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Using the temperature and frequency dependences of proton relaxation rates in p-

methoxybenzylidene p-n butylaniline (MBBA), measured in the temperature range of 316,2—350
K and the frequency range of 4—20 MHz, we confirm the necessity of considering critical fluc-
tuations (CF) in two parts —"local" and "nonlocal" as envisaged in a recent theoretical study—
characterized by their corresponding correlation times ~cFL and ~cFN. Both 7.cFL and 7gFN have
also been determined at different temperatures. In such determinations, use has been made of
the critical index for YcI;L, the same as observed in light scattering experiments, and our 7CFL is

in reasonable agreement with these results. Like TcpL, rqpN also shows critical behavior but
with a slightly higher index. The magnitude of' TcFN is also appreciably larger than TcFL at the
same temperature. These observed dif'f'erences between 7cFL and TcFN, and the behavior of'

nuclear relaxation rate (Tt)cFL at T predicted by the Landau-de Gennes theory suggest strong-

ly a close similarity between the nematic-isotropic (NI) transition and the Bose-Einstein conden-
sation; T is the apparent critical temperature if' the IN transition were continuous.

I. INTRODUCTION

Because of the weak first-order phase transition
shown by nematic liquid crystals in going from the
ordered nematic phase to the disordered isotropic
liquid phase (NI) or vice versa, appreciable pretransi-
tional phenomena are observed around the NI transi-
tion temperature T,. Various techniques have been
used and are being used to study these pretransitional
phenomena and their similarity with the critical
behavior (CB), both static (Q and dynamic (D),
shown by systems undergoing a second-order or con-
tinuous transition is now well established from both
experimental and theoretical considerations. ' 4 The
essential aspects of CB' are the divergences in the
correlation length ( and the correlation time rcF of
critical fluctuations (CF) in the order parameter Q
with the approach to the critical temperature TCR.
The order parameter Q, which is a quantity averaged
thermodynamically over a macroscopic volume, is
nonzero in the ordered phase but zero in the disor-
dered phase. In the case of continuous transition,
the vanishing of Q is continuous. But, in the case of
a first-order transition, Q vanishes discontinuously at
the transition temperature. Even though the long-
range order vanishes in the disordered phase, the
short-range or local order persists over an appreciable
temperature range above T,. The fluctuations in the
order parameter in such a situation can be thought of
as fluctuations in this short-range order, or in other
words, as the fluctuations around the thermodynami-
cally averaged value of zero. Similar ideas can also

be applied in the ordered phase where the fluctua-
tions are considered around the thermodynamically
averaged value of nonzero Q. Since Q is zero or
close to zero around T, in systems showing the con-
tinuous transition, fluctuations in Q is very prom-
inent both above and below T, But since Q is n. ot
close to zero and has finite values [—0.43 at T, (Ref.
6)], the effects of fluctuations in Q below T, is ex-
pected to be less pronounced than those in the disor-
dered phase. There exists another small but impor-
tant difference between this weak first-order transi-
tion in nematics and the continuous transition;
TcR = T, in the latter, while TCR = T' in the former.
This temperature T' is in fact a virtual temperature
and is higher or lower than T, depending on the or-
dered or disordered phase in which CB is being stu-
died. The two parameters g and rcF mentioned ear-
lier characterize the CF which are manifest in the CB
of different physical parameters obeying the universal
scaling law", ( describes the SCB, while rcF the
DCB, although they are not quite unrelated.

It is well known that the nuclear relaxation is a
very sensitive probe to any fluctuations —whether in
space, in time or in both present in a "lattice" in
which the nuclear spins are embedded, and nuclear
relaxation studies have been made in widely different
systems in understanding the detailed nature of CF
with considerable success. This high sensitivity of
nuclear relaxation to any fluctuations helps in under-
standing its detailed nature but at the same time
creates the experimental problem of isolating and
identifying its contribution to the nuclear relaxation
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rate measured in an experiment. It is not easy to
find a system where the nuclear relaxation arises
from a single source of fluctuations. This is very
true in studying CF since, even in the most favorable
case, the contribution to relaxation rate from this
source is not the only one and in many situations
may not be the predominant one. From all these
considerations, nuclear relaxation studies in nematic
liquid crystals have a special interest, particularly for
the convenient frequency range of CF, ' "which
provides a unique opportunity of not only isolating
the CF part from- other existing ones with sufficient
confidence but also of determining the exact magni-
tude of ~CF. An additional interest exists for those
systems for which are present directly measured 7cF
(Refs. 10 and 11) offering an independent check on
NMR results. To our knowledge, no report has yet
been published, including our own, ' ' where a com-
plete isolation of the CF part has been accomplished.

The main problem of the determination of ( Tt)cF,
the CF part of experimental relaxation time (T&),„pt,
are the existence of a model relating CF with the nu-
clear relaxation and its application' under proper ex-
perimental conditions to extract (Tt)cF from ( T~),„~,
with sufficient confidence. In what follows, we shall
demonstrate that a reliable determination of ( Tt)cF
can be made and ( Tt)cF, as envisaged in Ref. 2,
needs be divided into two parts corresponding to the
two parts of CF. One of these ( Tt)cF arises from

q =0 mode of CF and the second from all other q
modes; the former we call "nonlocal" (N) and the
latter "local" (L) characterized by their corresponding
correlation times vcp~ and ~CFL. To be precise, ~CFL,
which is involved in the expressions of nuclear relax-
ation rates, is the correlation time for q 0 mode. It
is to be noted that this time is measured in light-
scattering techniques, " ' and no usual scattering
experiments measure the q =0 mode, since the scat-
tered beam in this case lies exactly along the direction
of the incident beam. But since in relaxation studies
no external radiation is used in the sense of scatter-
ing experiments, no problem arises in observing the

q =0 mode of CF. We shall see later that our results
are in good accord with such ideas as suggested in
Ref. 2.

Corresponding to the above two parts of CF, the
nuclear-spin-lattice relaxation times are denoted by
( Tt) cFN and ( Tt) cFL, and

one obtained earlier by Cabane and Clark' ' in
understanding ' N relaxation in para-azoxyanisole
(PAA); ( Tt)cFN, on the other hand, has essentially
the same BPP form" used earlier by us in under-
standing the proton relaxation in p-methoxy-
benzylidene pnb-utylaniline (MBBA).'4 As noted
elsewhere' and supported by our present temperature
and frequency dependences of the proton relaxation
in MBBA, we shall see later that both the parts of CF
need be considered.

As we have noted already, one of the intriguing
problems in obtaining (Tt)cF from (T~),„„,is to
determine the other contribution(s) ( T~)&, since in
general

(2)

and since ( T&)0' may not be negligible compared to
( Tt)cF even closest to T, . Since even in the nematic
phase many aspects of molecular dynamics, such as
rotation about the molecular axis and translational
motions of centers of mass of molecules, are close to
those of isotropic liquids, it is expected ( Tt)o will be
diffusion-controlled. The validity of such an assump-
tion can be checked in two direct ways: (i) by ob-
serving an activation energy 8'identical with that
determined from molecular self-diffusion"' D, and
(ii) by observing frequency independent (T~),„„.Of
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The expressions for ( Tt)cFN and ( Tt)cFL are given in
Sec. II [see Eqs. (39) and (40)], where we review
briefly the Landau-de Gennes theory of the NI phase
transition and its application to the nuclear relaxation
as presented in Ref. 2, particularly to bring out the
essential assumptions involved. It may be pointed
out here that ( Tt)cFL is essentially the same as the
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FIG. 1. Experimental proton-spin-lattice relaxation rate
( T~),„'p, vs temperature T in MBBA measured at different
frequencies.
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course, both these checks can be made in the absence
of or for negligible ( Tt)cF. We shall see shortly that
similar checks can be reasonably made even though
this condition is not rigorously satisified. Further
complexity in determining (Tt)cF arises from the
possible frequency-dependent intermolecular contri-
bution'0 to (T~),„„.The exact frequency dependence
of this contribution in nematics is not known with

any certainty, but is hoped to be less pronounced at
low frequencies. From these considerations, we mea-
sured proton T~ in MBBA at a number of frequencies
(4, 5, 6, 8.8, and 20 MHz, a compromise between
necessity and availability) over a large range of tem-
peratures above T, . These results are shown in Fig.
1. All the necessary experimental details are given in
Sec. III. In Sec. IV, we present our data analysis to
extract the two parts of CF contributions from
(Tt),„„and summarize our results. The results are
discussed in Sec. V. Some discussion, both from the
theoretical and experimental viewpoints, to establish
possible connections between our observations and
those made in the ordered phase have been included
in Sec. V. Finally, we conclude in Sec. VI.

II. THEORETICAL BACKGROUND

any specific source of interaction. Since the order
parameter is a traceless symmetric second-rank ten-
sor, it has in general five independent components.
Because of the uniaxial nature of ordering in the
nematic phase and because of the vanishing trace of
the order-parameter tensor, the number of indepen-
dent components can be reduced to only one similar
to that of Maier and Saupe by the proper choice of
coordinates. But to consider the fluctuations in the
order parameter, we must retain all the components.
Under such considerations, the free energy g per unit
volume close to the NI transition point is expanded,
in accordance with the Landau theory, in a power
series correct to the fourth order in g„p.

g = go+ —,~g.pgp. + —,~g.pgp. g..+ —,
' &g.'pg,'„

+
2
D(V Q p)2 +

6 X,H Q pHp

where go is the part of free energy independent of
the order parameter. The coefficients A, 8, C, and D
are constants, but may depend on temperature and
pressure. The indices n, P, v, and ri denote the
components of Q in a Cartesian coordinate system,
and the summation over the tensor indices is implied.
The temperature dependence of A is assumed to be
of the form

We summarize in this section the basic theoretical
background to understand the NI phase transition
and its effect on the nuclear relaxation. ' Very
essential references are cited only wherever neces-
sary, and Refs. 1—4 are suggested for a more com-
plete list of references.

A. Landau-de Gennes theory of the CB
at the NI transition

The order parameter Q in a nematic liquid crystal
can be defined by a symmetric traceless second-rank
tensor

g.p(r ) = —,
' ((3n.np —5.p))

where n are the Cartesian components of a unit vec-
tor n along the symmetry axis of a molecule in its
longitudinal direction, and the average is taken in the
thermodynamic limit over the molecular ensemble in
a small but macroscopic volume around the point r.
This average is nonzero in the nematic phase and
zero in the isotropic liquid phase. In a homogene-
ously ordered system Q„p are independent of r . Any
unit vector which can be related to the molecular
symmetry axis is equally good in defining the order
parameter. But this relation must be known in con-
necting this order parameter to Q defined above from
microscopic consideration. It may be pointed out
here that the above form of Q is consistent with the
general symmetry arguments" and is independent of

A =a(T P')~—
where y is an unknown exponent to be determined
from experiments; it is unity in a standard
molecular-field approximation. The temperature T'
defines the point where the phase transition is to oc-
cur if it were not intercepted by the first-order transi-
tion at T,. The presence of the cubic term takes ac-
count of this first-order transition. T' is higher or
lower than T, in accordance with the transition to be
N I or I N. The remaining coefficients 8, C, and
D are assumed to be independent or weakly depen-
dent on T. The last term describes the magnetic an-
isotropy energy due to an applied, field H, and X, is
anisotropic magnetic susceptibility. Close to T, in the
nematic phase, the order parameter is large and the
validity of the expansion is questionable. But consid-
ering g p in Eq. (4) as the deviations from their
respective thermodynamic average values, such a re-
striction is expected to be removed. Of course, the
general limitations of the molecular-field approxima-
tions are still retained. Both from theoretical and ex-
perimental viewpoints discussed elsewhere, 2 the
Landau-de Gennes theory seems to offer a fair
description of the NI transition.

To understand the DCB we have to consider both
space and time fluctuations in Q and to set up dissi-
pative equations of motion. Using the original idea
of Landau and Khalatnikov, de Gennes has derived
these equations of motion compatible with rotational
invariance and the Onsager relations for a nematic
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system

1 1(—r,p= —vie p+P, g,p

P p=pe p+vg p

(6a)

(6l )

In deriving these relations, de Gennes has con-
sidered two groups of fluxes, Q p and e ~, and the
corresponding conjugate forces P ~ and —,0. ~. The

quantity Q p describes the rate of g p, e p is the
hydrodynamic-shear-rate tensor, 2

0-
p is the viscous

stress tensor, and

Q p(r) = Qg p(q) exp(iq r) (12)

and

where the integration is extended over the whole
volume V. Here we have retained up to quadratic
terms, since the space flcutuations in such a case can
be decomposed into noninteracting "quasiparticles, "

although not in the usual sense as they have finite
lifetimes, given by the Fourier components

g p(q) = V ' dr Q„p(r) exp( i—q. r)

P p= dF/Bg—p (7)
d r exp[i(q —q') r ] = Vs(q —q') (13)

G=GO+-, J dr [Ag p(r)gp (r)

+D'7 Q,„'7pgp„] (10)

The coefficients ri, p„and v (which should not be
confused with the tensor indices used earlier) are the
transport coefficients and have the dimension of
viscosity. In the absence of external velocity gra-
dient, e & can be neglected. When no space variation
in Q p is considered, Eq. (7) reduces to

Q p= —I'Q p, with I'(T) = —,'A(T)

A ( T) has already been defined in Eq. (5), and

v = vp exp( IVv/T)

where vo is a constant and 8'is the activation energy.
It is assumed that v does not show any divergence

with the approach of T to T'. This is perhaps true
for microscopic probes in nuclear- or -electron-spin
relaxation but may not be true for macroscopic
probes. Such a conclusion can be easily arrived at
following the simple arguments of coupled-mode
theory. ' This is probably the reason why Rao et al. '
did not observe any divergence from the transport
coefficient although direct macroscopic measurement
of transport coefficients shows divergence in the
nematic phase. "

In the above derivation of the relaxation time or
the correlation time of order fluctuations, which be-
come critical with T approaching to T' and hence
known as CF, magnetic-anisotropy energy has been
neglected. It has an important part to play on the
fluctuations in the order parameter in the nematic
phase' and hence on the nuclear relaxation. Within
the experimental accuracy of light-scattering experi-
ments, the Rayleigh line is Lorentzian with a single
relaxation time I" ' independent of the scattering
wave vector q." "

We shall shortly see that to consider the effect of
CF on the nuclear relaxation we need to consider the
space variation in Q in addition to its time variation.
In the presence of space variation in Q, we have to
express the free energy of a sample of volume V as

where

(15)

and is known as the correlation length. Under the
approximation of the model, the relaxation time or
the correlation time of the q mode is

7,' = A ( T) (1 +q'g')/v, (16)

Hence the light-scattering experiments measure" '

rp ——v/A (T) (17)

for qg (( 1. It is to be noted that both g and ro
diverge at T, since A(T) 0 with T T', the latter
for the mode with q 0 [see Eqs. (15) and (16)].
The constant D and hence f is not defined for the
model with q =0; but the constant A, which deter-
mines the CB of both ( and ro, can still be defined.

B. Nuclear dipolar relaxation in
the presence of CF

Here we restrict ourselves, following Ref. 2, to the
nuclear dipolar relaxation in the isotropic phase and
in the absence of fine structures. Whether the sys-
tem is in the isotropic or in the nematic phase, the
problem of nuclear relaxation in the presence of fine
structures is much more complex both from theoreti-
cal and experimental viewpoints. It may be noted
here that, although our treatment is restricted here to

It may be pointed out that this is the so-called
Gaussian model of phase transition, and it has an ex-
act solution. With the fourth-order term, which is
known as the interaction term, the problem is insolu-
ble. The Gaussian model has another advantage,
since we do not have to restrict ourselves to the hy-
drodynamic limit. ' The model seems appropriate
where the microscopic definition of the order param-
eter is used.

With the above definitions of Q,p( r ), we can get

G = Gp + —, VA $ (1 + ('q') Q p( —q ) Qp ( q ), (14)
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dipolar interaction, this can be easily extended to
quadrupolar interaction when the single-line approxi-
mation is valid.

To consider the nuclear dipolar relaxation, the
most convenient form to express the dipolar interac-
tion is

define a microscopic-order parameter related to F,I, '

by

F (0) (2/R 3 ) Q(0)

= (2/3Rj3) Q'-"',

where

2

g F(—P)g (P)

p —2 j)k

and

where

= (2/3Rj3) Q(-"',

Fj'k = (3cos &jk
—1)/Rj'k

Fjk = sln8jk COSHjk exp(+1 Pjk)/Rjk

Fjf—2) = sin28jk exp(+2i (/tk) /Rj'k

~j( Y i) (Ij Itu 4 (Ij+Ik + Ij I—k+) )—

Aj)I.
—') =

3 y It (Ij,Ik++Ij+Ik, )

W &-"~=—'y2e21+I, + .

(21)

(22)

(23)

(24)

x exp( ijt 0)t) dt—(26)

cu is the nuclear resonance frequency given by
0) = yH, and the bracket ( ) indicates the statisti-
cal average over the lattice the time fluctuations of
which cause the time fluctuations in 3Cd through

F,qp'. The prime on the summation sign indicates
that k =j is to be excluded. The above result has
been obtained by various methods for systems with
the nuclear dipolar interaction in the absense of fine
structures.

Now to include the time fluctuations in DCd due to
the CF, we can write

(F (—P) ( t) F ( P) ( ()))

= V-'JI (Fjk "(r,t)Fjt(, (r, o)) dr . (27)

For each spin pair jk or for similar pairs, we can

F,I, ' depend only on the lattice coordinates deter-
mined by the radius vector RjI, joining a spin pair I j
and I I„Hjq and Wjq are the polar and azimuthal an-

gles, respectively, defining Rji, in a coordinate sys-
tem, the z axis of which is in the direction of applied
magnetic field H. The nuclear-spin selection rules
give nonvanishing matrix elements for Aj~ only
when d m =p, where m = mj + mI, ', m denotes eigen-
values of I,, +J~. The nuclear-spin-lattice relaxation
rate arising from the fluctuations of 3Cd in time is
given by8

(p)(T,)-'= —'
, y't'I(I+1) g' g J„' (I ),

k p 1

where

Jp~ (u ) =f (Fp~ (l))', (o))

Q"'=Q O'-"=Q + Q

Q
+— '= Q —Qpp+2iQ~ (29)

Here we have suppressed the indices jk for simplicity.
It should be noted that the above relation is valid for
each spin pair to be considered.

We can interpret (F'p'( —q, t) F'p'(q, o)) in Eq.
(30) as the time correlation between two "quasiparti-
cles" of wave vectors q and —q. But such an in-

All these components of Q are defined by a unit vec-
tor along R,I, . It may be pointed out here that the jk
spin pairs include both intramolecular and inter-
molecular ones,

In principle, one expects to include all liquidlike
motions —such as the rotation about the symmetry
axes of molecules, the rotation of any atomic group,
molecular translations, etc.—in the above treatment.
But such a treatment including the couplings of all

liquidlike motions and the CF will be extremely com-
plex. To simplify the problem, we assume that all

liquidlike motions contributing to the relaxation rates
can be incorporated in ( T1)0' of Eq. (2) and that the
CF contribution can be considered separately: This
assumption may not be as strong as it appears when
we consider the many couplings, not so weak from
other aspects, between different molecules or
between atomic groups even in the same molecule
can essentially be neglected from the point of view of
the nuclear relaxation, and the individual motions
can be treated separately. ' For example, consideration
of the rotational and translational motions individual-

ly and neglecting their coupling yields acceptable re-
laxation rates in simple liquids; even in the ordered
nematic phase of PAA-d6, both intramolecular and
intermolecular relaxation rates show identical fre-
quency dependence. '6 Hence we do not expect to in-

troduce serious errors in treating the CF contribution
to the nuclear relaxation rate in isolation of all other
liquidlike motions.

Under these simplifying assumptions and using
Eqs. (11)—(13), we can reduce Eq. (27) to

(F(-"(t)F( &(O)) = $(F")(-q,t)F( &(q, O)) .

(30)
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&& exp( —
i t i/r-, ) (32)

where v- is the relaxation time of the q mode when

q %0, and is given by Eq. (16). In analogy with Eq.
(32), we can express

terpretation cannot be made for the "quasiparticle"
with q =0. Under this situation, we can rewrite Eq.
(30)

(F&-)(t)Fl»(0)&=(Ft 2(O, t)F& 2(O, O)&

+ g (F'»( —q, t)F' '(q, t)&
q WO

(31)

It may be noted here that q = 0 mode appears also
in scattering intensity, ' but no importance is at-
tached to it since this mode is not observed in the
usual scattering experiments. Also to note, the q =0
mode has certain similarity with the condensate in
the problem of Bose-Einstein condensation, and is
expected to have similar problems in its exact treat-
ment. 2 But we can make the following simplifying
approach.

According to Landau and Khalatnikov, ' we can
write for the modes with q ~ 0

(F P'( q, t)F I' —(q, o)& = (F ~ (—q, o)F ~ (q, o)&

Substituting Eq. (35) in Eq. (33), the BPP form can
be recovered.

This problem can also be viewed from another an-
gle if we assume that the Landau-Khalatnikov model
is also applicable to q =0 mode. This is compatible
with the idea that the q = 0 mode fluctuates also in
time, and as a result no long-range order is observed
even at T'where occurs a large increase of q =0
modes. Again drawing an analogy with the Bose-
Einstein condensation for interacting particles, '8 the
condensate or the number of modes with q =0 does
not become infinite at T" (i.e., at the ground state);
appreciable number of q & 0 modes, depending on
the strength and nature of interaction, remain at the
ground state. To approach the problem from this
point of view will require not only the knowledge of
the lifetimes of different q modes but also their
number densities, particularly of the mode q = 0 and
modes with q &0. Such a problem is still un-
resolved, and its complexity can be envisaged from
the almost analogous problem of estimating the con-
densate in superfluid 4He. Hence we follow here
the former approach leaving the two constants [C~
and CL in Eqs. (39) and (40)] to be determined from
experiments.

Using the expression for the free energy given in
Eq. (14), and Eqs. (28) and (29), we get for q &0
modes

(F'"(o,t)F'"(o, o)& = &F'»(o, o)F&»(o, o)&

& exp( —I/I/YcpN) (33) 3WV I+ ' ' ~' ' (36)

where vcFN is the relaxation time for q = 0 mode,
and may be different from v

q
for q 0 mode; this is

to be verified by experiments.
Our assumption is based on the following facts: It

is well known that the Landau-Khalatnikov theory
cannot be rigorously applied to the q =0 mode since
this is the equilibrium state. But a close similarity
between Eq. (33) and the well-known BPP form for
time correlation, which has been proved so success-
ful, can be easily noticed. This becomes particularly
apparent when we write

(Ft»(o, o)F&»(o, o)&

= V ' )(Fl ~ (r, o)F ~ (r', 0))dr dr' . (34)

(37)

(38)

It is now straightforward to obtain the relaxation
rate arising from the CF using the Eqs. (25), (26),
and (32)—(38). The two parts of (Tt)cp arising from
the modes with q = 0 and from the modes with

q A 0 are given by, respectively,

(Tt)c„'N ——C~co 'x[(1+x') '+4(1 +4x') '], (39)

( T )-1 C T 1/2 -t/2 t/2

In writing this expression, we have used Eq. (11)
with q =0. Eq. (34) can be written

x [[I +(I + ')'/']-'/'

+4 [ 1 + ( 1 +4y2) 1/2] —1/2] (40)

(F'» (0, 0)F'» (0, 0)

= V l (F "(r,o)F' »(r, 0)& dr, (35)

where we have used

where x =co~cFN and y =co7cFL, CN and CL are con-
stants independent of co and T, and v is defined in
Eq. (9). The temperature dependences of 'TcpN and
7cFL, in accordance with the Landau-de Gennes
theory, ' are given by

(Ft »(r, o)Ft»(r', 0)& = (F' »(r, o)Ft»(r 0))

x5(r —r')
r cpN = rPpN exp( VV/ T) ( T T') ', —

rcpL = rc)jexp( W/T) (.T T')—(41)

(42)
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where y and y' are the critical indices to be deter-
mined from experiments; both are equal to unity in a
standard molecular-field approximation. On the
background of our earlier discussions on q = 0 mode
and all other modes with q ~0, we have left the two
critical indices unequal; we shall see later that our ex-
perimental results do also suggest this. It may be
pointed out here that Eq. (42) is identical with Eq.
(17), while Eq. (41) in an assumed form in analogy
with vqFL.

It is to be mentioned that, in deriving Eq. (40), the
summation over q has been replaced by an integra-
tion over the whole q space excluding the point

q = 0, the density of states in the q space has been
assumed uniform, and the upper limit of integration
has been taken as ~ without introducing a cutoff.
Because of the presence of the factor exp( —

I t llr-, )
in the integrand, no appreciable error is introduced in

extending the upper limit of q to ~.

pie reading the correspondence of which with the
temperature of the sample center was established pre-
viously by a blank experiment with a sample of
MBBA not vacuum sealed. Such a procedure en-
sured us also of the temperature gradient existing in-
side a sample. No appreciable temperature gradient
was observed over the sample volume except for
temperatures around T, ( —0.2 K).

The sample of MBBA used in the present measure-
ments was commercial grade, distilled and degassed
several times prior to sealing it under vacuum. All
the data presented here were taken on a single sam-
ple. It might be noted here that some of our samples
used earlier to this set of data showed deterioration
on taking to high temperatures as revealed by repeat-
ing some lower temperature Tj measurements, but
no observable change in T, (within about 0.2 K)
could be detected. These data have not been includ-
ed here,

III. EXPERIMENTAL DETAILS IV. DATA ANALYSIS AND RESULTS

As we have noted already, the main problem of
studying the DCB is to determine (T~)cF from exper-
imental (Tt),„„with sufficient confidence. We have
also noted there our motivation of selecting the
number of frequencies for measuring proton T~ in
MBBA over a large temperature range above T,
(-316 K). The highest temperature tried in our
measurements was motivated to observe frequency
independent T~ within our experimental accuracy
( —1% for absolute values). During such measure-
ments, we kept always a check on our sample to en-
sure that it did not deteriorate. This check was made
by repeating Tl, measurements for some lower-
temperature point at the same frequency used. Mea-
surements of T& were made by a modified version of

' the three-pulse method' "which enable us to deter-
mine relative T~ at any frequency within a few parts
in 10 and the absolute magnitudes within 1%. Limi-
tations of achieving higher accuracy were mainly
from the consideration of experimental time and the
consequent stability in the temperature control. The
temperature control was done by a Bruker air-flow
cryostat (model B-ST 100/700), but its stability was

monitored by a digital millivoltmeter connected in
parallel to the temperature deviation meter in con-
junction with another Chromel-Alumel thermocouple
reading the temperature to about 0.03 K. This latter
thermocouple was used also to calibrate the Bruker
temperature-control unit with the temperature devia-
tion read by .the millivoltmeter mentioned above. In
this way, we were ensured of the sample tempera-
tures remaining constant within +0.1 K during mea-
surement at any temperature point. The temperature
of the sample was taken as that at the sample center.
This was accomplished from the Bruker thermocou-

A. Preliminary considerations

In Fig. 1, we show our directly measured proton T~

in MBBA obtained over a temperature range of about
316—350 K and for a number of frequencies. It can
be noted there that (Tt),„„becomes frequency in-

dependent within our experimental error abo0e about
340 K for the lowest three frequencies (4, 5, and 6
MHz), but not so when the data of the other two fre-
quencies (8.8 and 20 MHz) are also considered.
These suggest three possibilities for the source or
sources of the observed frequency dependence in this
temperature range: (i) appreciable (T~)cF exists at
these high temperatures, and both x and y are « 1

for the lowest three frequencies, (ii) the frequency
dependence is due to diffusion mechanism' as some
authors have suggested earlier from studies in the
nematic phase, "and (iii) the frequency dependence
is due to both of the above sources. In order to
check these possibilities, we have determined the ap-
parent W( W&) from the data of the lowest three fre-
quencies, from those of 8.8 and of 20 MHz in this
temperature range. These three 8'~ are 4.4, 4.0, and
3.7 && 10' K, respectively, shown in Fig. 2. All these
WA are fairly large compared to real 8'(3.0 x 10'
K), '9 although differences between the apparent ones
and the real one decrease with increasing frequency.
From these observations and from the observed fre-
quency independence of ( Tt),„„for the lowest three
frequencies, one can easily conclude that the fre-
quency dependence, if any, from the diffusion
mechanism' is to be negligible in this temperature
range for all frequencies measured. Such a conclu-
sion one can arrive at without going into the details
of diffusion mechanism in nematics. This is because
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First, we describe the method we followed to deter-
mine (Tr)cF from (Tt)„pt at different temperatures
for each of the frequencies used. Two methods have
been used earlier' " for the purpose, and both of
them are based on the idea of separating ( Tr) o' from
(T~),„'„by knowing its value first at some tempera-
ture and then by extrapolating it to other tempera-
tures on the assumption that
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FIG. 2. (a) —(c) Sernilog plots of experimental relaxation

rates vs 1/T The straight . lines are obtained by the LSF to
the relation: ( Trl«r~, = C exp( W/T) The data poi.nts are

from Fig. 1 for T above about 340 K.

the diffusion mechanism noted above is expected to
lower W~ rather than to increase it for any fixed fre-
quency. Similar lowering of W~ is also expected in
the presence of appreciable exchange diffusion" since
the observed relaxation rate at any frequency should
also increase with increasing temperatures flattening
the relaxation rate curve. It is also to be noted that
we do not normally expect this mechanism of ex-
change diffusion to be present in MBBA for its
chemical nature. We can then exclude the possibility
of exchange diffusion playing any significant role in
our observed relaxation rates. With these observa-
tions and considering only a factor of 2.5 variation of
D in the whole temperature range of our measure-
ments, '9 the frequency dependence from the diffu-
sion mechanism can be excluded completely from our
(Tr)„~,. This is also supported by our earlier obser-
vations on our data above 340 K that the frequency
dependence from the diffusion mechanism, if any, is
negligible for a variation of frequency from 4 to 20
MHz, a factor of 5. We conclude from all these ob-
servations that the frequency dependence we observe
in our ( Tr),„~, comes from the CF and not from the
frequency-dependent diffusion mechanism. To em-
phasize this point, we shall henceforth denote (Tr) o
by ( Tr)D, assuming all the frequency-independent
contributions to ( Tt),„~, are diffusion controlled.

(Tt),„'pt=A +Bee ' +CD (44)

The first term on the right-hand side can be identi-
fied with the frequency independent (Tr) D given by
Eq. (43), the second with ( T~)cFL given by Eq. (40)
for y )) 1, and the third with ( Tr) cFN given by Eq.
(39) for x» 1. For any fixed frequency c0, since
(Tt)cFL approaches its maximum while ( Tr)cFN ap-
proaches its minimum (zero) with T ?", we as-
sume further that the third term is negligible at
T = Tr. = 316.2 K (compare T, —316 K). Such an as-
sumption may not be completely justified, and may
introduce some errors in A and B. But in view of our

where K is a constant independent of frequency and
is to be determined from some known T and ( Tt) D'.
One of them is based on extrapolating low tempera-
ture ( Tr),„'~, to T' where (T~)cFN [(T~)cF in our ear-
lier notation'~j is to be zero for each frequency. Such
an extrapolation cannot be reasonably done here par-
ticularly on the low-frequency data for which the
variation of (Tr),„„,is large. The second
method, '5 34 which is based on determining ( Tr) D'

from (T~),„'„at high temperatures where ( Tr)cF is
negligible. This cannot also be applied in our present
case since ( Tr)cF is not negligible at our highest tem-
peratures measured. Still higher temperatures were
not tried because of the apprehension of having the
sample deteriorate.

We have also used here the above form of ( T&)o
given by Eq. (43), but it has been determined in a
slightly different way for reasons noted earlier. Our
present method is based on the following considera-
tions.

For the lowest three frequencies in Fig. 1, we can
note strong frequency dependence of (Tr),„„attem-
peratures close to T, while a little or no frequency
dependence at high temperatures. On the other
hand, (Tr),„„for the highest two frequencies show
appreciable frequency dependence at both low and
high temperatures. These suggest, that we can rea-
sonably assume both x and y to be ))1 at T = TI.,
the closest temperature to T, measured. Under these
conditions, we expect ( Tr),„„at T = TL, for all fre-
quencies to satisfy the relation
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earlier measurements in MBBA, ' where (Tt)cFL was
essentially approximated to be diffusionlike, ' and in
view of errors involved in absolute ( Tt),„„(—1%),
we expect these errors in A and 8 not to be very seri-
ous. This is well supported by the excellent least-
squares fit (LSF) of our data to Eq. (44) without the
third term. These results are shown in Fig. 3. We
shall call this approximation the "slow-motion" or
"low-temperature" approximation, in contrast to the
"fast-motion" or "high-temperature" approximation
under which ( Tt)c, becomes frequency independent,
as for the lowest three frequencies at temperatures
above about 340 K.

Under the "fast-motion" approximation and using
Eq. (1) with Eqs. (39)—(42), we can write

(Tt)cF'=~'T(T T') ~ ~'exp( &/T)

+ C'( T —T')-~ exp( y(//T),

8.0 =
1.8

Y = ( 2,9 + 0.2) IO 8 X+( 3.2 + 0.4) 10 5

r =0.9536

2.0
(oK )

5/2

where 8' and C' are constants independent of T and
c0, and are related to 8 and Cof Eq. (44), respective-

ly; these relations can be easily established with the
help of Eqs. (39)—(42). The frequency-independent
data for the lowest three frequencies were fitted to
Eq. (45) by the LSF with y=y'= I, and
W =3.0 & 10' K, for different choices of T". The
value of y'=1, was taken from light-scattering
results. " ' One of these fits is shown in Fig. 4. In
obtaining ( Tt)cFt from (Tt),„'~„use has been made
of Eq. (43), with K =A exp( —W/Tt, ), A determined
from the low-temperature fit shown in Fig. 3. We
must note here that these frequency-independent
data, when fitted alone to ( Tt)cFL or ( Tt)cFN, did
not yield any realistic result. Similar unrealistic
results were also obtained when thepe frequency-
independent ( Tt),„'~, were fitted to ( Tt) D' and any
one of (Tt)cFL and ( Tt)cFN. It may be pointed out
that the correlation coefficient r of these fits (shown
in Fig. 4) are not very good. This may be due to par-

8.0—

7.0—
-l»

6.0— .2) x l04 x (t)

I.O l.5 2.0
-t/R lo -4

PIC~. 3. Least-squares fit of ( T~)cxpt at T = TI =316.2 K,
measured at different frequencies, to the relation:
{T~)exp, =2 +Bra '~, obtained under the "slow-motion" ap-
proximation. Note that the relation is identical with Eq.
(44) with the last term dropped. See the text for details.

FIG. 4. Least-squares fit of the frequency-independent

(T~)cp observed for the lowest three frequencies {4—6

MHz) to the relation: Y = B'X+C', where Y = {T~)cF
( T —T ) exp( —W/T) and X= T(T —T'), obtained under
the "fast-motion" approximation [see Eq. (45)]; W =3 x 10
K, and T'=315.2 K for this particular set. (T~)cF at dif-

ferent Thave been obtained using Eqs. (2) and (43) with

E =A exp( —W/TL), Wand TL have the values shown in

Fig. 3. See the text for details.

ticular choices of variables necessitated for the two-
parameter fits. Considering the reproducibility of
data within our experimental accuracy the LSF are
reasonably good. As we shall see shortly, a marked
improvement in these fits is observed when y is tak-
en to be different from y'.

Using 8 and 8' determined from the low- and
high-temperature fits, we obtained CL vo

' and ~P)L,
the constants necessary to determine ( Tt)cFL and
( Tt)cFL at different temperatures, the former also at
different frequencies [see Eqs. (40) and (42) j. Using
( Tt)cF and (Tt)cFL obtained as above, we deter-
mined ( Tt) cF'N at different temperatures and at dif-
ferent frequencies with the help of Eq. (1). Such a
procedure was followed to determined (Tt)cFN for
each choice of T' ranging between 315—316 K at in-
tervals of 0.1 K. One such set of results is shown in
Fig. 5. As expected from Eq. (39), the following
three features can immediately be noted: (i) maxi-
ma, (ii) maxima shifted to higher temperatures with
higher frequencies, and (iii) reduced heights of these
maxima with higher frequencies. We shall discuss
each of these features in relation to our Eq. (39).

According to Eq. (39), these maxima should occur
at x =0;616. Using this value of x and the relation
x = ~7cFN, we determined 7cFN at different T corre-
sponding to the observed maxima at different fre-
quencies and for a chosen T'. These values of 7CFN
with their corresponding Twere fitted to Eq. (41) by
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FIG. 5. Typical set of (T~)CFN vs T plots obtained at dif-

ferent frequencies and for the choice of T'=315.3 K. The
solid lines are to aid the eye to locate the maxima.

the LSF, and this procedure was followed for each
choice of T'. The best fit, defined by the maximum
r, was obtained for T'=315.2 K. These results are
shown in Fig. 6. It should be pointed out that we ob-
tain y =1.2 +0.1 instead of the value 1 used for the
high-temperature fits, one of which is shown in Fig.

4. Using this value of y, the high-temperature fit
was redone with the data for T'=315.2 K and a
marked improvement in the fit was observed, as indi-
cated by an increased r (from 0.95 to 0.98). Since
this new fit increased (Tt)cpL marginally, no appreci-
able changes in observed maxima of ( Tt) cpN were
expected, and the procedure was not followed for all
different T" used earlier. Corrections to (Tt)cpN at
different temperatures and at different frequencies
due to the new fit were not also incorporated since
they were well below our estimated errors shown.

Using Eq. (39), we can get the frequency depen-
dence of the maximum of (TI)CFN or the minimum
of ( Tt)cpN as

(Tt)cFN(max) =(Tt)cFN (46)
I

CJ
4)"10"—r = 0.

. 2 'K

I-
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FIG. 6. Log-log Plot of rcpNexP(W/T) vs'T —T with

T'=315,2 K and 8'=3 && 10 K; 'TcFN and the correspond-
ing T were determined from the maxima similar to those
shown in Fig. 5; Q)7CFN =0.616 at the maxima. The straight
line shows the least-squares fit to Eq. (41). See the text for
details.

where M is a constant independent of frequency.
The LSF of ( Tt)cMFINN to Eq. (46) is shown in Fig. 7
for the data with T'=315.2 K. The agreement is ex-
cellent in spite of different complex steps in extract-
ing the data from the directly measured quantities.

C. Summary of experimental results

(i) Proton spin-lattice relaxation time ( Tt),„p, has
been measured in MBBA as a function of tempera-
ture above T, (-316 K) over a range of 316.2—350
K at frequencies 4—6, 8.8, and 20 MHz.

(ii) Even at the highest temperatures, appreciable
contribution to the nuclear relaxation rates arising
from the CF remains for all the frequencies used.

(iii) Frequency dependence of the spin-lattice re-
laxation rate arising from the diffusion mechanism, if
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any, in the temperature and frequency ranges studied
here is negligible within the experimental accuracy;
all the observed frequency dependence can be attri-
buted to the part arising from the CF.

(iv) From the temperature and frequency depen-
dences of the nuclear relaxation rate, it has been
shown that the proton relaxation consists broadly of
two parts —one arising from the diffusion-controlled
mechanisms and independent of frequency, and the
other from the CF dependent on frequency. The
frequency-dependent ( T~)cF needs be divided into
two parts as envisaged in Ref. 2; no one component
of the CF is capable of explaining the observed tem-
perature and frequency dependences.

(v) The two parts of (Tt)cF, (T~)crL, and

( T~)c», have been determined over a wide tempera-
ture range at a number of frequencies.

(vi) The correlation times rcFL and 7c» character-
istizing these two part of CF have also been deter-
mined over a large range of temperatures. In such
determinations, the CB of 'TcpL has been taken the
same as observed in the light-scattering experi-
ments. " ' Like 7cpL, 7qpN shows also CB but with a
slightly higher index. The best fit values are
re=�(1.2+0.2) &&10 "sec with y'=1 (taken from
light-scattering results), r'OL = (2.5 + 0.6) & 10 " sec
with y=1.2+0.1 T'=315.2 K. It should be noted
that we have taken T T' in Eqs. (41)—and (42) as
pure numbers in expressing vga~ and rP)L in seconds.

(vii) The heights of ( T~)cFN (max) or ( T~) cF'N

versus frequency follows a linear relation in agree-
ment with the theory,

V. DISCUSSIONS

Since the work of Cabane and Clark' in PAA, a
number of reports' "' ' 3' have appeared on the
CB in nematics above T, studied through nuclear re-
laxation. As we have noted earlier, none of these re-
ports have considered the total CF contribution to
nuclear relaxation rates usually measured in an ex-
periment. The main experimental problem is to
determine this contribution from other existing ones
with sufficient confidence. Mainly for the limited na-
ture of the data, the separation of ( Tt)cF has been
partial in earlier studies, although both the essential
features of the two components, (Tt)&» and

(T~)cFL, have been observed there. With the more
elaborate frequency and temperature dependences of
proton-spin-lattice relaxation rates, it has been possi-
ble here to separate not only ( T~)cF.from ( T&),„„
but also its two components.

From the frequency and temperature dependences
of our high-temperature data, it could be convincing-
ly shown that the frequency dependence of ( Tt), pt

arising from the diffusion mechanism could be
neglected in the temperature and frequency ranges of

our measurements. Once the frequency independence
of this contribution [(T~)o in Eq. (2)] is known, this
part could be determined from the frequency depen-
dence of low-temperature ( Tt),„„.Here we have
neglected the contribution from ( Tt) cFN. Such an
assumption, although not rigorously justified, seems
well satisfied in view of the excellent fit shown in
Fig. 3. Combining the high- and low-temperature
fits, it has been possible to determine ~cpL, the tem-
perature dependence of which is assumed to be the
same as observed in the light-scattering experi-
ments. " " In other words, we have used the critical
index for vcpL, the same as derived in light-scattering
experiments. The exact values of 7~pL observed in
those experiments have not been used here for two
reasons: (i) Although the nature of the CB is not
dependent on the purity of the sample but the abso-
lute value of a parameter does. " (ii) Nuclear relaxa-
tion utilizes a microscopic-order parameter while the
light-scattering experiments the macroscopic one;
such difference may introduce some unforeseen error
in determining ( Tt) cFL, and hence in ( Tt )c».

We compare our rcpL with those obtained by the
two different light-scattering techniques. " ' For a
meaningful comparison of the different results, we
have also computed r'c'itL from light-scattering results
with 8'=3.0 && 10 K instead of 2.8 && 10 K used by
both groups and with T"reported. These are
3.5 X10 "and 4.8 X10 " sec, respectively, obtained
from Refs. 11 and 13.

Considering the simplifications of the I.andau-de
Gennes model as applied to the NMR relaxation and
to the light-scattering techniques, the observed
discrepancies between our result and the light-
scattering results may not be as great as they appear.
Besides theoretical simplifications, there exist experi-
mental problems on the exact separation of the CF
contribution to the nuclear relaxation, the purity of
the sample, etc. From the theoretical viewpoint, par-
ticular mention should be made to the fact that the
correlation times of fluctuations in different com-
ponents of the order-parameter tensor Q are not
equal as de Gennes has considered, ' and we have
used in our theory. In fact, it can be easily shown
from the Landau-de Gennes expression of free ener-
gy [see Eq. (14)] that the nondiagonal components of
Q decay twice as fast as the diagonal components.
From these considerations alone, a factor of two
discrepancies between NMR and light-scattering
results can be accounted for. Another important
point in this connection needs also be mentioned is
the local-field effects, ' which play a considerable
role in the optical but not in NMR results. It is well
known that because of the local-field effects the ma-
croscopic and microscopic Q are not strictly propor-
tional, as has also been recently stressed by Hanson
and Shen. " Furthermore considering the complex
molecular structure of MBBA, the contributions of
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different nuclear dipole pairs to the relaxation rate
may be more complex than that treated in the theory
[see Eqs. (36)—(39)]. It is not clear yet how all these
simplifications contribute to the observed discrepan-
cy.

We have no existing results to compare with our
( Tt) cFN and with rcFN obtained here. But both from
theoretical and experimental viewpoints discussed
earlier, the necessarity of considering the CF in two
parts seems well established by our results. The
essential features of (Tt)cFN noted earlier can be
readily observed, and the agreement between the
theory and experiment is reasonably good.

The validity of separating the CF contribution to
the nuclear relaxation rate as we have done here can
also be understood by the following simple argu-
ments. It is well known in the relaxation theory that
the two most important factors in determining the re-
laxation rate by the direct process" are: (i) the ex-
istence of coupling between the spin system and the
bath or the lattice to which the former gives up its
excess energy, and (ii) the spectral density of the lat-
tice centered around the frequency of nuclear reso-
nance ~. The former is the required condition for
any relaxation process, while the latter is typical for
the direct process. The spectral density contributing
to the nuclear relaxation rate can then be defined by
the number of modes with frequency cv and the
correlation or the relaxation time of this particular
mode. For simplicity, we shall restrict our discus-
sions to the number of modes with frequency cu.

Under this simple consideration, we expect the in-
crease or the decrease in the relaxation rate at a par-
ticular frequency of nuclear resonance with the corre-
sponding increase or decrease of these modes. Keep-
ing these considerations in our view, let us look at
our Eqs. (14)—(16) and (36)—(40). One can easily
note the following facts with T approaching to T': (i)
the number of modes with q 0 increases with the
corresponding increase of their relaxation times, i.e.,
the spectral density of the mode increases for increas-
ing numbers as well as for getting narrower; (ii) the
lower the

~ q ~, the lower the energy; (iii) ( Tt)cFL
tends to a constant but increasing with the lowering
of co at T", since y ~ for any finite co, and (iv)
( Tt)cFN tends to zero at T', since x ~ for any fin-
ite co. At T = T', point (iv) can be easily understood,
since the number of modes with q =0 and frequency
cu becomes zero, and hence the relaxation rate is also
zero. But it is difficult to understand point (iii), par-
ticularly its frequency dependence, if we consider all
the modes with different q condense to the mode
q 0 at T = T'. Moreover, the spectral density
reduces to a 5 function with the center at zero fre-
quency since the relaxation time becomes also infin-
ite. In such a case, we would expect ( Tt)cFL to be
also zero at T = T' for any finite cu. The frequency
dependence of (T~)cF'L can also be well understood

from our qualitative arguments when we draw an
analogy with the ground state of an interacting Bose
gas." Such a ground state (in our case it is at T" as
noted earlier) is not a pure q = 0 state, but a mixture
of q =0 and q ~0 states. In other words, appreci-
able number of q A 0 modes or particles exist in the
ground state, and their numbers are expected to in-
crease with decreasing q. In such a situation, we ex-
pect increasing relaxation rates with decreasing m as
observed in our experimental results. As we know
from the problem of Bose-Einstein condensation that
the modes with q = 0 need separate considerations
from those modes with q ~ 0, we expect similar
distinctions are to be made for the CF. Our experi-
mental results are in good accord with these ideas.

It is interesting to seek some connections, if there
is any, between our observations and those made in
the ordered phase. With this in view, we include
here a brief discussion on these aspects, a more de-
tailed connection we hope to establish in a future
publication where we apply our model in the ordered
phase. A number of mechanisms have been suggest-
ed in the ljterature for the relaxation in the ordered
phase. These can be grouped broadly under the fol-
lowing three headings: (a) order fluctuations (OF),
(b) translational diffusion, and (c) diffusive rotation-
al motion or rotational diffusion; some couplings
among these mechanisms have also been considered.
Various models'have been developed to consider
these mechanisms with some success in understand-
ing the experimental results, but not always without
ambiguity both from the theoretical and experimental
points of view. Many conflicting results exist in the
literature, and it is not clear yet how far different
theoretical and experimental factors have contributed
to these. Our theory takes the mechanisms noted
above also into consideration, but in a slightly dif-
ferent way. We have considered the fluctuations in
the order parameter and not simply the order director
fluctuations (ODF). Furthermore, our order parame-
ter is microscopic and fluctuations in it are not limit-
ed to the hydrodynamic model of OF, as we have
noted earlier. These two aspects of OF, the micro-
scopic and macroscopic, may be compared with the
lattice and elastic vibrations in a solid, respectively;
the former under the long-wavelength limit is expect-
ed to yield the latter and vice versa. It may be point-
ed out that the results obtained by Doane et al.
under the ODF approximation and latter extended by
Blinc et al. ' do not seem right. These results have
been criticized also by Freed"' who has essentially
treated all the three mechanisms in a composite way
under the approximation of stochastic Markov pro-
cess, retaining the features of the hydrodynamic
model; he recovers under his lowest-order approxi-
mation the ODF results of Doane et al. " The limi-
tations of the ODF treatments can be easily noted by
considering the situation where the order director is



S. K. GHOSH, E. TETTAMANTI, AND A. PANATTA

aligned along the direction of H. The nuclear relaxa-
tion treated with ODF or with fluctuations of the
dipole-pair vector under the long-wavelength approxi-
mation is to be exactly equivalent, since the two situ-
ations are physically indistinguishable. One can easily
convince oneself in such case that the latter yields all

the spectral densities Jo(0), Jt(to), and J2(2to), not
simply Jt(t0) as obtained by ODF. Furthermore, an
immediate consequence of the ODF results40 "' is to
have different relaxation rates for different spectral
lines and the measurements of' the relaxation rates
with a single exponential are questionable. No less a
serious objection is to the conciusion that 7"~ is in-

dependent of QDF from the observed angular depen-
dence of T~~ as Blinc et al. "0~'~ have done, since T~~

is expected to have similar angular dependence due
to the change in the dipolar field or dipolar splittings
caused by tiNe shifting of the order director away
from the direction of H and since T~~ is not expected
to be completely determined by the spin-lattice relax-
ation. "

The mechanism (b) and a part of (c), namely the
diffusive rotational motion around the long molecular
axis, which is ordinary liquidlike, are included in our
( Tt)ot. The other parts of (c), the diffusive rota-
tional motions around the axes normal to the long
molecular axis are essentially included in our local
parts of (a) for large q. In other words, the contri-
butions from these two parts of (c) are included in

our (Tt)cpL. These diffusive rotational motions can-
not be ordinary liquidlike since they are restrictive
and limited to small deviations from the equjlibriurn
positions of the long axis of the individual molecule.
The large deviations can be excluded by the argu-
ment that such motions would cause the multiplets in

the nematic phase to vanish. This is the physical
basis of the dipole-field averaging in solids and
liquidst44 Similar considerations are expected to hold

good also in the critical regime where the short-range
order still persists. Contrary to the above observa-
tions, if we assume the maxima of our ( Tt)claw are
due to some frequency-dependent mechanism other
than the one considered, such as the rotational diffu-
sion around the two normal axes as suggested by cer-
tain authors, ' particularly Graf et a/. ,

' we end up
with unphysical results. These can be noted in Fig. 8

where we show the same ~CFN used in Fig. 6 versus
1/ T together with the LSF to the relation:
re =rgb exp( W/T); to avoid confusion, we have
used v~ instead of 7cq:N in this figure. It should be
noted that both W (—14 x 103 K) and rg' (—10 26

sec) are unrealistic. Similar unrealistic values are
also given by other vcFN obtained for different T'. lt
is to be noted that the taking of 7~ equal to vcF~ is
not rigorously justified since (Tt)cpN are obtained
under different conditions discussed earlier. These
are taken equal here since we do not expect appreci-
able variations of temperatures at which these maxi-

10
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FIG. 8. Semilog plot of v~ vs 1/Twith the straight line

showing the LSF to the relation rq =rgt exp( W/T) The.
data points are the same as those of Fig. 6. See the text for
details.

rv.a occur. Such an expectation is based on our ex-
perience with ~CFN obtained for different T'noted
above and also on reasons similar to those discussed
earlier in connection with the high-temperature fit
with unequal y. Here we may point out that any
realistic fit should yield the parameters r'ao' and W

mutually compatible since these should not be unre-
lated; of course, their exact relation is expected to be
model dependent. From the straightforward meaning
of the correlation time and with simple arguments
based either on the classical" or the quantum-
mechanical viewpoint of lifetime broadening, we can
consider re' to be the residence time of a relaxing
particle (for example, a molecule here) in a potential
well of depth O'. Obviously, the parameters derived
above do not stand these and so are unphysical.
Similar or almost similar unphysical values are also
obtained from the best fit parameters of Graff et al. 4'

The authors have also noted some of these, but from
different viewpoints apparently not giving sufficient
stress. Particular mention should also be made of
their parameter e, the strong temperature dependence
of which is hard to justify, Moreover, it is not clear
how far their parameter values have been influenced
by the neglect of a term similar to our ( Tt) cpN in
their relaxation rate equation. In fact, we expect in
the nematic phase terms similar to our (Tt)cpL and

(Tt)cpN in the relaxation rate equation both for the
nematic-solid and the nematic-isotropic transitions.
%e do not know yet their relative weights in the re-
laxation rate for any specific system from the theoret-
ical considerations. It may be interesting to point out
that the maxima of the spin-lattice relaxation rates in
a low-temperature nematic reported recently by Uk-
leja and Doane4' may be the first direct observation
of (Tt)cpN for the solid-nematic transition. The data
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shown in their Fig. 4, which is similar to our Fig. 8,
yield similar unphysical results discussed earlier.
Preliminary analysis shows that this unphysical
behavior is completely removed with our model if we
assume that the nematic-solid transition is also critical.

VI. CONCLUSIONS

%e have shown here that the nuclear relaxation
rate arising from the CF, (Tt)cF, needs be divided
into two parts, one arising from the modes with

q =0, ( Tt)cFN, and the other from all the remaining
modes with q &0, (T~)cFL, as envisaged in Ref. 2.
The Landau-de Gennes model gives a fair description
of (Tt)cFL, and rcFL derived is in reasonable agree-
ment with results obtained by quite different tech-
niques. A reasonable extension of the Landau-de
Gennes model can also be made for describing
( Tt)cFN, although rcFN derived shows appreciable

differences from YcpL in both magnitude and tem-
perature dependence. It would be interesting to ex-
tend such studies to other nematic systems, prefer-
ably in a wider frequency range and with higher pre-
cision in measurements, to see particularly whether
similar variations in ~cpL and 7cpN are the general
features of the NI transition. The observations on
'rgpL and 7'cpN together with the predicted frequency
dependence of (Tt)cFL at T'suggest strongiy the
close similarity of the NI phase transition and the
Base-Einstein condensation.
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