration of the platinum resistance
thermometer used in the determination of T~, and
have ruled out the possibility of an error of order of
2 K. Also, the data in Fig. 2, and other similar data,
give no indication of a second transition near 53 K.

Some of the disagreement concerning T& might
have been caused by inaccurate experimental criteria
for identifying TN. Not all standard methods of
determining Tg are accurate. An often-used pro-
cedure for determining T~ is from the maximum of
the susceptibility X as a function of T. Modern
theory indicates, however, that the maximum of
x(T) occurs above Tjy. Thus, we tend to doubt the
accuracy of a determination of T~ from susceptibility
measurements (unless one focuses on the T depen-
dence of the derivative BX/tlT, which is expected to
have a maximum at T~). The identification of T~ as
the temperature where the torque vanishes is also
questionable. Many antiferromagnets have anisotro-
pic susceptibilities in the paramagnetic phase and at
T~, so that the torque is nonzero at T = T~. The
value of T~ quoted by Borovik-Romanov et al. is also
suspect because these authors found that the AFMR
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linewidth, plotted as a function of T, exhibited a A.

peak approximately 2 K below their value for TN.

That is, the linewidth had a maximum near 51.6 K,
which is close to our value for Tjy. Borovik-Romanov
et al. stated that they had no reasonable explanation
as to why the maximum linewidth occurred -2 K
below Tg. We feel that it is possible that the max-
imum of the linewidth occurred, in fact, at Tg. The
only clear disagreement with our value for T~ is the
specific-heat data of Ikeda which show a A. peak at
53 K.

B. Crossover exponent @ from the phase

boundary for H in the easy plane

TABLE II. Results of least-squares fits to Eq. (1) of the
data for H j [0001]. Here, $ as well as a and b are treated
as adjustable parameters. H is in units of kOe, and T is in

units of mK. The numbers in parentheses are the standard
deviations in units of the last quoted decimal place, e.g. ,
0.7855(110) is 0.7855 10,0110, 5T is the rms deviation (in
mK) between the measured T, (H) —T~ and the best fit.

Sample No.

0.7855{110) 0.2397(110) 1.178(11) 1.48
0.7865(69) 0.2324(77) 1.184(7) 0.42

The phase boundary T,(H) for H II [1010] is iden-

tical to that for H II [1120],within experimental accu-
racy. This observation is consistent with the ex-
tremely low in-plane anisotropy of CsMnF3.

The most striking feature of the phase boundary
T, (H) is that it is bow shaped. This feature is attri-
buted to the XY-to-Ising crossover which is caused by
the field H. According to the FNK theory, the phase
boundary (in the absence of anisotropy in the easy
plane) should be given by Eq. (1), with Q = $(ii =2).
Least-squares fits of the data to Eq. (1) were per-
formed, treating a and b as adjustable parameters but
keeping $ fixed at its theoretical value @(n =2)
=1.175, The results for the data sets in samples 1

and 3 (with H II [1010] and H II [1120],respectively)
are given in Table I.

A sensitive test of the theory is whether the
experimentally-derived it~ agrees with the predicted
value $(n = 2) =1.175. For this purpose, least-

squares fits to Eq. (1) were made, treating Q as well

as a and b as adjustable parameters. The results of
separate fits to the data in samples 1 and 3 are given
in Table II. In these fits, all the data points for a

given sample were used. As can be seen, the values
of @ derived from these fits are in good agreement

with the theory. In Figs. 4 and 5, the solid line for
the boundary with H J. [0001] is the least-squares fit
for sample 1. The best fit for sample 3 is very nearly
the same.

We have also carried out least-squares fits in which

only data points T, (H) in the range 0 (H (HR
wer'e included. That is, starting from a data set for a
given sample, all data points with H )Hq were
deleted, and a fit to Eq. (1) was made treating a, b,

and @ as adjustable parameters. Successive fits were
made for different HR. The results for $ as a func-
tion of Hq in sample 1 are shown in Fig. 6. The er-
ror bars in this figure are typical standard deviations
for $(HR), i.e., each error bar gives +a~. The
theoretical values for @(n =2) and it (n = 3) are
shown as dashed lines. Note that the experimental
results are in better agreement with the theoretical
value of $(n =2), as expected. Based on the results
in Fig. 6 (including the results for HR's lower than
the maximum field) our best estimate of @, for sam-

1.30—

0=3

TABLE I ~ Results of least-squares fits to Eq. {1)of the
data for H j [0001]. Here, a and b are treated as adjustable
parameters, while @ is held fixed at its theoretical value @
(n =2) =1.175. For these fits, H is in units of kOe, and T
is in units of mK. The numbers in parentheses are the
standard deviations in units of the last quoted decimal place,
e,g. , 0.7827(32) is 0,7827 +0,0032. 5T is the rms deviation
(in mK) between the measured T, (H) —T~ and the best fit.
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0.2421(5)
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FIG. 6. Crossover exponent @ obtained from fits to Eq.
(1) of the T, (H) data in sample 1, with Hll [1010]. Each

point represents the result of a fit of the data in the range
0 (H (H~. Error bars are typical standard deviations,

+cr~. Horizontal dashed lines are the theoretical values of Q

for n =2 and n =3.
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FIG. 7. Crossover exponent P obtained from fits to Eq.
(1) of the T, (H) data in sample 3, with HII f1120j. Each
point represents the results of a fit for data in the range
0 & H (HR. Error bars are standard deviations, +o-&, The
horizontal dashed lines are the theoretical values of $ for
n =2 and 3.

C. Comments concerning the in-plane anisotropy

In the preceding analysis, which was based on Eq.
(1), we assumed that there was no ariisotropy in the
easy plane. To estimate the effect of the small in-

plane anisotropy on the experimentally-derived
values of @, we followed an approach similar to that
used in the earlier work on RbMnF3 (Sec. VC of
Ref. 13). This approach is based on the following
reasoning. In the absence of an in-plane anisotropy,
the staggered magnetization L for any nonzero H
(applied in the easy plane) is perpendicular to H.
When a small in-plane anisotropy is present, the ap-
plication of a magnetic field leads to a rotation of L
toward that direction in the easy plane which is per-
pendicular to H. However, for finite H, the config-
uration LiH is reached only at a field H, of order
(HEH, )' '. Earlier data on CsMnF3 indicated that H,
was equal to several hundred Oe at 4.2 K.' ' In the
present work we determined H, from magnetostric-

pie 1 with H II [1010], is @=1.185 +0.03.
Similar results for @ as a function of Hs in sample

3 are shown in Fig. 7. -Again, the agreement with the
theoretical value for @(n =2) is better than with that
for $(n =3). Our best estimate of $, for sample 3
with H II [1120], is /=1.184+0.025. The quoted
uncertainty is our estimated overall uncertainty, and
is larger than the standard deviation o-@ for high Hg
(which is approximately 0.01).

tion measurements similar to those performed earlier
on RbMnF3. ' The magnetostriction was measured
with the same dilatometer and in the same experi-
mental configuration as in the thermal-expansion
measurements used to determine T,(H). The only
difference was that in the magnetostriction measure-
ments the length I of the sample was measured as a
function of Hat constant T, whereas in the thermal-
expansion measurements T was varied at constant H.
The magnetostriction data gave H, =0.6 kOe at 4.2
'K, f'or both sample 1 (with H II [1010])and sample 3
(with H II [1120]). For both samples, the value of H,
at temperatures slightly below T~ also was approxi-
mately 0.6 kOe.

The effect of the in-plane anisotropy on the
experimentally-derived $ was estimated by assuming
that a spin-flop transition occurred at H, ( T). Then
the boundary T, (H) for H )H, (T = Tjv) = Hq

represents the boundary between the spin-flop phase
and the paramagnetic phase. The theory for such a
phase boundary was discussed by FNK in connection
with the problem of the bicritical point. 2 4 Compari-
son of the phase boundary with this theory was made
on the basis of Eq. (6) of Ref. 13. The data for
H & Hb were fitted to this equation, treating a', b',
and Q and the bicritical temperature Tb as adjustable
parameters, but holding the bicritical field Hb fixed at
0.6 kOe. The values of P obtained from such fits to
the data in samples 1 and 3 differed by -0.01 from
those quoted above. This change of Q is less than
half the final uncertainties in the values of @ quoted
above. Thus, the error in @ caused by neglecting the
in-plane anisotropy was small.

The in-plane anisotropy in our samples is believed
-to have two origins. First, there is the intrinsic six-
fold anisotropy of the material, with an anisotropy
field of -1 Oe or less. For a pure fourfold anisotro-
py, the theory indicates that H, vanishes at T~. We
expect the same for a pure sixfold anisotropy. Be-
cause in our samples H, did not vanish at Tg, we be-
lieve that another source of in-plane anisotropy was
present in addition to the intrinsic sixfold anisotropy.
As discussed in Ref. 25, the measurements with our
capacitance dilatomcters are carried out with the sam-
ple subjected to a small uniaxial pressure p which is
created by the springs which hold the sample in place.
It was shown in Sec. IV B 5 of Ref. 25 that for the cu-
bic antiferromagnet RbMnF3, a uniaxial pressure ap-
plied parallel to the [001] crystallographic direction
created an effective uniaxial anisotropy. An analo-
gous treatment shows that a uniaxial pressure applied
along any direction in the hexagonal plane of
CsMnF3 creates a uniaxial in-plane anisotropy. The
observed longitudinal magnetostriction in CsMnF3 is
an H-induced elongation, which occurs as L rotates
toward that direction in the easy plane which is per-
peridicular to H. At 4.2 K, the magnitude of the
elongation is 3 I/I =—2 && 10 . The sign of the mag-
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netostriction indicates that a uniaxial compression in
the hexagonal plane tends to rotate L toward the axis
of the compression. Let H, ( p) be the stress-
induced in-plane uniaxial anisotropy field. Then, the
magnitude of the magnetostriction and the known
value of the uniaxial pressure in our experiments
(-7 bar) lead to the order-of-magnitude estimate
H, ( p) —0.1 Oe at 4.2 K. This estimate was made
assuming a simple two-sublattice model. In our ex-
periments the axis of the compression was parallel to
H, so that the easy axis of the stress-induced aniso-
tropy was parallel to H.

The stress-induced uniaxial anisotropy is expected
to increase H„because the additional preference of L
to be 'aligned parallel to H must be overcome. In
contrast to the cases of pure fourfold or sixfold an-
isotropies, the value of H, near T~ is expected to
remain finite because a small uniaxial anisotropy of
the easy-axis type leads to a finite bicritical field H]],.
The value of H, near T& is expected to increase with
increasing uniaxial 'pressure. This was confirmed in
recent experiments on RbMnF3 which showed that
H, ( T =—Tn) increased as the uniaxial pressure ex-
erted on the sample in the dilatometer was increased.
The expected order of magnitude of Hb will be dis-
cussed in Sec. VI 0 1. For the stress-induced uniaxial
anisotropy in our experiments on CsMnF3 we expect
H» —[2HFH, ( p) ]'~' =—0.3 kOe. This is comparable
to the observed value H, =0.6 kOe near T&.

It should be noted that the precise origin of the
in-plane anisotropy, which led to a finite value of H,
near T~, is unimportant as far as the estimate of the
effect of this anisotropy on our values for $.

VI. VIRTUAL BICRITICAL POINT

A. Phase boundary for H II [0001]

The motivation for introducing the concept of the
virtual bicritical point comes from an examination of
the phase boundary, T, vs H, for H II [0001]. As
noted in Sec. I, for this orientation of H there is no
change in the spin dimensionality, i.e., the transition
has XYsymmetry both at H =0 and at finite H. On
this basis one might have expected that the phase
boundary near T~ would be giveri by the mean-field
expression for T,(H) near Tjy, Eq. (2). Figure 8
shows a plot of T, as a function of H2 for sample 2.
It is clear that T, is not linear in H2, so that Eq. (2)
is not obeyed. Plots of T, vs H' for sample 1, which
were presented earlier in Refs. 9 and 10, led to the
same conclusion. Note that Figs. 4 and 5 indicate
that the data in samples 1 and 2 are in good agree-
ment with each other.

We now show that the nonlinearity of T, as a func-
tion of H' is not caused by an unintentional misalign-
ment of H relative to the [0001] crystallographic axis.

0.8

0,6.—

N

O
0.4

OJ

0.2

0
-0.5 -0.4 -0.5 -0.2

T-TN (K)
-O. I

FIG. 8. Phase boundary T, (H2) for sample 2 when H is
parallel to the [0001] axis. Note that the ordinate is H2.
The solid line is the best fit to Eq. (7). The best fit was ob-
tained by holding $ fixed at $(n =3) =1.25, but treating A,
B, and ho as adjustable parameters.

For the sake of argument, suppose that for H exactly
parallel to the [0001] axis T, was linear in H, as in

Eq. (2). A misalignment angle 0 between H and the
[0001] axis should then have two effects on the
phase boundary: (i) The field component H sin& in
the (0001) plane would lead to an XY-to-Ising cross-
over. This symmetry breaking should add a term to
the dependence of T, on H. This term is expected to
be approximated by the form b T, ~ g' ~, where

g ~H sin28 and $=Q (n =2) =1.175. (ii) The
coefficient b" in the mean-field term —b'H, should
be slightly 8 dependent. The combination of these
two effects would then lead to an expression of the
form

T, (H) —Tn=a'(H sin II)' ~ —b'H2 (3)

Note that when 0 =90', Eq. (3) reduces to Eq. (I).
We expect a' not to vary appreciably with H. Thus,
we expect a' to be approximately equal to the coeffi-
cient a obtained by fitting the phase boundary for
Hl. [0001] to Eq. (1).

The nonlinearity of T, vs H2, due to the misalign-
ment, is given by the first term on the right-hand
side of Eq. (3). In our experiments, the misalign-
ment angle is estimated to be smaller than 3 . Tak-
ing 8 =3', we calculated the phase boundary expected
from Eq. (3). Here we chose a" to be equal to any
of the values of a in Tables I or II, and chose a value
for b' which gave a rough overall agreement with the
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observed phase boundary for H II [0001]. The non-
linearity of the calculated curve, T, vs H, was then
found to be far too small to account for the observed
nonlinearity in Fig. 8. We then asked what value of
0 would give the best agreement between the data in
Fig. 8 and Eq. (3). A least-squares fit in which g
was held fixed at 1.175, a' was held fixed at the
value of a in Tables I and II (approximately 0.78),
and 0 and b' were treated as adjustable parameters,
gave ]9=35'. A similar fit to the data for sample No.
1, which extend to higher H, gave 0=42'. These
values for the misalignment angle 0 are an order of
magnitude larger than the estimated maximum
misalignment angle. Moreover, the fits to Eq. (3)
gave rms deviations 8 T (between the measured T, 's
and the best fit) which were several times the es-
timated experimental uncertainties. The large 8 T 's
reflect the fact that Eq. (3) leads to an initial increase
of T, with increasing H, which is contrary to the ob-
served behavior for H II [0001]. In other words, a
field misalignment should lead to a bow-shaped phase
boundary, which is not observed. We thus conclude
that the nonlinearity of T, vs H2 in Fig. 8 is not due
to field misalignment.

B. Virtual bicritical point

g =go+eH2 (4)

where e is a positive constant. An equation for
T,(H) was then obtained using extended scaling, 5 6

which implies

Heisenberg-to-XYcrossover occurs when H is in-
creased beyond the bicritical field Hb. The major
difference between an easy-plane and an easy-axis
antiferromagnet is that in the former it is not possible
to reach the special critical point of Heisenberg sym-
metry by applying a (real) magnetic field.

To relate the case of easy-plane anisotropy to the
FNK theory we used two slightly different ap-
proaches. In the first, a thought experiment was
performed in which the intrinsic anisotropy was made
to disappear. This resulted iri a Heisenberg-like tran-
sition at H =0. It was then imagined that the aniso-
tropy increased from zero up to its actual value in the
crystal. This led to an increase of g from zero to go.
Subsequently, the magnetic field was turned on,
which caused a further increase of g. The main as-
sumption made in Ref. 9 was that the H-induced
change of g (at constant intrinsic anisotropy) was pro-
portional to H2, as in the FNK theory for an easy-
axis anitferromagnet. That is,

The intrinsic anisotropy of CsMnF3 (i.e., anisotro-

py at H =0) is mainly due to dipole-dipole interac-
tions, with a smaller contribution from crystalline
fields. ' To an excellent approximation, this intrinsic
anisotropy is a pure uniaxial easy-plane anisotropy.
This implies that the transition at the Neel point is
XI'-like; only the two spin components in the (0001)
plane undergo critical fluctuations. However, the
fluctuations of the third spin component should be
quite strong (even though they do not become criti-
cal) because the anisotropy energy is only of order
1'/o of the exchange energy. That is, the lowering of
the symmetry from an Heisenberg to an XY sym-
metry is caused by a fairly weak symmetry-breaking
parameter g. When a magnetic field H is applied
parallel to the [0001] axis, it prefers configurations
with L in the (0001) plane. Thus, the magnetic field
enhances the suppression of the spin fluctuations
parallel to [0001]; i.e., the magnetic field increases g.

We attribute the nonlinear dependence of T, on
Hi, for H II [0001], to the ¹induced enhancement of
the Heisenberg-to-XYsymmetry breaking. Our basic
strategy for obtaining an explicit expression for the
dependence of T, on H is to relate the present prob-
lem to a similar problem which has already been
solved. The solved problem is that of the heisen-
berg-to-XY crossover. Such a crossover was con-
sidered in anisotropic ferromagnets, ' and near the
bicritical point (BP) of a cylindrically-symmetric
easy-axis antiferromagnet. In the latter case, the

~here A' is a positive constant. In the final expres-
sion for T, vs H we have also added a mean-field-like
correction term, 6 T, = —BH . This correction term is
similar to that in the FNK theory, where it appears as
a result of choosing an optimal scaling axis t =0.'
The correction term will be discussed more fully in
Sec. VI D 2. The final expression for T, vs H, for
small H, is

T, (H) —T = 2 '
[ ( g + cH2) ' ~ —g i ~ ] —BH', (6)

where g = p(n =3) =—1.25, and A' and Bare posi-
tive constants which depend on the material.

In the standard treatment of Heisenberg-to-XY
crossover, the Heisenberg point is the point where

g =0. Equation (4) therefore implies that, formally,
the Heisenberg point occurs at a negative value of
H, namely, H2= —go/c = —ho2. This observation
leads to an alternative approach to the problem. In
this second approach, ' a formal similarity is sought
between the case of an easy-plane antiferromagnet
and the case of a cylindrically-symmetric easy-axis
antiferromagnet. This formal similarity is achieved
when the range of H' in the easy-plane case is al-
lowed to extend beyond the' physically allowed range
of H ~ 0 to the physically forbidden range of nega-
tive H . For weak easy-plane anisotropy, this formal
procedure leads to the phase diagram in Fig. 9(b).
This phase diagram should be compared to the phase
diagram in Fig. 9(a) which sketches the FNK results
for an easy-axis antiferromagnet. In Fig. 9, the sym-
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EASY AXIS (a)
stants. Equation (7) is equivalent to Eq. (6) with
ho =go/c, A = A'c' ~.

In what follows, we compare the data with Eq. (7),
emphasizing those aspects which were not discussed
(or only briefly mentioned) in Refs. 9 and 10.

2HE Hp—
QeP C. Least-squares fits to Eq. (7)

—2HEHA

p, EASY PLANE

P

The data for T, vs H, with H II [0001], were fitted
to Eq. (7) by the least-squares method. In these fits,
@ was held fixed at its theoretical value $(n =3)
=1.25, but 3, 8, and hp were treated as adjustable
parameters. Separate fits were made to the data sets
for samples 1 and 2. The results are given in Table
III. The best fit to the data in sample 2 is shown in

Fig. 8 as a solid line. It is clear that Eq. (7) provides
a good description of this set of data. The best fit for
sample 1 was shown in Refs. 9 and 10, and is also
shown in Figs. 4 and 5 of the present paper. Because
the data in samples 1 and 2 are in good agreement
with each other, the best fits for these two data sets
are very close to each other.

D. Discussion of the least-squares fits

FIG. 9. Schematic of the phase boundaries, in the T —H2

plane, for (a) a uniaxial easy-axis antiferrornagnet and for
(b) a uniaxial easy-plane antiferromagnet, In both cases H
is parallel to the symmetry axis. Note that the virtual bicriti-
cal point (VBP) in (b) is below the observable region of
H2 «0.

bols P, AF, and SF stand for the paramagnetic, anti-
ferromagnetic, and spin-flop phases, respectively.
The AF-SF transition is also known as the spin-flop
transition.

Those transitions in Fig. 9(b) which occur at nega-
tive H we call virtual transitions. In particular, the
Heisenberg-like critical point where the three phase
boundaries meet is called a virtual bicritical point
(VBP) in analogy with the ordinary BP in an easy-
axis antiferromagnet. As is the case for the ordinary
BP, g varies linearly with H' near the VBP. That is,
g ~ (H —

Hva ), where Hva —= ho is the value of—H
at the VBP. When the uniaxial easy-plane anisotro-

py is small in magnitude, the VBP is close to the
H =0 axis, and the influence of the VBP on the ob-
servable phase boundary should be noticeable at
small positive H . That is, T, will not be linear in
H2. The formal approach in Ref. 10 leads to the fol-
lowing expression for the phase boundary for small.
positive H2,

T,(H) —Tery=A[(H +h02)'4' —ha2~] BH2, (7)—
where $ =@(n =3), and A and Bare positive con-

The good agreement of the data for H II [0001]
with Eq. (7) is, in itself, evidence in support of the
explanation of these data in terms of the VBP. Addi-
tional supportive evidence is provided by considering
the numerical values of the parameters obtained from
the fits to this equation. Of the three adjustable
parameters (A, 8, and hp), two can be estimated by
independent means which do not involve the mea-
sured phase boundary for H Il [0001]. We now

present these independent estimates and show that
they agree with the values which were obtained from
the least-squares fits to Eq. (7).

Sample No. hp

0.9743 (1020) 0.2051(119) 41.63 (513) . 2.87

1.0222(655) 0.2106(81) 44.40(251) 0.54

TABLE III. Results of least-squares fits to Eq. (7) of the
data for H ll [0001]. 2, 8, and hp are treated as adjustable
parameters, while $ is held fixed at its theoretical value

@(n =3) =1.25. For these fits, H and hp are in units of
kOe, and T is in units of mK. The numbers in parentheses
are standard deviations in units of the last quoted decimal
place, e.g. , 0.9743(1020) is 0.9743 +0.1020, and 41.63(513)
is 41.63 +5.13. 8 T is the rms deviation (in mK) between the
measured T, (H) —T~ and the best fit.
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1. Estimate for Ap

H )i

(a)

The estimate for ho is based on an analogy with
easy-axis antiferromagnets. In nearly all known
easy-axis antiferromagnets (e.g. , MnF2, Cr203, '
GdA103, "and NiC1.6H20") the observed bicritical
field Hb is within a factor of 2 of the spin-flop field
at T =0, HsF(0) =—(2HEHq)' '. In most cases, the
difference between Hq and HsF(0) is less than
-30%. This feature is also obtained theoretically in
the mean-field approximation if one considers the
common types of easy-axis anisotropies. Examples of
such mean-field calculations are given in Ref. 31. A
simple extension of the mean-field calculations in
Ref. 33, for single-ion anisotropy, also leads to the
same conclusion. The essence of the mean-field
result for Hb is given in the following order of mag-
nitude estimate. Consider Fig. 10(a). The tempera-

ture difference T~ —Tl, is of order T~(Hq/HE),
where the exchange and anisotropy fields are mea-
sured at T =0. The slope dT, /d(H') of the P-AF
line in the H —T plane is of order T~/—HE'. The
same slope is also equal to ( TI, —T~)/Hl, '. Therefore,
Hl, is of order (H&HE)' ', which is of the same order
of magnitude as HsF(0). The Monte Carlo results of
Landau and Binder" suggest that the conclusion that
HI, is comparable to HsF(0) is not peculiar to the
mean-field approximation. On the experimental side,
we are aware of only one material in which the spin-
flop field HSF changes with temperature by a large
factor. The exceptional material is n-Fe203 which
has rather unusual properties.

Based on the experience with easy-axis antifer-
romagnets we expect that also in the easy-plane anti-
ferromagnet CsMnF3, Hvq =——ho will be comparable
to the square of the virtual spin-flop field at T =0.
The latter is given by HvsF(0)2:— 12HEHq I.—The
value of HvsF(0)' can be deduced from antifer-
romagrietic resonance (AFMR) measurements. The
AFMR frequency eo in an easy-plane antiferromagnet
s given by

(~/y)'= l2HEHwl +H2, (8)

-g=O

where y is the gyromagnetic ratio. The AFMR data
of Borovik-Romanov er al. ' give HvsF(0)
= —(41.1 +0.6 kOe) 2 for CsMnF3. We therefore ex-
pect that ho will be comparable to 41 kOe. The actual
values obtained by fitting the phase boundary for
H il [0001] to Eq. (7) are ho=41.6+5.1 kOe for sam-
ple 1, and 44.4 +2.5 kOe for sample 2 (see Table III).

2. Estimate for B

2
1

(b)

g=o

TN

FIG. 10. Schematic of the phase diagram of an easy-axis
antiferromagnet near the bicritical and Neel points. (a)
Mean-field theory. (b) FNK theory. t =0 and g =0 are the
optimal scaling axes (see text and Refs. 3, 28, and 35).

The term BH in Eq. (7) is sim—ilar to a term in the
FNK theory which appears as a result of choosing the
optimal scaling axis t =0.'" This scaling axis can be
explained as follows. In the FNK theory the problem
of the BP in an easy-axis antiferromagnet is reduced
to the standard problem of crossover in anisotropic
ferromagnets. To accomplish this reduction, it is
necessary to measure temperatures relative to a scal-
ing axis t =0 which passes through the BP, rather
than relative to a fixed temperature T, ( g =0) = Tb

(see Fig. 10). This means that Eq. (5), which is
based on standard extended scaling in ferromagnets,
should be modified to account for the fact that tem-
peratures are no longer measured relative to a fixed
T, ( g =0). The correction term for T, is linear in
H2.

The optimal scaling axis t =0 for the VBP, and the
correction term —BH2 in Eq. (7), are similar to those
in the theory for the ordinary BP. In addition, the
term bH2 in Eq. (1), whic—h describes the phase
boundary near a "degenerate BP", is also related to
a similar optimal scaling axis. For CsMnF3, we are
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applying Eq. (1) to describe the phase boundary
when H is in the (0001) plane, and Eq. (7) to
describe the phase boundary for H II [0001]. We now
show that 8 in Eq. (7) and b in Eq. (1) are theoreti-
cally related to each other, at least approximately.
We then obtain an independent estimate for 8 in
terms of b. Taking b from Tables I or II we obtain a
numerical estimate for 8 which can be compared to
the values for 8 obtained from the fits to Eq. (7).

An estimate for the slope dT/d(H') of the scaling
axis t =0 was given by Fisher. ' This estimate is
based on a mean-field calculation supplemented by
certain renormalization-group results. The estimate
ls

dT
d(H');

n+2
3n

dT.

, , «H'), .F

. dT
d (H2)

n +2 dTc

d(H ) MF
(10)

where [dT, /d(H') ]MF is the slope of the P-SF boun-
dary in the mean-field approximation. Our previous
work on the cubic antiferromagnet RbMnF3 (Ref. 13)
suggests that the estimates (9) and (10) remain valid
when the uniaxial anisotropy tends to zero and the
BP becomes a degenerate BP. That is, the estimate
for the coefficient b in Eq. (1) is

where [dT, '/d(H') ]MF is the slope of the P-AF
boundary in the mean-field approximation, 7 and n is.
the number of critical spin components at the BP.
The same estimate can also be written as

should be given by the expression on the right-hand
side of Eq. (11),except that n =3 and [dT,/
d(H') ]MF is the mean-field slope of the (real) phase
boundary when H is parallel to [0001]. For CsMnF3,
the latter mean-field slope is very nearly equal to the
mean-field slope of the phase boundary for
H j.[0001]. The percentage difference between the
two slopes is of order lH~/HEI -1%. Thus the
difference between the estimated values of 8 and b is
almost entirely due to the change of the factor
(n +2)/n as n changes from 3 to 2. That is, the esti-
mate for 8is

8=—b
5

6 (12)

E. Conclusion

We now know of three types of bicritical points in
cylindrically symmetric antiferromagnets: (i) the or-
dinary bicritical point, at a positive H, in easy-axis
antiferromagnets; (ii) the degenerate bicritical point,
at 0 =0, in fully isotropic antiferromagnets; and
(iii) the virtual bicritical point, at a negative H, in
easy-plane antiferromagnets. At all these bicritical
points the net effective anisotropy (intrinsic anisotro-

py plus the H-induced effective anisotropy) is zero.

From Tables I and II, b =0.24 mK/kOe, so that Eq.
(12) gives 8 =—0.20 mK/kOe'. The actual values
for 8 obtained from fits of the phase boundary to Eq.
(7), are 0.205 +0.012 and 0.211 +0.008 mK/kOe2
(see Table III). Thus, the data agree with the esti-
mate given by Eq. (12).

dT
d(H')

(n +2)
n

dTc
11
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where [dT,/d(H )]MF is the mean-field slope for the
phase boundary near the degenerate BP. We expect
Eq. (11) to hold also in the case of a degenerate BP
with n =2.'6 That is, the coefficient b in Eq. (1) for
the phase boundary when H is in the easy plane
should be given roughly by Eq. (11).

Turning to the VBP, the coefficient 8 in Eq. (7)
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