#### VOLUME 21, NUMBER 3

# Order parameter symmetries and free-energy expansions for purely ferroelastic transitions

Jean-Claude Tolédano Centre National d'Etudes des Télécommunications, 92220-Bagneux, France

### Pierre Tolédano

Groupe de Physique Théorique, Faculté des Sciences, 80000-Amiens, France (Received 2 January 1979)

Purely ferroelastic transitions, i.e., transitions associated with a spontaneous deformation but no spontaneous polarization, appear from recent experimental investigations as a very common type of structural phase transitions. A theoretical analysis is presented for this class of transitions on the basis of Landau's theory of continuous phase transitions. The possible symmetries of their order parameter are systematically worked out both for the cell-preserving transitions and for those which modify the number of atoms in the crystal unit cell. Accordingly, we examine the transitions induced by the space-groups irreducible representations complying with the Landau and Lifshitz symmetry criteria. For each representation attention is given, in particular, to the construction of the finite group constituted by the set of distinct matrices of the representation, since this set (the image of the representation) determines the form of the Landau free energy and the number and characteristics of the low-symmetry phases. The images corresponding to the four-, six-, and eight-dimensional order parameters, which were not known previously, have been systematically determined for the 230 crystallographic space groups. We find 22 four-dimensional images associated with the "active" irreducible representations, ten six-dimensional, and five eight-dimensional ones. The corresponding Landau free energies have been expanded as a function of the order-parameter components, up to the lowestdegree terms which influence the stability of the low-symmetry phases just below a line of continuous transitions. It is pointed out that, in some cases, polynomials of degree as high as 12 must be considered. Whenever the order parameter and the spontaneous deformation have different symmetry properties, (improper ferroelastics), we have examined the additional contributions to the Landau free energy which represent the coupling between those two quantities. Their form depends on the particular space-group representations and not only on the images of these representations. We have worked out the lowest-degree coupling term for all the considered transitions. Its degree in the order parameter (the "faintness" index), which governs the qualitative temperature dependence of the macroscopic deformation and elastic constants is found equal to 2 in most cases, though values of 3 and 4 are also found possible. For each of the predicted types of ferroelastic transitions the space-symmetry change and unit-cell expansion have been determined. These crystallographic results are presented in table form and discussed. It is pointed out, in particular, that purely ferroelastic transitions constitute the major part of the ferroic phase transitions which are inferred to be possible in the framework of the Landau theory. Finally, the former theoretical results are compared to the available experimental data.

#### I. INTRODUCTION

The Landau theory of continuous phase transitions<sup>1</sup> provides a basis for deriving several important features of structural phase transitions, namely, the change in the crystal's space group, the dimension and symmetry properties of the transition's order parameter, and the form of the free-energy expansion. The theory does not account correctly, in general, for the behavior of physical quantities in the vicinity of the transition point since it has the same range of validity as the mean-field approximation in microscopic theories. However, its results concerning the prediction of the symmetry changes have been shown<sup>2</sup> to be independent of the preceding approximation. Besides, the characteristics of the orderparameter and of the free-energy expansion, defined by the theory, are known to keep an important role in the more advanced statistical theories of the critical behavior.

The symmetry criteria contained in Landau's theory limit to a few thousands the number of different symmetry changes which are likely to be encountered. These restrictions are only valid, in prin-

<u>21</u>

1139

©1980 The American Physical Society

ciple, for continuous transitions between strictly periodic structures, but they also hold for many transitions of first order.<sup>3,4</sup> Conversely, examples of first-order transitions not complying with them are known.<sup>5</sup> It is also expected that transitions leading to a modulated structure will generally not be submitted to them.<sup>6</sup> However, the precise extent of their applicability to the actually observed crystalline transitions cannot be fully estimated because, up to now, the symmetry changes determined from the Landau and Lifshitz symmetry criteria have not been extensively worked out, and accordingly, no systematic comparison could be made to the experimental data. Group-theoretical work based on these criteria have either been restricted to transitions preserving the translations of the crystal, or directed towards the understanding of the symmetry changes occurring in particular structural families.<sup>7,8</sup>

In two previous papers, <sup>9,10</sup> referred to hereafter as TTI and TTII, we have started investigating the order-parameter symmetries, space-group changes, and free-energy expansions relative to all the continuous transitions which are likely to arise from any of the 230 crystallographic space groups.

These studies dealt with the structural transitions which modify the crystal class and, possibly, its primitive translations, but keep unchanged the crystal system. In TTI the case of purely ferroelectric transitions was examined, while TTII was devoted to the secondary- and higher-order ferroic transitions, i.e., to the transitions involving the onset of a spontaneous polar tensor or rank higher than two. In both works the theoretical results were used to compare the predictions of Landau's theory to the available experimental data for the considered types of transitions.

In the present paper, we extend this study to the case of purely ferroelastic transitions. These transitions are of a special interest because, though only recently the subject of a systematic experimental investigation, they already appear as a very commonly encountered type of structural transition. We will show in this work that they also constitute a major part of the transitions which are theoretically predicted to be possible in the framework of Landau's theory.

Ferroelastic transitions are those structural phase transitions which give rise to a spontaneous strain. They have been recognized by Aizu<sup>11</sup> in 1969 as a group of transitions sharing common properties, and constituting the mechanical analogs of ferroelectric phase transitions. In particular, the low-symmetry (ferroelastic) phase is characterized by a stress-strain hysteresis loop which discloses the occurrence of several strain-differing stable states (the ferroelastic domains), and also the possibility of switching the crystal from one stable state to another by applying an external stress.

Ferroelasticity sometimes occurs in conjunction with ferroelectricity such as in several well-known ferroelectrics<sup>12</sup> (KDP, Rochelle-salt, barium titanate). However, an increasing number of substances have been found to display a purely ferroelastic (i.e., not simultaneously ferroelectric) transition. Prominent examples are lanthanum pentaphosphate<sup>13</sup> LaP<sub>5</sub>O<sub>14</sub>, potassium trihydrogen selenite<sup>14</sup> KH<sub>3</sub>(SeO<sub>3</sub>)<sub>2</sub>, mercury chloride<sup>15</sup> Hg<sub>2</sub>Cl<sub>2</sub>, lead phosphate<sup>16</sup> Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, antimony iodide oxide<sup>17</sup> Sb<sub>5</sub>O<sub>7</sub>I, bismuth vanadate<sup>18</sup> BiVO<sub>4</sub>, and many compounds with the perovskite structure (SrTiO<sub>3</sub>, LaAlO<sub>3</sub>, CsPbCl<sub>3</sub>). A few organic materials, namely, the polyphenyls<sup>19</sup> and squaric acid,<sup>20</sup> also belong to this group as well as several metallic alloys such as V<sub>3</sub>Si (Ref. 21) and  $CuAuZn_2$ <sup>22</sup> Moreover, two extensively studied classes of crystalline transformations, i.e., the thermoelastic martensitic transformations<sup>23</sup> and the cooperative Jahn-Teller transitions,<sup>24</sup> have been recognized<sup>25</sup> as closely related to purely ferroelastic transitions.

A theoretical analysis of purely ferroelastic transitions is described in Secs. II-IV. In Sec. II we briefly recall the crystallographic and physical characteristics which define these transitions, and we outline the method used to apply to them the Landau theory. The working out of Landau's symmetry criteria is based on the space-group representations instead of the simpler point-group ones, in order to account for the transitions which involve a change in the translational symmetry. Such a procedure is fully justified by the fact that a large number of the currently known ferroelastics actually display a modification of the translational symmetry. Investigations of the purely ferroelastic transitions which preserve the crystal's translations had previously been performed by Boccara,<sup>26</sup> Aizu,<sup>27</sup> and in a more complete way by Janovec et al.<sup>28</sup> Section III is devoted to the study of the free-energy expansions relative to the considered transitions. A reduction of the number of cases to be handled is achieved through the use of the images<sup>29</sup> of the representations. Particular attention is given to the four-, six-, and eight-dimensional irreducible representations for which the images are determined for the first time. The lowest-degree terms are listed for all the encountered types of expansions, including the terms representing the coupling between the order parameter and the ferroelastic strain. The minima of the order-parameter expansions are algebraically discussed in order to derive the various lowsymmetry phases which are likely to be stable below the transition point. Section IV contains in table form the results of the systematic determination of the space-symmetry changes accompanying all possible ferroelastic transitions as well as their discussion. In Sec. IV, we also compare the results of the theoretical investigation to the available experimental data.

#### **II. THEORETICAL PROCEDURE**

In the Landau theory the symmetry change which takes place at a continuous transition is related to the symmetry properties of a certain active<sup>30</sup> physically irreducible<sup>30</sup> representation (IR) of the high-symmetry (HS) space group. This IR is spanned by the components of the transition's order parameter (OP). The symmetry change will be a ferroelastic one if the thermal-expansion tensor of the low-symmetry (LS) phase has more independent components than that of the HS phase. This condition arises<sup>31</sup> from the fact that the spontaneous strain is represented by a symmetric second-rank tensor which, moreover, vanishes by symmetry in the HS phase (it is therefore necessarily traceless). In addition to the trivial groupsubgroup relationship between phases, which is implicitly assumed, the former criterion requires, <sup>31-33</sup> at the crystallographic level, that the two symmetryrelated point groups belong to different crystal systems, provided that the hexagonal and trigonal systems are considered as a single system.

Pure ferroelasticity is defined by the additional condition that the same components of a vector (polarization) are compatible with the crystal classes of the two phases (this includes, in particular, transitions between polar classes). The macroscopic features of the ferroelastic phase, such as the number of orientational domains, or the form of the spontaneous-strain tensor are determined by the nature and orientation of the set of point-symmetry elements of the HS phase which are retained in the LS one.<sup>28</sup> Physically distinct situations will be associated to different ferroelastic "species".<sup>11</sup> There are 64 species associated with the purely ferroelastic transitions (PFT) considered in this work. For some of the species, several domain orientations are characterized by an identical spontaneous-strain tensor and they can only be distinguished at macroscopic level, by spontaneous components of higher-rank tensors. These species are not "full" ferroelastic ones in the sense of Aizu.11 We have, nevertheless, included them among the investigated PFT.

We have listed in Table I the 64 former species and their respective spontaneous tensorial components. Strain components were previously worked out by Aizu, <sup>34</sup> while the full set of spontaneous components can be found in the work of Janovec *et al.*<sup>28</sup>

The latter authors have pointed out that, from a group-theoretical point of view, the spontaneous components relative to a given species can belong either to one, or to several IR of the HS point group. The decomposition of the relevant tensorial components into irreducible parts with respect to the HS class has been reproduced in Table I as it provides an essential indication in determining the coupling scheme between these components and the order parameter of the transition (see Sec. III). Table I shows that the 64 considered species derive from 21 HS crystal classes. We can restrict our analysis to the 188 space groups belonging to these classes as only their active IR are likely to give rise to a PFT. The procedure of working out systematically all the possible continuous PFT is then (i) to select the active IR's of each space group  $G_0$ , (ii) to determine the stable LS phases, compatible with a given IR, (iii) to select the LS phases whose pointsymmetry forms, with the point symmetry of  $G_0$ , a purely ferroelastic species appearing in Table I, and (iv) to identify the space group of each of the former LS phases.

The selection of the active IR's of a space group  $G_0$  has been described by Lyubarskii<sup>30</sup> and recalled in TTI. It is effected in three steps. First are retained the IR's, denoted  $\Gamma_n(k^*)$ , whose star  $k^*$  corresponds either to the center  $(\vec{k}=0)$  of the Brillouin zone (BZ) relative to  $G_0$ , or to one of a few definite  $\vec{k}$ vectors of the BZ boundary. These prominent  $\vec{k}$  vectors were listed in TTII for the BZ of the cubic system and in TTI for the remaining systems. This preliminary filtering relies on the rejection of the IR's whose antisymmetrized square  $\{\Gamma_n(k^*)^2\}$  possesses a representation in common with the vector representation of  $G_0$  (Lifshitz criterion).<sup>30</sup> The former criterion is then applied a second time, at a more detailed level, to the small representations  $\tau_n$  relative to each acceptable  $\overline{k}$  vector, thus producing a further selection. The resulting IR's complying with the Lifshitz condition were indicated in TTI and TTII.

Finally, among the preceding IR's are only kept the ones whose symmetrized third power  $[\Gamma_n(k^*)^3]$ does not contain the totally symmetric IR of  $G_0$ (Landau criterion).<sup>30</sup> The latter condition is not a selective one: it is trivially fulfilled by the IR's of all the space groups except by those relative to a few stars of the cubic and hexagonal BZ. However, in the latter cases, its practical application for  $k^* \neq 0$ often requires a lengthy construction of the representation matrices, and it is therefore more conveniently achieved as the last step of the selection.

The space group G of the LS phase, determined by a given active IR, coincides with the set of symmetry operations belonging to  $G_0$  which leave invariant a certain vector  $\delta\rho$  in the abstract vector space of the considered IR. The components  $\eta_i^0$  of this vector in the  $\phi_i$  basis of the IR are the particular values of the OP components which correspond to the absolute minimum of the Landau free-energy expansion. For an *m*-dimensional IR (m > 1), depending on the relative algebraic values of the expansion's coefficients, the absolute minimum is likely to be associated with different vector directions in the *m*-dimensional representation space  $\epsilon$ . As a consequence, several low-symmetry groups G are possible.

In TTI and TTII the groups G of interest were required to belong to the same crystal system as  $G_0$ . It TABLE I. Purely ferroelastic species. Columns 1,2: set of point groups and orientation of the LS elements defining each species. Column 3: strain  $x_i$ , piezoelectric  $d_{ij}$  and elastic  $C_{ij}$  spontaneous components.  $\tau_i$  irreducible representation of the HS point group inducing the point-symmetry change (several  $\tau_i$  can be involved in certain species, this is indicated by the symbol +). Each  $\tau_i$  is preceded by the set of tensorial components spanning it. The number of components between brackets (some of which can be zero) is the dimension of  $\tau_i$ . Whenever the spontaneous-strain tensor has components not belonging to the former  $\tau_i$ 's, they are reproduced on the same line without being followed by a  $\tau_i$  symbol. The Voigt contracted notation (Ref. 43) is used for macroscopic tensors and the  $\tau_i$  are referred to the tables of Zak (Ref. 45).

|                 | Species |                           | Spontaneous components                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------|---------|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2/m             |         | ī                         | $\mathbf{r}_{c}\{\mathbf{\tau}_{a}\}$ $\mathbf{r}_{c}\{\mathbf{\tau}_{a}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| mm?             |         | 2                         | $x_{6}(\tau_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| mmm             |         | 2/m                       | $x_{\zeta}\{\tau_{A}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| mmm             |         | $\overline{\overline{1}}$ | $x_{4}(\tau_{2}) + x_{5}(\tau_{3}) + x_{6}(\tau_{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4               |         | 2)                        | $(x_1 - x_2) \{\tau_2\}; x_6\{\tau_2\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4/m             |         | 2/m                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4/m             |         | $\overline{1}$            | $[x_5, x_4] \{\tau_3 + \tau_4\}; (x_1 - x_2); x_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 422             |         | 2×22                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 <i>mm</i>     |         | m <sup>x</sup> m2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 42 <i>m</i>     |         | 2×22                      | $(x_1 - x_2) \{\tau_3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4/ <i>mmm</i>   |         | $m^{x}mm$ )               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 422             |         | 2***22                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4 <i>mm</i>     |         | m <sup>xy</sup> m2        | $x_{6}\{\tau_{4}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4/mmm           |         | $m^{xy}mm$ )              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4/ <i>mmm</i>   |         | 2~22                      | $(a_{14} - a_{25}) \{\tau_6\} + (x_1 - x_2) \{\tau_3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4/ <i>mmm</i>   |         | 2~22                      | $(a_{14} - a_{25})(\tau_6) + x_6(\tau_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4 <i>mm</i>     |         | 2                         | $(x_1 - x_2) \{\tau_3\} + x_6 \{\tau_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4/mmm           |         | $2^{-7}m$                 | [x - x - y] = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 4/mmm           |         | $2^{\circ}/m$             | $[x_4, x_5 - x_4] (r_5), x_6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4/mmm           |         | $\frac{2}{1}$             | $[x_4, x_5 - 0] (x_5), (x_1 - x_2)$<br>$[x_1, x_2] (x_2 - x_3) (x_3 - x_3) (x_4 - x_3) (x_5 $ |
| 2               |         | 1                         | $\begin{bmatrix} 1 \\ (n \\ n \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5               |         | 1                         | $[\frac{1}{2}(x_2 - x_1), x_6] \{\tau_2 + \tau_3\}, [x_5, x_4] \{\tau_2 + \tau_3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3 <i>m</i>      |         | 1                         | $\left[\frac{1}{2}(x_2-x_1), x_6\right]\{\tau_3\}; [x_5, x_4]\{\tau_3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\overline{3}m$ |         | 2/ <i>m</i>               | $\left[\frac{1}{2}(x_2-x_1),0\right]\{\tau_3\}; [x_5,0]\{\tau_3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6               |         | 2)                        | $\left[\frac{\tilde{1}}{2}(x_2-x_1),x_2\right]\{\tau_2+\tau_4\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6/m             |         | $\frac{1}{2}$             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6/m             |         | 1<br>1                    | $[x_1, x_2](x_1, +x_2): [\frac{1}{2}(x_2 - x_2), x_2]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 622             |         | 222                       | $[x_{5},x_{4}](r_{11}+r_{12}),r_{2}(x_{2}-x_{1}),x_{6}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 622             |         | 222                       | $\begin{bmatrix} 1 \\ (m - m) \end{bmatrix} 0 ] (m)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| omm             |         | mm 2                      | $\left[\frac{1}{2}(x_2 - x_1), 0\right](\tau_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6/mmm           |         | mmm '                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6/ <i>mmm</i>   |         | 222                       | $[0, d_{36}] \{\tau_{12}\} + [\frac{1}{2}(x_2 - x_1), 0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6 <i>mm</i>     |         | 2                         | $\left[\frac{1}{2}(x_2 - x_1), x_6\right] \{\tau_6\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 6/ <i>mmm</i>   |         | $2^{z}/m$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 6/ <i>mmm</i>   |         | $2^{x}/m$                 | $[x_5, 0] \{\tau_5\} + [\frac{1}{2}(x_2 - x_1), 0]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6/mmm           |         | ī                         | $[x_{c}, x_{c}] \{\tau_{c}\} + [\frac{1}{2}(x_{c} - x_{c}), x_{c}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <i>o,</i>       |         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 23              |         | 222                       | $[a] \{\tau_2 + \tau_3\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <i>m</i> 3      |         |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| m 3             |         | 222                       | $\left[ \left[ \sqrt{3} \left( d_{25} - d_{14} \right), \left( d_{15} + d_{24} - 2d_{36} \right) \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2               |         | 2/                        | $[\tau_6 + \tau_7]; [a]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <i>m</i> 5      |         | 2/m                       | $[0, 0, x_6] \{\tau_4\}; [a]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <i>m</i> 3      |         | $\frac{1}{2}$             | $[x_4, x_5, x_6] \{\tau_4\}; [a]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ms              |         | 3                         | $[x_4, x_4, x_4] (\tau_4); [a]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| [_][      | 5                    | .)                      |                               |
|-----------|----------------------|-------------------------|-------------------------------|
| [a] = [v] | $y_{3}(x_{2}-x_{2})$ | $x_1, x_1 + x_2 - 2x_3$ | $[b] = (0, x_1 + x_2 - 2x_3)$ |

|              | Species |                       | Spontaneous components                                                                                 |
|--------------|---------|-----------------------|--------------------------------------------------------------------------------------------------------|
| 3 <i>m</i>   |         | $\overline{4}2m$      |                                                                                                        |
| 32           |         | 422                   | $[b] \{\tau_3\}$                                                                                       |
| n3 <i>m</i>  |         | 4/ <i>mmm</i> )       | _                                                                                                      |
| n3 <i>m</i>  |         | 422                   | $[\sqrt{3}(d_{14} - d_{25}), 0] \{\tau_8\}; + [b]$                                                     |
| n3 <i>m</i>  |         | $\overline{4}2^{x}m$  | $[0, (d_{14} + d_{25} - 2d_{36})] \{\tau_8\}; [b]$                                                     |
| n 3 <i>m</i> |         | $\overline{4}2^{xy}m$ | $[0, 0, d_{24} - d_{15}] \{\tau_9\}; [b]$                                                              |
| n3m          |         | 4/m                   | $[0, 0, C_{16} - C_{26}] \{\tau_4\}; [b]$                                                              |
| 3m           |         | $\overline{4}$        | $[0, 0, d_{24} - d_{15}] \{\tau_5\}; [b]$                                                              |
| n 3 m        |         | 4                     | $\left( \left[ 0, 0, C_{16} - C_{26} \right] \{ \tau_4 \} \right)$                                     |
|              |         |                       | $+[0, 0, d_{14} - d_{25}] \{\tau_9\}; [b]$                                                             |
| 13m          |         | 222 )                 |                                                                                                        |
| 32           |         | 222x                  | $[a]\{\tau_3\}$                                                                                        |
| n 3 m        |         | mmm <sup>x</sup>      | - · · ·                                                                                                |
| m3m          |         | 222 <sup>x</sup>      | $\left[\sqrt{3}(d_{14}-d_{25}),0]\{\tau_8\}\right]$                                                    |
|              |         |                       | $+[a]\{\tau_3\}$                                                                                       |
| 132          |         | 222 <sup>xy</sup>     | $[0,0,x_6][\tau_5];[b]$                                                                                |
| n 3 m        |         | mmm <sup>xy</sup>     |                                                                                                        |
| m3m          |         | 222 <sup>xy</sup>     | $\int \left[ \sqrt{3}(d_{14} - d_{25}), 0 \right] \{\tau_8\}$                                          |
|              |         |                       | $+[0,0,x_6][\tau_5];[b]$                                                                               |
| m3m          |         | $2^{z}/m$             | $[a] \{\tau_3\} + [0, 0, x_6] \{\tau_5\}$                                                              |
| n3m          |         | $2^{xy}/m$            | $[x_{4}, x_{5}, x_{6}] \{\tau_{5}\}; [b]$                                                              |
| m3m          |         | $\frac{1}{1}$ ,       | $[x_{4}, x_{5}, x_{6}] \{\tau_{5}\} + [a] \{\tau_{3}\}$                                                |
| 137          |         | 32)                   | $[x_4, x_4, x_4] \{\tau_5\}$                                                                           |
| +JZ          |         | 37                    |                                                                                                        |
| m3m          |         | 3                     | $\left( \left[ (C_{24} - C_{24}) = e_{1} (C_{25} - C_{15}) = e_{1} \right] \right)$                    |
| m 5 m        |         | 5                     | $\begin{cases} (C_{14} - C_{24}) = e_1 \{\tau_4\}; \\ (C_{14} - C_{24}) = e_1 \{\tau_4\}; \end{cases}$ |
|              |         |                       | $\begin{bmatrix} x_1 & x_2 \\ x_1 & x_1 \end{bmatrix}$                                                 |
|              |         | 30                    | $\left( \begin{bmatrix} d_{22} - d_{22} \end{bmatrix} = d \left( d_{22} - d_{22} \right) = d \right)$  |
| m s m        |         | 52                    | (-1, -1) = -1 = -1                                                                                     |

TABLE I. (Continued)

was shown that a necessary condition is that the corresponding vectors  $\delta\rho$  lie along certain prominent directions in  $\epsilon$ . The possible occurrence of a LS phase of the considered type could then be checked directly among the invariance groups G of these directions. A free-energy expansion had, in principle, to be handled in the infrequent cases where a phase with the required symmetry was obtained.

In the study of ferroelastic transitions, which essentially involve a modification of the crystal system, the above simplification does not remain valid, and any vector of  $\boldsymbol{\epsilon}$  is likely to be associated to such a transition. Consequently, to determine the possible LS phases relative to a continuous PFT, one has to go through the standard procedure outlined by Lyubarskii<sup>30</sup> and locate first the various directions in  $\epsilon$ which correspond to a minimum of the Landau free energy. The LS group G can then be specified for each such direction. The first step of the method therefore consists in the construction of the freeenergy expansion and the algebraic discussion of its minima. For the reasons stated above, such a discussion was not performed in detail in TTI and TTII. It is undertaken in Sec. III for the expansions arising from all the active IR's.

#### III. FREE-ENERGY EXPANSIONS IN THE LANDAU THEORY

The Landau free energy (LFE) is a polynomial expansion whose terms are invariant functions under the symmetry operations of the HS space group. For a PFT, this expansion can be restricted to two sets of variables: the OP components  $(\eta_i)$  spanning the active IR which drives the transition, and the spontaneous-strain components  $(x_i)$  relative to the considered ferroelastic species (if the species is not a "full" one,<sup>11</sup> other higher-rank tensor components, indicated in Table I, should also be included).

When giving attention to the symmetry characteristics of the transition, one can neglect the macroscopic quantities which are coupled to the OP, but whose onset would preserve the crystal's higher symmetry (for instance the strain components already allowed by symmetry in the HS phase).

Likewise, we can ignore the macroscopic quantities whose onset would modify the symmetry of the crystal in a different way than the considered  $(x_j)$  components. The terms representing their coupling to the  $(\eta_i)$  are warranted to vanish by symmetry for equilibrium  $(\eta_i^0)$  values of the OP corresponding to the purely ferroelastic phase of interest.

Similarly to the case of ferroelectrics, <sup>35</sup> different situations can be distinguished on the basis of the relative symmetries of the OP and of the spontaneous strain. When the latter quantity belongs to the same IR as the OP, the corresponding PFT is labeled as "proper".<sup>35</sup> The star of the IR is necessarily  $k^*=0$ . As the physical nature of the OP is irrelevant to the symmetry aspects developed here, the OP can be chosen to coincide with the  $(x_i)$ , and the LFE takes the form  $F(x_j, C_l)$ , where the  $C_l$  coefficients of the expansion are elastic constants of different orders.

If the sets  $(x_j)$  and  $(\eta_i)$  belong to different IR's, the considered PFT is an "improper" one.<sup>35</sup> This is always the case when the OP corresponds to  $k^* \neq 0$ , but it can also occur for  $k^*=0$ , if the OP is associated with tensorial components of rank higher than 2. For an improper PFT, the LFE can be split into three kinds of terms representing, respectively, the OP expansion, the strain expansion, and the mixed invariants relative to the coupling between those two quantities. We can write

$$F(\alpha, \eta_i, x_j, \beta_k, C_l, \delta_m) = F_1(\alpha, \eta_i, \beta_k) + F_2(x_j, C_l) + F_3(\eta_i, x_j, \delta_m) ,$$
(1)

where  $\alpha \approx (T - T_c)$  is the coefficient of the OP invariant of degree two, and  $\beta_k, C_l, \delta_m$  are temperature-independent coefficients of the other terms constituting the expansion.

Finally, an intermediate situation, which has been noted by Janovec *et al.*,<sup>28</sup> arises when the OP coincides with one set of strain components  $(x_i)$  while another set  $(x_j)$ , relative to the same ferroelastic species, belongs to a different nonidentical IR. The PFT will exhibit simultaneously a proper and an improper behavior. This occurs, for instance, in the case of the  $P4/m \rightarrow P\overline{1}$  transition (Tables I and VII).

Let us examine the construction and properties of the different terms contributing to the expansion, in the most complex case of an improper PFT. The other cases can be easily deduced from it.

#### A. Construction of the Landau free energy

The OP expansion  $F_1(\alpha, \eta_i, \beta_k)$  is a sum of independent homogeneous polynomials of various degrees, separately invariant by  $G_0$ . In addition to a single quadratic term,  $F_1$  contains, in general, several fourth-degree ones. As we consider an active<sup>30</sup> IR, linear and third-degree invariants are necessarily absent from the expansion.

On the other hand, higher-degree invariants can, in general, be neglected in the vicinity of a continuous transition as they play no role in the stability of the LS phases just below the transition point. It can happen, however, that for certain multidimensional IR, a single quartic term exists which will necessarily possess spherical symmetry. More generally, an isotropy of the quartic terms can occur in a certain subspace of the representation space. In these cases the symmetries of the LS phases are determined by invariants of degree higher than four even near the transition.

In the expansion  $F_1$  associated with a given IR,  $\Gamma_n(k^*)$ , the number of independent invariants of degree  $\nu$  is unambiguously defined. It is equal to the number of times the trivial IR of  $G_0$  is contained in the symmetrized  $\nu$ th power  $[\Gamma_n(k^*)^\nu]$  of the IR. By contrast, the form of these invariants is partly arbitrary, as any linear combination of several of them will provide another invariant polynomial. More significantly, the expression of a given invariant depends on the choice of a frame of reference in the representation space  $\epsilon$ . For all the expansions discussed here the following choice has been made:

(i) If the star of  $\Gamma_n(k^*)$  has one arm, the basis coincides with the one defining the representation matrices in Kovalev's tables.<sup>36</sup> However, for two-dimensional real IR's, the basis provided by the tables is sometimes a complex one. Also, the considered IR can be the sum of two complex-conjugate IR's. In both cases, the basis has been converted into a real one by one of the sets of transformations

 $[\eta' = (1/\sqrt{2})(\eta + i\xi); \xi' = (1/\sqrt{2})(\eta - i\xi)]$ or

$$[\eta' = \eta; \xi' = i\xi]$$

(ii) If the star of  $\Gamma_n(k^*)$  has several arms, the basis of the small representation  $\tau_n$  is constructed from Kovalev's tables as in the preceding case and a standard<sup>30</sup> basis of the entire IR is then generated from it (the various possible choices of this standard basis have no influence on the form of the expansion within a permutation on the OP components).

The working out of the independent invariants has been achieved by projecting the basis functions of  $[\Gamma_n(k^*)^\nu]$  on the trivial representation of  $G_0$ . To perform this projection it is sufficient to know the set of *distinct* matrices of  $\Gamma_n(k^*)$  associated with the elements of  $G_0$ .

For an active IR, the number of distinct matrices is always finite<sup>37</sup> though  $G_0$  is of infinite order. As noted by Gufan *et al.*,<sup>37</sup> their set can be considered as the physically irreducible vector representation of a finite point group L, acting in the *m*-dimensional space  $\epsilon$ . L is sometimes called<sup>29</sup> the image of  $\Gamma_n(k^*)$ .

The advantage of considering the images instead of the entire set of matrices constituting the IR, lies in the fact that several IR's correspond to the same image. Essential features of the transitions such as the form of the OP expansion, the number of LS phases, and their symmetry relationship, the number of domains, can be investigated in a considerable reduced number of cases corresponding to the distinct images.

The number of different images associated to the active IR's is limited by crystallographic restrictions.<sup>37</sup> The case of the images of the two- and threedimensional IR's has been studied first by Gufan et al.<sup>37</sup> It has been shown that there are eight "active" images in two dimensions. Their set of matrices are, respectively, isomorphic to the two-dimensional point groups  $C_4$ ,  $C_{4\nu}$ ,  $C_6$ ,  $C_{6\nu}$ ,  $C_8$ ,  $C_{8\nu}$ ,  $C_{12}$ , and  $C_{12\nu}$  (Schoenflies notation). Likewise, threedimensional active IR's give rise to three images only, which are isomorphic to the three-dimensional crystallographic point groups  $T_h$ , O, and  $O_h$ . Generally speaking, there will be as many distinct OP expansions of the corresponding dimensions. However, if we only retain the terms of lowest degrees which are just necessary to account for the continuous symmetry change, several distinct images will be associated with the same form of expansion. Thus, the same fourth-degree expansion corresponds to all the three-dimensional images.<sup>37</sup>

The construction of the expansions relative to the two- and three-dimensional images has been performed by several authors.<sup>29, 37</sup> For higher dimensions, OP expansions have only been constructed in a few particular cases corresponding to certain families of compounds.<sup>3, 5, 8, 38</sup> Besides, no information is available on the higher-dimensional images. We have determined these images and the lowest-degree terms of the corresponding OP expansions for the four-, six-, and eight-dimensional active IR. No higher dimension is involved when dealing with continuous transitions between periodic phases since no IR's with higher dimensions are found to comply with the Lifshitz criterion. For the sake of completeness, we have extended this part of the investigation to the 230 crystallographic space groups and not only to the 188 space groups relevant to the study of pure ferroelasticity.

Active IR's give rise to 22 four-dimensional, 10 six-dimensional, and 5 eight-dimensional images. Only two of these images are not related to the onset of pure ferroelasticity. Gufan *et al.*<sup>37</sup> have stated that one should find, at most, 24 four-dimensional and 6 six-dimensional images complying with the Lifschitz criterion but not necessarily with the Landau one. This statement, whose basis is not explained by the former authors, is obviously incorrect for six dimensions (we even find 7 six-dimensional images, not indicated here, which do not comply with the Landau criterion).

The four-dimensional images arise from IR's of the orthorhombic, tetragonal, hexagonal, and cubic systems. Their order (number of distinct matrices) range from 8 to 384. The occurrence of the highest

orders might seem surprising since these exceed the maximum number of point-symmetry elements encountered in the crystallographic groups (48). Their origin lies in the occasional complexity of the matrices representing the primitive translations of the crystal at certain BZ points.

We have noted that each image is isomorphic to one of the 227 point groups which occur in fourdimensional crystallography. We were able to identify these point groups by using the tables of Mozrzymas,<sup>39</sup> in which the 227 former classes are explicitly described by the set of their generating matrices.

Six-dimensional images occur in the cubic system only, while eight-dimensional ones arise from active IR's of the cubic and hexagonal systems. Their orders are, respectively, in the ranges 48–1536 and 72–384. Similarly to the case of three and four dimensions (but not of two dimensions) the latter images are isomorphic to "crystallographic"<sup>40</sup> point groups since they are generated by integral<sup>40</sup> matrices. However, no tables of crystallographic point groups seem to be available for dimensions higher than 4, and a geometrical identification of the corresponding images is therefore meaningless at present.

The relationship between the various images is represented in Figs. 1 and 2. We have specified in these figures the three-dimensional crystallographic space groups  $G_0$  whose IR give rise to each image as well as the type of OP expansion associated with it. The expansions have been listed in Tables II and III. As shown by the former tables and figures, the truncated expansions coincide for several images though the infinite expansions should all be different. As stressed above, the truncation has not always been limited to the fourth-degree terms. Tables II and III specify that the isotropy of the lowest-degree terms sometimes requires one to consider degrees as high as 12. Such a circumstance was already noted to occur for the two-dimensional expansions.<sup>37</sup>

Summing up our results with those already known for lower dimensions, it appears that active IR's of the 230 crystallographic space groups give rise to 49 images whose dimensions range from one to eight. The study of continuous transitions in the Landau theory is therefore reduced to the handling, at most, of 49 types of expansions.

To complete the construction of the LFE, we must determine the strain contributions  $F_2(x_j, C_l)$  and the mixed invariant  $F_3(\eta_i, x_j, \delta_m)$ . The subsequent discussion stresses that these terms are not necessary to predict the number and symmetries of the LS phases which are entirely specified by the OP expansion. However their presence in the LFE are essential to the understanding of the onset of spontaneous-strain components and the occurrence of the elastic anomalies characteristic of the ferroelastic behavior.

Various authors<sup>41,42</sup> have emphasized that it is sufficient to expand the strain contribution  $F_2(x_i, C_i)$  as

# JEAN-CLAUDE TOLÉDANO AND PIERRE TOLÉDANO

<u>21</u>



FIG. 1. Images of the four-dimensional physically irreducible active representations of the 230 crystallographic space groups. Each image is isomorphous to a four-dimensional crystallographic point gr up and is identified by the symbol for this group (e.g., 115.01) referred to the tables of Mozrzymas (Ref. 39). The orders of the various images are indicated on the vertical scale. Below each image are listed the three dimensional space groups whose IR's give rise to the image. These IR's are further specified (star, small representation) in Tables VI–IX. The symbols at the right of the images (e.g.,  $f_1$ ) represent the associated OP expansions whose expression is given in Table II. The connecting lines show the group-subgroup relationship between the images. Underlined space groups are not related to purely ferroelastic transitions.



FIG. 2. Images of the six-dimensional (left) and eight-dimensional (right) physically irreducible active representations of the 230 space groups. The indications are the same as in Fig. 1 with the difference that the  $L_j$  and  $M_j$  symbols do not have any defined crystallographic meaning.

TABLE II. Four-dimensional order-parameter expansions. Column (a): labeling of the expansions; primed symbols possess the same fourth-degree terms as the corresponding unprimed ones but differ by the form of the higher-degree terms. Column (b): number of independent fourth-degree invariants. Column 3: form of the fourth-degree invariants

$$I_0 = \sum_{1,4} \eta_1^4; \quad I_1 = (\eta_1^2 \eta_2^2 + \eta_3^2 \eta_4^2) \quad ; \quad I_2 = (\eta_1^2 \eta_3^2 + \eta_2^2 \eta_4^2); \quad I_3 = (\eta_1^2 \eta_4^2 + \eta_2^2 \eta_3^2) \quad ; \quad I_4 = \eta_1 \eta_2 \eta_3 \eta_4; \quad \eta_1 = \rho_1 \cos \phi_1 \quad ;$$

 $\zeta_1 = \eta_2 = \rho_1 \sin \phi_1; \ \eta_3 = \rho_2 \cos \phi_2 \ ; \ \eta_4 = \rho_2 \sin \phi_2 = \zeta_2 \ .$ 

The terms of degree higher than four are not explicitly given, but the highest degree which must be taken to account in order to work out the stability of the LS phase is indicated (e.g., degree 12). Column (c): number of LS phases with distinct symmetries. Column (d): labeling of the different LS phases. Column (e): direction in the representation space associated to each LS phase. Directions of the type [1000] are symmetry elements of the image, while  $[\eta \xi \eta' \xi']$  is not determined by symmetry.

| (a)   | (b) | Invariants          | (c) | (d) | (e)    |
|-------|-----|---------------------|-----|-----|--------|
| $f_1$ | 2   | $\int I_0$          | 2   | I   | [1000] |
| - 1   |     | $(I_1 + I_2 + I_3)$ |     | II  | [1111] |
| $f_2$ | 3   | $(I_0; I_1)$        | 4   | I   | [1000] |
|       |     | $(I_2 + I_3)$       |     | II  | [1100] |
|       |     | •                   |     | III | [1010] |
|       | -   |                     |     | IV  | [1111] |

# JEAN-CLAUDE TOLÉDANO AND PIERRE TOLÉDANO

| TABLE II. (Continued) |  |
|-----------------------|--|
|-----------------------|--|

| (a)                    | (b) | Invariants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (c)    | (d)     | (e)                                    |  |  |  |
|------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|----------------------------------------|--|--|--|
| $f_3$                  | 3   | $\begin{cases} I_{0}; I_{4} \\ (I_{0} + I_{0} + I_{0}) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3      | I       | [1000]                                 |  |  |  |
|                        |     | $(I_1 + I_2 + I_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        | III     | [1111]                                 |  |  |  |
| $f_4$                  | 4   | $\int I_0; I_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5      | Ι       | [1000]                                 |  |  |  |
|                        |     | $I_2; I_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | II      | [1100]                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         | [1010]                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | v       | [1001]                                 |  |  |  |
| fs                     | 5   | $(I_0; I_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6      | Ι       | [1000]                                 |  |  |  |
| 05                     |     | $I_2; I_3; I_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | II      | [1100]                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |         | [1010]                                 |  |  |  |
|                        | •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | V       | [1001]                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | VI      | [111]                                  |  |  |  |
| $f_6$                  | 1   | $(\rho_1^2 + \rho_2^2)^2$ + degree 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2      | · I     | [ηζ00]                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      | II      | [ηζζη]                                 |  |  |  |
| $f_6'$                 | 1   | $(\rho_1^2 + \rho_2^2)^2 + \text{degree 6.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1      | 1       | $[\eta \zeta \eta' \zeta']$            |  |  |  |
| $J_{7}$                | Z   | $(p_1 + p_2), p_1 p_2 + \text{degree 0}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2      | II      | [ηζ00]<br>[ηζζη]                       |  |  |  |
| f <sub>8</sub>         | 3   | $(\rho_1^4 + \rho_2^4); \rho_1^2 \rho_2^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | I       | [1000]                                 |  |  |  |
| 0                      |     | $\left\{ \rho_1^2 \rho_2^2 \cos 2(\phi_1 - \phi_2) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6      | II      | [1100]                                 |  |  |  |
|                        |     | (+degree 12.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | с.<br> |         | [1010]                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | V       | (1111)                                 |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | VI      | [11]                                   |  |  |  |
| $f'_8$                 | 3   | $(\rho_1^4 + \rho_2^4); \rho_1^2 \rho_2^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3      | I       | [ηζ00]                                 |  |  |  |
|                        |     | $\left\{ \rho_{1}^{2} \rho_{2}^{2} \cos 2(\phi_{1} - \phi_{2}) \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |         | $\left[ \eta \zeta \eta \zeta \right]$ |  |  |  |
| C                      | 4   | (+ degree  12.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2      | 111     | $[\eta\zeta\zeta\eta]$                 |  |  |  |
| J9 .                   | 4   | $\begin{cases} f_8, \rho_1 \bar{\rho}_2 \sin 2(\phi_1 - \phi_2) \\ + \text{degree } 12 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3      | П       | $[\eta\zeta_{00}]$                     |  |  |  |
|                        |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        | III     | $[\eta \zeta \overline{\eta} \zeta]$   |  |  |  |
| $f'_9$                 | 4   | $\int f_{8}; \rho_{1}^{2} \rho_{2}^{2} \sin 2(\phi_{1} - \phi_{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2      | I       | [ηζ00]                                 |  |  |  |
|                        | ~   | (+degree 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1      | II      | $[\eta\zeta\zeta\eta]$                 |  |  |  |
| Ĵ 10                   | 5   | $\begin{cases} I_{0}; (I_{1} + I_{2} + I_{3}); I_{4} \\ \{\eta_{1}\zeta_{1}[\eta_{1}\eta_{2} + \zeta_{1}\zeta_{2} + \eta_{2}^{2} - \zeta_{2}^{2} \\ + \eta_{1}\zeta_{2} - \eta_{2}\zeta_{1}] - \eta_{2}\zeta_{2}[\eta_{1}\eta_{2} \\ + \zeta_{1}\zeta_{2} - \eta_{1}^{2} + \zeta_{1}^{2} - \eta_{1}\zeta_{2} + \eta_{2}\zeta_{1}]\}; \\ \{\eta_{1}\zeta_{1}(\eta_{1}^{2} - \zeta_{1}^{2}) + \eta_{2}\zeta_{2}(\eta_{2}^{2} - \zeta_{2}^{2}) \\ + \eta_{1}\eta_{2}(\eta_{1}^{2} - \eta_{2}^{2}) - \zeta_{1}\zeta_{2}(\zeta_{1}^{2} - \zeta_{2}^{2}) \end{cases}$ | 1      | 1       | [ηςςς]                                 |  |  |  |
|                        |     | $\{+\eta_1\zeta_2(\eta_1^2-\zeta_1^2)-\eta_2\zeta_1(\eta_2^2-\zeta_2^2)\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |         |                                        |  |  |  |
| $f_{11}$               | 6   | $\begin{cases} f_{9};\rho_{1}\rho_{2}(\rho_{1}^{2}-\rho_{2}^{2})\cos(\phi_{1}-\phi_{2});\\ \rho_{1}\rho_{2}(\rho_{1}^{2}-\rho_{2}^{2})\sin(\phi_{1}-\phi_{2});\\ + degree 6 \end{cases}$                                                                                                                                                                                                                                                                                                                                                                        | 1      | I       | [ηζη'ζ']                               |  |  |  |
| <i>f</i> <sub>12</sub> | 7.  | $\begin{cases} f_{8}; \sum_{1,2} \rho_{i}^{4} \cos 4\phi_{i}; \\ \sum_{1,2} \rho_{i}^{4} \sin 4\phi_{i}; \\ \rho_{1}^{2}\rho_{2}^{2} \cos 2(\phi_{1} + \phi_{2}); \\ \rho_{1}^{2}\rho_{2}^{2} \cos 2(\phi_{1} + \phi_{2}); \end{cases}$                                                                                                                                                                                                                                                                                                                         | 2      | I<br>II | [ηζ00]<br>[ηζζη]                       |  |  |  |
| <i>f</i> <sub>13</sub> | 11  | $\begin{cases} \rho_1 \rho_2 \sin 2(\phi_1 + \phi_2), \\ f_{12}; [\rho_1^3 \rho_2 \cos(3\phi_1 - \phi_2) \\ -\rho_2^3 \rho_1 \cos(3\phi_2 - \phi_1)]; \\ [\rho_1^3 \rho_2 \sin(3\phi_1 - \phi_2) \end{cases}$                                                                                                                                                                                                                                                                                                                                                   | 1      | Ι       | [ηζη'ζ']                               |  |  |  |
|                        |     | $\begin{cases} -\rho_2^3 \rho_1 \sin(3\phi_2 - \phi_1)];\\ \rho_1 \rho_2 (\rho_1^2 - \rho_2^2) \cos(\phi_1 + \phi_2);\\ \rho_1 \rho_2 (\rho_1^2 - \rho_2^2) \sin(\phi_1 + \phi_2); \end{cases}$                                                                                                                                                                                                                                                                                                                                                                 |        |         |                                        |  |  |  |

| a                     | Ь | Invariants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | с   | Stable directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| h <sub>1</sub>        | 3 | $\sum \rho_i^4; \sum \rho_i^4 \cos(4\phi_i); \sum_{i < j} \rho_i^2 \rho_j^2;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5   | <u>1[100000] 11[110000]</u><br>111[101010] <u>1V</u> [01010]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <i>h</i> <sub>2</sub> | 4 | $\begin{cases} h_1; \\ \sum_{i < j} \rho_i^2 \rho_j^2 \sin 2\phi_i \sin 2\phi_j; \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6   | $\frac{V[11111]}{I[10000]}$ $\frac{III[10000]}{III[11000]}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <i>h</i> <sub>3</sub> | 5 | $\begin{cases} h_2; \\ \sum_{mod3} \rho_i^2 \rho_{i+1}^2 \left( \sin 2\phi_i - \sin 2\phi_{i+1} \right) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7   | $\frac{V[111111]}{I[10000]} \frac{V[111100]}{I[10000]} \frac{V[1110000]}{I[110000]} \frac{V[10101]}{I[111000]} \frac{V[11111]}{V[1111]} \frac{V[1111]}{V[1111]} \frac{V[1111]}{V[111]} \frac{V[1111]}{V[111]} \frac{V[1111]}{V[111]} \frac{V[111]}{V[111]} \frac{V[111]}{V[111]} \frac{V[111]}{V[111]} \frac{V[111]}{V[111]} \frac{V[111]}{V[111]} \frac{V[111]}{V[111]} \frac{V[111]}{V[11]} \frac{V[111]}{V[111]} \frac{V[111]}{V[11]} \frac{V[111]}{V[11]} \frac{V[111]}{V[11]} \frac{V[111]}{V[11]} \frac{V[11]}{V[11]} \frac$ |
| h <sub>4</sub>        | 6 | $\begin{cases} h_2;\\ \sum_{i < j} \rho_i^2 \rho_j^2 \cos 2\phi_i \cos 2\phi_j \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6   | <u>VII</u> [111100]<br>I[100000] II[110000]<br>III[101010] <u>IV</u> [010101]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| h <sub>5</sub>        | 9 | $\begin{cases} \sum_{i \mod 3} \rho_i^2 \rho_{i+1}^2 (\cos 2\phi_i - \cos 2\phi_{i+1}) \\ h_4; \sum \rho_i^4 \sin 4\phi_i; \\ \sum_{i < j} \rho_i^2 \rho_j^2 \sin 2(\phi_i + \phi_j) \\ \sum_{\mod 3} \rho_i^2 \rho_{i+1}^2 (\sin 2\phi_i - \sin 2\phi_{i+1}) \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3   | <u>V</u> [111111] <u>V</u> [ηζζ-η00]<br><u>I</u> [ηζ0000] <u>II</u> [ηζζ-η00]<br><u>III</u> [ηζηζηζ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <i>k</i> <sub>1</sub> | 5 | $\sum \rho_{i}^{4}; \sum_{i < j} \rho_{i}^{2} \rho_{j}^{2}; \sum_{i < j} \rho_{i}^{2} \rho_{j}^{2} \cos 2(\phi_{i} - \phi_{j}) \\ [\rho_{1}^{2} \rho_{2}^{2} \cos 2(\phi_{1} + \phi_{2} - \pi/3) + \rho_{1}^{2} \rho_{4}^{2} \cos 2(\phi_{1} + \phi_{4}) \\ + \rho_{3}^{2} \rho_{4}^{2} \cos 2(\phi_{3} + \phi_{4} - \pi/3) + \rho_{2}^{2} \rho_{3}^{2} \cos 2(\phi_{2} + \phi_{3}) \\ + \rho_{1}^{2} \rho_{3}^{2} \cos 2(\phi_{1} + \phi_{3} + \pi/3) + \rho_{2}^{2} \rho_{4}^{2} \cos 2(\phi_{2} + \phi_{4} + \pi/3)] \\ [\rho_{1}^{2} \rho_{2}^{2} \cos(\phi_{1} + \phi_{2} + \pi/3) \cos(\phi_{1} - \phi_{2}) \\ + \rho_{3}^{2} \rho_{4}^{2} \cos(\phi_{3} + \phi_{4} + \pi/3) \cos(\phi_{1} - \phi_{3}) \\ + \rho_{1}^{2} \rho_{3}^{2} \cos(\phi_{1} + \phi_{3} - \pi/3) \cos(\phi_{1} - \phi_{3}) \\ + \rho_{3}^{2} \rho_{4}^{2} \cos(\phi_{3} + \phi_{4} - \pi/3) \cos(\phi_{2} - \phi_{4}) \\ \end{bmatrix}$ | 5   | I[10 00 00 00]<br>II[01 00 00 00]<br>III[01 00 00 10]<br>IV[10 10 10 10]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                       |   | $+\rho_{1}^{2}\rho_{4}^{2}\cos(\phi_{1}^{2}+\phi_{4}^{2}+\phi_{5}^{2})\cos(\phi_{2}^{2}-\phi_{4}^{2}) \\ +\rho_{1}^{2}\rho_{4}^{2}\cos(\phi_{1}^{2}+\phi_{4}^{2})\cos(\phi_{1}^{2}-\phi_{4}^{2}) \\ +\rho_{2}^{2}\rho_{3}^{2}\cos(\phi_{2}^{2}+\phi_{3}^{2})\cos(\phi_{2}^{2}-\phi_{3}^{2})] \\ +\text{degree } 6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | V[01 01 01 01]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| k <sub>1</sub> '      | 5 | $k_1$ + degree 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3   | I[ηζ00000]<br>II[ηζ0000ηζ]<br>III[ηζηζηζηζηζ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| κ2                    | 0 | $\kappa_{1} + \rho_{1}\rho_{2}\rho_{3}\rho_{4} \left( \sum_{i \neq 1 \mod 4} \cos(\phi_{1} + \phi_{i} - \phi_{i+1} - \phi_{i+2}) \right) + \text{degree } 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0   | II[01000000] $II[1000000]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| k2                    | 6 | $k_2$ + degree 6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 3 | $     \begin{bmatrix}             10 & 10 & 10 & 10 & 10 \\             V[01 & 01 & 01 & 01] \\             1[\eta \zeta 00 & 00 & 00] \\             II[\eta \zeta 00 & 00 & \eta \zeta] \\             UI[\eta \zeta \eta \zeta \eta \zeta \eta \zeta \eta]         $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE III. Sixth- and eight-dimensional order-parameter expansions. The meaning of the various columns is the same as in Table II except for columns (d) and (e) which are grouped together.  $\sum_{mod3} \rho_i^2 \rho_{i+1}^2 \max (\rho_1^2 \rho_2^2 + \rho_3^2 \rho_1^2 + \rho_3^2 \rho_1^2)$ . The expansion corresponding to the eight-dimensional image  $M_5$  is not indicated as irrelevant to PFT.

a function of the quadratic terms only.  $F_2$  will thus coincide with the standard expression<sup>43</sup> of the elastic energy of the crystal in the HS phase, limited to the terms depending on the spontaneous components  $x_j$ . It has also been established<sup>41,42</sup> that the lowest-degree invariant in  $F_3$  is necessarily a linear function of the  $x_j$  components. Whenever these components belong to several distinct IR's, denoted  $t_m$  of the HS pointgroup, each  $t_m$  will give rise to an invariant term of the form

$$\delta\left(\sum_{i} x_{j}\psi_{j}(\eta_{i})\right) , \qquad (2)$$

where the  $x_j$  and  $\psi_j$  are homologous bases spanning  $t_m$ . The  $\psi_j$  are homogeneous polynomials of degree p, obtained by projecting  $[\Gamma_n(k^*)^p]$  upon  $t_m$ . Unlike the search of invariant polynomials, the generation of the  $\psi_j$  functions cannot be achieved by sole con-

## 1150

TABLE IV. Coupling scheme between the order parameter and the spontaneous strain [full (Ref. 11) ferroelastic species] or the other spontaneous macroscopic quantities [partial (Ref. 11) species]. Column one: labeling of the set of  $\psi_j$  polynomials transforming according to the point-group representations. *A*, *E*, and *T* symbols correspond to one-, two-, and threedimensional point-group representations. The first index is the number of components of the order parameter. Column 2: form of the  $\psi_j$  functions. The notations are the same as in Tables II and III. The indices of the summation are only specified once in each set. Column 4: faintness index relative to the spontaneous-macroscopic quantity defining the ferroelastic species [full (Ref. 11) or partial (Ref. 11)].

| Labeling         | Macroscopic spontaneous<br>tensor components                                                                                    | Faintness<br>index |
|------------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------|
| A <sub>2.1</sub> | $\eta \zeta$ or $(\eta^2 - \zeta^2)$                                                                                            | 2                  |
| A <sub>2.2</sub> | $\eta \zeta$ and $(\eta^2 - \zeta^2)$                                                                                           | 2                  |
| A 3.1            | $\frac{\eta_1 \eta_2 \eta_3}{m^2 + m^2 - m^2 - m^2}$                                                                            | 3                  |
| A 4.1            | $\eta_1 + \eta_2 - \eta_3 - \eta_4$                                                                                             | 4                  |
| A 4.2            | $\rho_1 \rho_2 \cos(\phi_1 + \phi_2)$                                                                                           | 2                  |
| A <sub>6.1</sub> | $\sum_{i=3}^{n} \rho_i^2 \cos 2\phi_i$                                                                                          | 2                  |
| A62              | $\sum_{i=3} \rho_i^2 \sin 2\phi_i$                                                                                              | 2                  |
| A <sub>6.3</sub> | $\rho_1 \rho_2 \rho_3 x$                                                                                                        | 3                  |
|                  | $[\cos\phi_1\cos(\phi_2-\phi_3)+\sin\phi_1\sin(\phi_2+\phi_3)]$                                                                 |                    |
| A <sub>8.1</sub> | $\rho_1 \rho_2 \rho_3 \rho_4 x$                                                                                                 |                    |
|                  | $\left\{\sum_{i \neq 1, \text{ mod} 3} \cos(\phi_1 + \phi_i - \phi_{i+1} - \phi_{i+2})\right\}$                                 | 4                  |
| $E_{2,1}$        | $\left\{ n^2 - \chi^2 : 2n\chi \right\}$ b                                                                                      | 2                  |
| $E_{2,2}$        | $\{\eta^4 + \zeta^4 - 6\eta^2 \zeta^2; 4\eta \zeta(\eta^2 - \zeta^2)\}$ b                                                       | 2                  |
| $E_{3.1}$        | $\{2\eta_1^2 - \eta_2^2 - \eta_3^2; \sqrt{3}(\eta_2^2 - \eta_3^2)\}$ b                                                          | 2                  |
| E <sub>4.1</sub> | $\left\{ \sum_{1,2} (-1)^{i} \rho_{i}^{4} \cos 4\phi_{i}; \sum (-1)^{i} \rho_{i}^{4} \sin 4\phi_{i} \right\}$                   | 4                  |
| E <sub>4.2</sub> | $\left\{ \sum_{i,2} \rho_i^4 \cos 4\phi_i; \sum_i \rho_i^4 \sin 4\phi_i \right\}$                                               | 4                  |
| F.,              | $\left( \frac{1}{2} \cos^2 \phi - \frac{1}{2} \cos^2 \phi \right)$                                                              | 2                  |
| 1-4.3            | $p_1 \cos 2\phi_1 - p_2 \cos 2\phi_2$                                                                                           | 2                  |
| E44              | $(\eta_4^2 - \eta_5^2; \eta_1^2 - \eta_2^2)^{a}$                                                                                | 2                  |
| E <sub>4.5</sub> | $\{\eta_3 \eta_4; \eta_1 \eta_2\}^{a}$                                                                                          | 2                  |
| E <sub>4.6</sub> | $\{\rho_1\rho_2\cos(\phi_1+\phi_2);\rho_1\rho_2\sin(\phi_1+\phi_2)\}$                                                           | 2                  |
| E <sub>6.1</sub> | $\{2\rho_1^2 - \rho_2^2 - \rho_3^2, \sqrt{3}(\rho_2^2 - \rho_3^2)\}^{a,b}$                                                      | 2                  |
| E <sub>6.2</sub> | $\int 2\rho_1^2 \sin 2\phi_1 - \rho_2^2 \sin 2\phi_2 - \rho_3^2 \sin 2\phi_3^{a,b}$                                             | 2                  |
|                  | $(\sqrt{3}(\rho_2^2\sin 2\phi_2 - \rho_3^2\sin 2\phi_3))$                                                                       |                    |
| E <sub>6.3</sub> | $\begin{cases} 2\rho_1^2\cos 2\phi_1 - \rho_2^2\cos 2\phi_2 - \rho_3^2\cos 2\phi_3. \end{cases}$                                | 2                  |
|                  | $\sqrt{3}(\rho_2^2\cos 2\phi_2 - \rho_3^2\cos 2\phi_3)$ .                                                                       |                    |
| E <sub>8.1</sub> | $\left\{\sum_{i,4}\rho_i^2\cos 2\phi_i; \sum \rho_i^2\sin 2\phi_i\right\}^{\flat}$                                              | 2                  |
| $T_{3.1}$        | $(\eta_2\eta_3;\eta_1\eta_3;\eta_1\eta_2)^a$                                                                                    | 2                  |
| T <sub>4.1</sub> | $(\eta_1^2 + \eta_2^2 - \eta_3^2 - \eta_4^2)^a$                                                                                 | 2                  |
|                  | $\begin{cases} \eta_1^2 + \eta_2^2 - \eta_2^2 - \eta_4^2, \\ \eta_1^2 + \eta_2^2 - \eta_2^2 - \eta_4^2, \end{cases}$            |                    |
| $T_{4,2}$        | $(\rho_1^4 \cos 4\phi_1 - \rho_2^4 \cos 4\phi_2)$                                                                               | 4                  |
| - 4.2            | $\{\rho_1\rho_2[\rho_1^2\cos(3\phi_1+\phi_2)+\rho_2^2\cos(3\phi_2+\phi_1)].$                                                    |                    |
|                  | $[\rho_1\rho_2[\rho_1^2\cos(3\phi_1+\phi_2)-\rho_2^2\cos(3\phi_2+\phi_1)].$                                                     |                    |
| $T_{6.1}$        | $\rho_1^2 \cos 2\phi_1; \rho_2^2 \cos 2\phi_2; \rho_3^2 \cos 2\phi_3.$                                                          | 2                  |
| T <sub>6.2</sub> | $\left(\rho_{1}\rho_{2}\rho_{3}\left[\cos\phi_{1}\sin(\phi_{2}-\phi_{3})-\sin\phi_{1}\cos(\phi_{2}+\phi_{3})\right]\right)^{a}$ | 3                  |
|                  | $\left\{ \rho_{1}\rho_{2}\rho_{3}[\cos\phi_{2}\sin(\phi_{3}-\phi_{1})-\sin\phi_{2}\cos(\phi_{3}+\phi_{1})]. \right.$            |                    |
|                  | $(\rho_1 \rho_2 \rho_3 (\cos \phi_3 \sin (\phi_1 - \phi_2) - \sin \phi_3 \cos (\phi_1 + \phi_2))].$                             |                    |

1151

| Labeling         | Macroscopic spontaneous<br>tensor components                                                                                                                                                                                   | Faintness<br>index |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| T <sub>8.1</sub> | $\begin{cases} \rho_1^2 + \rho_2^2 - \rho_3^2 - \rho_4^2, \\ \rho_1^2 + \rho_3^2 - \rho_4^2 - \rho_2^2. \end{cases}$                                                                                                           | 2                  |
| T <sub>8.2</sub> | $ \begin{pmatrix} \rho_1^2 + \rho_4^2 - \rho_2^2 - \rho_3^2 \\ \sum_{i,4} (-1)^i \rho_i^2 (\cos 2\phi_i - \sqrt{3} \sin 2\phi_i) \\ \sum_{i,2} [\rho_{i+2}^2 (\cos 2\phi_{i+2} + \sqrt{3} \sin 2\phi_{i+2}) \\ \end{pmatrix} $ | 2                  |
|                  | $\begin{cases} -\rho_i^2(\cos 2\phi_i + \sqrt{3}\sin 2\phi_i)].\\ 2(\rho_1^2\cos 2\phi_1 + \rho_4^2\cos 2\phi_4 - \rho_3^2\cos 2\phi_3)\\ -\rho_2^2\cos 2\phi_2). \end{cases}$                                                 |                    |

#### **TABLE IV.** (Continued)

<sup>a</sup>within a permutation of the  $\eta_i$  or the  $\rho_i$ .

<sup>b</sup>within a permutation of the components in the bracket.

sideration of the images. For instance, in the Pm3m space group,  $\psi_j$  functions of degree 3 are found at the *M* point<sup>10</sup> of the BZ while none is found at the *X* point,<sup>10</sup> though both IR's are associated with the same image denoted  $L_7$  (Fig. 2).

In the vicinity of the transition point it is sufficient to consider the sets of  $\psi_j$  functions having the smallest degree  $p = n_F$ . This degree has been called<sup>42</sup> the faintness index relative to the ferroic properties. High values of  $n_F$  will, in principle, be associated with small anomalies affecting the mechanical properties of the crystal. Besides,  $n_F$  values of 2, 3, and  $\ge 4$ , have been shown<sup>42</sup> to correspond to three qualitatively different types of elastic anomalies at the transition. In the case of ferroelastic species involving several  $t_m$ , more than one faintness index can be necessary to describe the behavior of the spontaneous-strain components.

The  $\psi_j$  functions have been systematically worked out and listed in Table IV together with the corresponding faintness indices. Their expression is given in the same basis as the OP expansion. We have, respectively, denoted by A, E, and T the sets of  $\psi_j$ functions spanning an IR of the point-symmetry group having one, two, and three dimensions. As shown by the table, in most cases the faintness index is equal to 2, but values of 3 and 4 are also found possible. This situation can be compared to the transitions studied in TTI and TTII where faintness indices of three and four were frequently encountered.

#### B. Determination of the low-symmetry phases

We place ourselves in the strict framework of Landau's theory and consider the LS phases which are related to  $G_0$  through a line of continuous transitions. Each phase is specified by the following conditions:

(i) It is associated with a set of component values

 $\eta_i^0(\alpha, \beta_k, C_l, \delta_m)$  and  $x_j^0(\alpha, \beta_k, C_l, \delta_m)$  for which the LFE is an absolute minimum for a whole range of vanishingly small values of  $\alpha$ ,  $\eta_i^0$ , and  $x_j^0$  (including the transition point).

(ii) For the whole range of these values the function  $\delta \rho = \sum \eta_i^0 \phi_i$ , defined in Sec. II, has a definite invariance group G, subgroup of  $G_0$ , which coincides with the space group of the considered LS phase.

(iii) The same symmetry G corresponds to the coordinates  $(\eta_i^0, x_j^0)$  of the minimum of the LFE for a continuous range of values of each of the expansion coefficients  $(\beta_k, C_l, \delta_m)$ .

We therefore exclude the LS phases which can be reached from  $G_0$  either by a discontinuous transition, or by a continuous one only occurring for particular values of the preceding coefficients.

As shown in the Appendix, the possible occurrence of a given symmetry change  $G_0 \rightarrow G$  along a line of continuous transitions, *regardless* of the corresponding  $(\beta_k, C_l, \delta_m)$  values, does not depend on the strain contributions  $F_2$  and  $F_3$ . An analysis can thus be limited to the OP expansion  $F_1(\alpha, \eta_l, \beta_k)$ .

A standard algebraic discussion has been performed for the various OP expansions contained in Tables II and III. The location of the absolute minima of  $F_1$  consists of expressing the cancellation of its first derivatives, the positiveness of the matrix or the second derivatives, and in comparing the different minima which can simultaneously occur for given  $(\beta_k)$  coefficients.

The  $\eta_i^0$  values obtained for the various expansions are indicated in Tables II and III for OP dimensions greater than 3. We have also recalled in Table V the results<sup>37</sup> for continuous transitions in the case of oneto three-dimensional OP. Similar to the cases of lower-dimension OP, <sup>37</sup> we can classify the LS phases in two catergories by putting  $\eta_i^0 = \rho^0 \gamma_i^0$ 

 $[\rho^0 = \sum_i (\eta_i^0)^2]$ . The first category corresponds to  $\gamma_i^0$  values defining prominent directions in  $\epsilon$ , lying along symmetry axes belonging to the image L. The  $\gamma_i^0$  be-

TABLE V. Images and LS phases for the one-, two-, and three-dimensional active physically irreducible representations  $(C_i)$ ,  $(C_n, C_{n\nu})$ ,  $(O, O_h, T_h)$  are Schoenflies notations for the one-, two-, and three-dimensional point groups. The order-parameter expansions relative to the images can be found in Refs. 28 and 37.

| Images          | Dimension | Number<br>of LS<br>phases | Labeling   | Direction of $\epsilon$                              |
|-----------------|-----------|---------------------------|------------|------------------------------------------------------|
| Ci              | 1         | 1                         | I          | [1]                                                  |
| $C_4, C_6$      | 2         | 1                         | I          | [η,ζ]                                                |
| $C_{8}, C_{12}$ | 2         | 2                         | (1         | [10]                                                 |
| 10 120          |           |                           | <b>ξ</b> π | [11]                                                 |
| C <sub>6v</sub> | 2         | 2                         | { I        | [10]                                                 |
| C               |           | 2                         |            | [01]                                                 |
| $C_{8v}$        | 2         | 2                         | { 1        |                                                      |
| ,               |           |                           | ( II       | $\left[\cos\frac{1}{8}\pi,\sin\frac{1}{8}\pi\right]$ |
| $T_h, O$        | . 3       | . 2                       | ĮI         | [100]                                                |
| 0 <sub>h</sub>  |           |                           | (II        | [111]                                                |

ing symmetry defined, the temperature dependence of the  $\eta_i^0$  results exclusively from that of  $\rho^0$ . The second category corresponds to directions in  $\epsilon$  which are not symmetry ones and which will generally vary with temperature as well as  $\rho^0$ . Both situations are found in the results of Tables II and III.

In four dimensions (Table II) expansions  $f_1 - f_5$ , which arise from real IR, have minima of the first type only. For the expansions  $f_6 - f_{13}$ , which are related to physically irreducible representations (i.e., sums of complex conjugates IR), only  $f_8$  has minima of the first type while the other expansions provide two different situations.  $f'_6$ ,  $f_{11}$ , and  $f_{13}$  are associated with images determining no prominent symmetry directions in  $\epsilon$ . Consequently the possible LS phases will all have the same symmetry.<sup>37</sup> By contrast, one or several LS phases are found for the remaining expansions corresponding to vectors lying in planes of symmetry of  $\epsilon$ , but whose precise directions in these planes is not fixed by symmetry. Between one and six LS phases with distinct symmetries are found to be possible for all the four-dimensional images.

In six and eight dimensions (Table III) expansions  $h_1-h_3$  and  $k_1,k_2$  determine minima of the first type, while  $h_4,h_5$  and  $k'_1,k'_2$  possess minima which correspond to planes of symmetry, similar to the case discussed above. The number of LS phases with distinct symmetries which can be reached through a line of continuous transitions is found, respectively, in the range 3-7 and 3-5.

#### **IV. RESULTS AND DISCUSSION**

The crystallographic and physical characteristics of the PFT which are predicted to be possible along a line of continuous transitions are summarized in Tables VI-IX, ordered according to the crystal system of the HS phase.

Table VI corresponds to a HS phase belonging to the monoclinic or orthorhombic system. Tables VII, VIII, and IX, respectively, contain the results relative to the tetragonal, trigonal-hexagonal, and cubic systems. The use of these tables allows the determination of the following characteristics of each possible PFT: (i) Space-symmetry change and unit-cell multiplication. (ii) Identification, dimension, and symmetry properties of the transition's order parameter. (iii) Form of the Landau free-energy, which includes the OP expansion as well as the additional terms relative to the spontaneous-strain components and to their coupling with the OP.

#### A. Organization and use of the tables

Let us describe the content of each of the eight columns constituting Tables VI–IX which summarize the results of the investigation. Some of their indications refer to Tables I–V as well as to available standard tables.<sup>43–45</sup>

Column 1 lists the HS space groups. But for a few

TABLE VI. Ferroelastic transitions with monoclinic or orthorhombic high-symmetry phase. The detailed meaning of the columns is explained in the text (Sec. IV). For the  $\Gamma$  point the indications are only reproduced for the first HS space group of each class. Primed coupling polynomials (e.g.,  $A'_{4,1}$  or  $A''_{4,1}$ ) differ from unprimed ones by a permutation of the OP components.

| HS<br>group       | BZ<br>point        | Low-symmetry phases                               | OP<br>dim               | (a)            | (b)  | (c)  | (d)              |
|-------------------|--------------------|---------------------------------------------------|-------------------------|----------------|------|------|------------------|
| P2/m              | Г                  | $P\overline{1}(\tau_2)$                           | 1                       | C <sub>i</sub> | l    | 1    | proper           |
| $P2_1/m$          |                    | -                                                 |                         | •              |      |      | • •              |
| P2/b              |                    |                                                   |                         |                |      |      |                  |
| B2/m              | Г                  | ΡĪ                                                |                         |                |      |      |                  |
|                   | F                  | $P\overline{1}(\tau_1,\tau_2)$                    | 2                       | $C_{4,n}$      | I    | 2    | A21              |
|                   | $F^{\prime\prime}$ | $\overline{P}\overline{1}(\tau_1,\tau_2)$         | 2                       | $C_{4n}$       | I    | 2    | A21              |
| $P2_1/b$          | Г                  | $\overline{P}\overline{1}$                        |                         | 40             |      |      | 2.1              |
| •                 | С                  | $P\overline{1}(\tau_1 + \tau_2, \tau_3 + \tau_4)$ | 2                       | $C_{A}$        | I    | 2    | Azz              |
|                   | D                  | $P\bar{1}(\tau_1 + \tau_2, \tau_3 + \tau_4)$      | 2                       | $C_{A}$        | Ι    | 2    | A22              |
| B2/b              | Г                  | $P\overline{1}$                                   |                         | -              |      |      | 2.2              |
| <b>,</b> ·        | F                  | $P\overline{1}(\tau_1,\tau_2)$                    | 2                       | $C_{A_{22}}$   | I    | 2    | An               |
|                   | $F^{\prime\prime}$ | $P\overline{1}(\tau_1, \tau_2)$                   | 2                       | C4.            | Ĭ    | 2    | A 2.1            |
| Pmm2)             | Г                  | $P2(\tau_2)$                                      | - 1                     | Ci             | Ĩ    | ĩ    | proper           |
| Pmc?              | •                  | P2,                                               | •                       | 0.             | •    | -    | proper           |
| Proc 2            |                    | P2                                                |                         |                |      |      |                  |
| Pma?              |                    | P2                                                |                         |                |      |      |                  |
| Pca2.             |                    | P2.                                               |                         |                |      |      |                  |
| Pnc2              |                    |                                                   |                         |                |      |      |                  |
| Pmn 2             |                    |                                                   |                         |                |      |      |                  |
| $\frac{1}{2}$     |                    |                                                   |                         |                |      |      |                  |
| Pug 2             |                    | P2<br>P2                                          |                         |                |      |      |                  |
| $Pna 2_1$         |                    |                                                   |                         |                |      |      |                  |
| Pnn 2 )           | Г                  | P2 /                                              |                         |                |      |      |                  |
| Cmm 2             |                    | $P_2$                                             | 2                       | · · · ·        | T    | 2    |                  |
|                   | ĸ                  | $B_2(\tau_1, \tau_2)$                             | 2                       | $C_{4v}$       | I    | 2    | A <sub>2.1</sub> |
| <i>a</i> <b>a</b> | 5                  | $P_2(\tau_1, \tau_2)$                             | 2                       | $C_{4v}$       | 1    | 2    | A <sub>2.1</sub> |
| $Cmc 2_1$         | I'                 | $P_{2_1}$                                         |                         |                |      |      |                  |
| ~ -               | S                  | $P2_1(\tau_1, \tau_2)$                            | 2                       | $C_{4v}$       | I    | 2    | $A_{2.1}$        |
| Ccc2              | Г                  | P2                                                |                         | • • •          |      |      |                  |
|                   | R                  | $B2(\tau_1,\tau_2)$                               | 2                       | $C_{4v}$       | I    | 2    | $A_{2.1}$        |
|                   | S                  | $P2(\tau_1,\tau_2)$                               | 2                       | $C_{4v}$       | I, I | 2    | A <sub>2.1</sub> |
| Amm2              | Г                  | <i>B</i> 2                                        | · · · · · · · · · · · · | • • •          |      |      |                  |
| Abm2              |                    | <i>B</i> 2                                        |                         | • • •          |      |      |                  |
| Ama2              |                    | <i>B</i> 2                                        |                         |                |      |      |                  |
| Aba2              |                    | <i>B</i> 2                                        |                         | •••            |      |      |                  |
| Fmm2              | Г                  | <i>B</i> 2                                        |                         |                |      |      |                  |
|                   | R                  | $B2(\tau_1)$                                      | 4                       | 56.1           | IV   | 4    | A <sub>4.1</sub> |
| Fdd 2             | Г                  | <i>B</i> 2                                        | •                       |                |      |      |                  |
|                   | R                  | B2                                                | 4                       | 58.01          | IV   | 4    | $A_{4.1}$        |
|                   |                    | $B2 \left[ \left( \tau_{1} \right) \right]$       |                         |                | v    | 8    | $A_{4.2}$        |
| Imm2              |                    | •                                                 |                         |                |      |      |                  |
| Iba2              | Г                  | <i>B</i> 2                                        |                         |                |      |      |                  |
| Ima2 🕽            | S                  | $B2(\tau_{1},\tau_{2})$                           | 2                       | $C_{4v}$       | I    | 2    | $A_{2,1}$        |
| Pmmm              | Г                  | $\frac{P2/m(\tau_2)P2/m(\tau_3)}{P2/m(\tau_4)}$   | 1                       | $C_i$          | Ι    | 1    | proper           |
| Pnnn              |                    | P2/b.P2/b.P2/b                                    |                         |                |      |      |                  |
| Pccm              |                    | P2/b,P2/b,P2/m                                    |                         |                |      |      |                  |
| Pban              |                    | P2/b.P2/b.P2/b                                    |                         |                |      |      |                  |
| Pmma              |                    | $P2_1/m.P2/m.P2/b$                                |                         | •              |      |      |                  |
| Pnna              | Г                  | $P2/h P2_1/h P2/h$                                |                         |                |      |      |                  |
| - 11110           | T                  | $[P2/h R2/h](\pi, \pi_{-})$                       | r                       | C.             | T TI | 2.2  | 4 1              |
| Dunna             | Г.                 | $D^{\prime}m D^{\prime}h D^{\prime}h$             | <b>L</b>                | $\sim 4v$      | 1,11 | £, £ | ~2.1×~2.1        |
| 1 mna             | ו<br>ס             | I 2/m, I 2/0, I 2/0<br>[D2/m, D2/L]()             | 2                       | C              | ŢП   |      | A A              |
|                   | ĸ                  | $[D_2/m, D_2/D](\tau_1, \tau_2)$                  | 2                       | $C_{4v}$       | 1,11 | 2,2  | A 2.1, A 2.1     |
|                   | U                  | $[B2/m, F2/b](\tau_1, \tau_2)$                    | 2                       | $C_{4v}$       | 1,11 | 2,2  | A 2.1, A 2.1     |

# JEAN-CLAUDE TOLÉDANO AND PIERRE TOLÉDANO

| HS       | BZ            | Low-symmetry                                                                  | OP     | (a)           | (b)        | (c)  | (d)                   |
|----------|---------------|-------------------------------------------------------------------------------|--------|---------------|------------|------|-----------------------|
| group    | point         | phases                                                                        | dim    |               |            |      |                       |
|          | F             | $p_2/h p_2/h p_2/h$                                                           |        |               |            |      |                       |
| Pcca     | I ·           | $r 2_1/0, r 2/0, r 2/0$                                                       |        |               |            |      |                       |
| Pbam     | I             | $P 2_1 / 0, P 2_1 / 0, P 2 / m$                                               | n      | <br>С         | · .        | r    |                       |
|          | ĸ             | $B_2/m(\tau_2 + \tau_6, \tau_1 + \tau_5, \tau_5)$                             | 2      | $C_4$         | , <b>1</b> | 2    | A 2.2                 |
|          | ~             | $\tau_3 + \tau_7, \tau_4 + \tau_8$                                            | 2      | C             | T          | 2    | 4                     |
|          | 5             | $P_2/m(\tau_1 + \tau_5, \tau_4 + \tau_3)$                                     | 2      | $C_4$         | I          | 2    | A 2.2                 |
|          |               | $P2/D(\tau_2 + \tau_6, \tau_3 + \tau_7)$                                      | 2      | $C_4$         | 1          | Z    | A 2.2                 |
| Pccn     | Γ             | $\frac{P2_{1}/b, P2_{1}/b, P2/b}{(\tau_{1} + \tau_{5}, \tau_{2} + \tau_{6})}$ |        | ••••          |            |      |                       |
|          | R             | $B2/b \left\{ (\tau_3 + \tau_7, \tau_4 + \tau_8) \right\}$                    | 2      | $C_4$         | Ι          |      | A <sub>2.2</sub>      |
|          | S             | $P2/b(\tau_1, \tau_2)$                                                        | 2      | $C_{4,n}$     | · I        | 2    | A21                   |
| Pbcm     | Г             | $P2/b, P2_1/b, P2_1/m$                                                        |        |               |            |      | 2.1                   |
| Pnnm     | Г             | $P2_1/b, P2_1/b, P2/m$                                                        |        |               |            |      |                       |
|          | R             | $B2/m(\tau_1, \tau_2)$                                                        | 2      | $C_{4,n}$     | I          | 2    | A21                   |
|          | U             | $[P2_1/b, B2/m](\tau_1, \tau_2)$                                              | 2      | $C_{4,n}$     | 1,11       | 2,2  | A21, A21              |
|          | T             | $[P2_1/b, B2/m]$ ( $\tau_1, \tau_2$ )                                         | 2      | Сл.,          | Í.H        | 2.2  | A21, A21              |
|          | S             | $P2/m(\tau_1 + \tau_5, \tau_4 + \tau_8))$                                     | -      | - 40          | -1         | -,-  | 2.1, - 2.1            |
|          |               | $P_{2/h}(z + z - + z)$                                                        | 2      | C4            | I          | 2    | A 2.2                 |
| D        | Б             | $P_2/U(\tau_2 + \tau_6, \tau_3 + \tau_7)$                                     |        |               |            |      | 212                   |
| Pmmn     | l             | $P_{2_1}/m, P_{2_1}/m, P_{2_1}/b$                                             | •      |               |            | •    | 4                     |
|          | R             | $\frac{B2}{m(\tau_1,\tau_2)}$                                                 | 2.     | $C_{4v}$      | 1          | 2    | A <sub>2.1</sub>      |
|          | S             | $[P2/b](\tau_1, \tau_2)$                                                      | 2      | $C_{4v}$      | 1          | 2    | A <sub>2.1</sub>      |
| Pbcn     | Г             | $P2_1/b, P2/b, P2_1/b$                                                        |        | • • •         |            |      |                       |
|          | S             | $[B2/b, P2_1/b](\tau_1, \tau_2)$                                              | 2      | C40           | 1,11       | 2,2  | $A_{2.1}, A_{2.1}$    |
| Pbca     | . Г           | $P2_1/b, P2_1/b, P2_1/b$                                                      |        |               |            |      |                       |
|          | R             | $P\overline{1}(\tau_1+\overline{\tau}_1,\tau_2+\overline{\tau}_2)$            | 4      | 13.1          | I          | 2    | $(A_{4,1} - A_{4,3})$ |
| Pnma     | Γ             | $P2_1/b, P2_1/m, P2_1/b$                                                      |        | •••           |            |      |                       |
|          | U             | $P2_{1}/m(\tau_{1}+\tau_{5},\tau_{4}+\tau_{8})$                               | 2      | $C_4$         | I          | 2    | A <sub>2.2</sub>      |
|          |               | $P2_1/b(\tau_2 + \tau_6, \tau_3 + \tau_7)$                                    | 2      | C4            | I          | 2    | A <sub>2.2</sub>      |
|          | Т             | $P2_{1}/b(\tau_{1},\tau_{2})$                                                 | 2      | $C_{4v}$      | I          | 2    | A <sub>2.1</sub>      |
| Cmcm     | Г             | $B2/m, B2/b, P2_1/m$                                                          |        |               |            |      |                       |
|          | S             | $P2_1/m(\tau_1, \tau_4)P2_1/b(\tau_2, \tau_3)$                                | 2      | $C_{4v}$      | I          | 2    | A 2.1                 |
| Cmca     | Г             | $B2/m, B2/m, P2_1/b$                                                          |        |               |            |      |                       |
| Cmmm     | Г             | B2/m, B2/m, P2/m                                                              |        |               |            |      |                       |
|          | R             | $B2/m, (\tau_1, \tau_3)B2/b(\tau_2, \tau_4)$                                  | 2      | C4.,          | I          | 2    | $A_{21}$              |
|          | S             | $P2/m(\tau_1, \tau_4)P2/b(\tau_2, \tau_3)$                                    | 2      | C4.           | I          | 2    | A21                   |
| Cccm     | Г             | B2/b.B2/b.P2/m                                                                |        |               |            |      | 2.1                   |
|          | R             | $B2/m(\tau_1, \tau_3)B2/b(\tau_2, \tau_4)$                                    | 2      | $C_{4n}$      | I          | 2    | A21                   |
|          | S             | $P2/m(\tau_1, \tau_4)P2/b(\tau_2, \tau_2)$                                    | 2      | C4.           | I          | 2    | A21                   |
| Cmma)    | ·Γ            | (B2/m, B2/b, P2/b)                                                            |        | - 40          |            |      | 2.1                   |
| Ccca     | -             | B2/b.B2/b.P2/b                                                                |        |               |            |      |                       |
| Fmmm     | Γ             | B2/m, B2/m, B2/m                                                              |        |               |            |      |                       |
|          | R             | $[P\bar{1},B2/m](\tau_1)[P\bar{1},B2/b](\tau_2)$                              | 4)     | 56.1          | I,II       | 2,2  | A41, A41              |
|          |               | $[B2/m, B2/m](\tau_1)[B2/b, B2/b](\tau_2)$                                    | 4 }    |               | - III.IV   | 4.4  | A.1. A.1              |
| Fddd     | Г             | B2/b B2/b B2/b                                                                |        |               | ,          | .,   | 4,17 4,1              |
| 7 444    | R             | $[P\bar{1}, B2/b](\tau_1, \tau_2)$                                            | 4      | 82.01         | I.II       | 2.2  | Ant.An                |
|          |               | $[B2/b, B2/b](\tau_1, \tau_2)$                                                |        |               | IILIV      | 4.4  | A.1. A.1              |
| Immm     | Г             | $R_2/m R_2/m R_2/m$                                                           |        |               | ,-         | .,., | 4,1,1,4,1             |
| 1/////// | Î.            | $B2/m(\tau_1, \tau_4)B2/m(\tau_2, \tau_3)$                                    | 2      | C.            | T          | 2    | An                    |
|          | S             | $B2/m(\tau_1, \tau_4)B2/b(\tau_2, \tau_3)$                                    | 2      | C 40          | ī          | 2    | A 2.1                 |
|          | $\frac{3}{T}$ | $B2/m(\tau_1, \tau_2)B2/h(\tau_2, \tau_3)$                                    | -<br>> | ~ 4U<br>C.    | T          | 2    | 2.1<br>A - 1          |
| Iham     | Г             | $R^{2}/h R^{2}/h R^{2}/m$                                                     | 2      | ~ 4v          |            | 2    | ** 2.1                |
| Ibum     | 2             | $B_2/v, B_2/v, B_2/m$<br>$B_2/w(\pi_1,\pi_2)B_2/h(\pi_2,\pi_2)$               | · • •  | C.            | T          |      | 4                     |
| Ibea     | Г             | B2/m(1), (4) B2/U(12, T3)<br>B3/h B3/h B3/h                                   | 2      | 4υ<br>· · · · | . 1        | . 4  | ** 2.1                |
| Imme     | і<br>Г        | $\frac{D2}{W}\frac{D2}{W}\frac{D2}{W}\frac{D2}{W}\frac{D2}{W}$                |        | · · ·         |            |      |                       |
| imma     | 1             | $B_2/m, B_2/m, B_2/b(\pi, \pi)$                                               | 2      | C             | т          | 2    | Ant                   |
|          |               | $B2/m(\tau_1, \tau_4) D2/b(\tau_2, \tau_3)$                                   | 2      | C 40          | Ĭ          | 2    | 4                     |
|          | 1             | $D_{2}/m(1_1, 1_4)D_{2}/U(1_2, T_3)$                                          | 2      | - 4v          | 1          | 2    | <sup>2</sup> 2.1      |

TABLE VI. (Continued)

1155

| TABLE VII. Ferroelastic transitions with a tetragonal high-symmetry phase. Same conventions as Table VI. Whenever am           | -  |
|--------------------------------------------------------------------------------------------------------------------------------|----|
| biguous, the orientation of the LS phases is only indicated once for each Bravais lattice and point-symmetry change (in genera | ١, |
| for the first HS group of each class).                                                                                         |    |

| HS<br>group          | BZ<br>point                              | Low-symmetry phase                                                                                  | OP<br>dim | (a)              | (b)      | (c) | (d)                    |
|----------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------|------------------|----------|-----|------------------------|
|                      | Г                                        | $P2(\tau_2)$                                                                                        | 1         | Ci               | I        | 1 · | proper                 |
| P4                   | R                                        | $B2(\tau_{1},\tau_{2})$                                                                             | 2         | C <sub>4v</sub>  | I        | 2   | A <sub>2.1</sub>       |
|                      | X                                        | $P2(\tau_1,\tau_2)$                                                                                 | 2         | C <sub>4v</sub>  | I        | 2   | A 2.1                  |
| P4 <sub>1</sub>      | Г                                        | P21                                                                                                 |           | • • •            |          |     |                        |
|                      | X                                        | $P2_{1}(\tau_{1}, \tau_{2})$                                                                        | 2         | $C_{4v}$         | I        | 2   | A <sub>2.1</sub>       |
|                      | Г                                        | P2                                                                                                  |           |                  | -        |     |                        |
| P4 <sub>2</sub>      | R                                        | $B_2(\tau_1, \tau_2)$                                                                               | 2         | $C_{4v}$         | 1        | 2   | A <sub>2.1</sub>       |
| D.4 .                | X                                        | $P2(\tau_1,\tau_2)$                                                                                 | 2         | $C_{4v}$         | 1        | 2   | A <sub>2.1</sub>       |
| P43                  | ľ                                        | $P_{2_1}$                                                                                           | •         | · · · ·          |          | 2   |                        |
|                      | X<br>(F                                  | $P2_1(\tau_1, \tau_2)$                                                                              | 2         | C 4v             | 1        | 2   | A 2.1                  |
| 14                   |                                          | $B_{2}(\pi)$                                                                                        | Л         | 58.01            | T        | 2   | 1                      |
| 14                   |                                          | $B_2(\tau_1)$<br>$B_2(\tau_2, \tau_2)$                                                              | 7<br>2    | 58.01            | I        | 2   | 4.1                    |
|                      | ( <u>г</u>                               | $B_{2}(1_{1}, 1_{2})$                                                                               | 2         | C 4υ             | •        | 2   | A 2.1                  |
|                      |                                          | $P_{2_1}(\tau_2 + \tau_4)$                                                                          | 2         | C.               | I        | 2   | <i>A</i> <sub>22</sub> |
| 14.                  | $\begin{cases} -\frac{1}{x} \end{cases}$ | $B_2(\tau_1, \tau_2)$                                                                               | 2         | C <sub>4</sub> . | 1        | 2   | A21                    |
| 1                    | N N                                      | $[B2,B2](\tau_1)$                                                                                   | 4         | 59.1             | 11.IV    | 4,8 | A41.A42                |
|                      | ( Г                                      | $P2/m(\tau_2)$                                                                                      | 1         | $C_i$            | Î        | 1   | proper                 |
|                      |                                          | $P\overline{1}(\tau_3+\tau_4)$                                                                      | 2         | C4               | I        | 2   | proper                 |
|                      | M                                        | $P2/m(\tau_7 + \tau_8) P2/b(\tau_3 + \tau_4)$                                                       | 2         | $C_4$            | I        | 2   | A 2.2                  |
|                      | Z                                        | $P2_1/m(\tau_3 + \tau_4, \tau_7 + \tau_8)$                                                          | 2         | $C_4$            | I I      | 2   | A 2.2                  |
| P4/m                 | A                                        | $B2/m(\tau_3 + \tau_4, \tau_7 + \tau_8)$                                                            | 2         | C <sub>4</sub>   | I        | 2   | A <sub>2.2</sub>       |
|                      | R                                        | $B2/m(\tau_1, \tau_2, \tau_3, \tau_4)$                                                              | 2         | C <sub>4v</sub>  | I        | 2   | A 2.1                  |
|                      |                                          | $P2/m(\tau_1, \tau_4) P2/b(\tau_2, \tau_3)$                                                         | 2         | C <sub>4v</sub>  | I        | 2   | A <sub>2.1</sub>       |
|                      | ( r                                      | $P2/m, P\overline{1}$                                                                               |           |                  |          |     |                        |
|                      | M                                        | $P2/m(\tau_7 + \tau_8)P2/b(\tau_3 + \tau_4)$                                                        | 2         | C <sub>4</sub>   | I        | 2   | A 2.2                  |
|                      | JZ                                       | $P2_1/m(\tau_2)$                                                                                    | 2         | $C_{4v}$         | I        | 2   | A 2.1                  |
| P4 <sub>2</sub> /m . | Ą                                        | $B2/m(\tau_2)$                                                                                      | 2         | $C_{4v}$         | I        | 2   | A 2.1                  |
|                      | R                                        | $B2/m(\tau_1, \tau_2, \tau_3, \tau_4)$                                                              | 2         | C <sub>4v</sub>  | L        | 2   | A <sub>2.1</sub>       |
|                      | (X                                       | $P2/m(\tau_1, \tau_4)P2/b(\tau_2, \tau_3)$                                                          | 2         | C <sub>4v</sub>  | I        | 2   | A 2.1                  |
|                      | ( r                                      | P2/b,P1                                                                                             | _         | • • •            | _        | _   |                        |
|                      | M                                        | $P2/b(\tau_2)$                                                                                      | 2         | $C_{4v}$         | I        | 2   | A <sub>2.1</sub>       |
| P4/n                 | Z                                        | $P2_1/b(\tau_3 + \tau_4, \tau_7 + \tau_8)$                                                          | 2         | $C_4$            | I        | 2   | A 2.2                  |
|                      | ( A                                      | $B2/b(\tau_2)$                                                                                      | 2         | C <sub>4v</sub>  | 1        | 2   | A <sub>2.1</sub>       |
|                      | ( T                                      | P2/b, P1                                                                                            | 2         | · · · ·          | 1        | 2   | 4                      |
| DA L.                |                                          | $P2/b(\tau_2)$                                                                                      | 2         | $C_{4v}$         | I        | 2   | A 2.1                  |
| P42/1                |                                          | $P_{2_1/0}(\tau_2)$<br>$P_{2_1/0}(\tau_2)$                                                          | 2         | C <sub>4v</sub>  | I        | 2   | A 2.1                  |
|                      |                                          | $D_2/D(\tau_3 + \tau_4, \tau_7 + \tau_8)$<br>$D_2/m D_1$                                            | Z         | C4               | 1        | 2   | A 2.2                  |
|                      |                                          | $D_{2/11}, r_{1}$<br>$P_{2_{1}}/m(\pi_{2_{1}} + \pi_{2_{1}})P_{2_{2}}/h(\pi_{2_{1}} + \pi_{2_{1}})$ | 2         | C.               | I        | 2   | 4                      |
| 14/10                |                                          | $R_{2/m}(\tau_{1},\tau_{2})R_{2/b}(\tau_{2},\tau_{1})$                                              | 2         | C <sub>4</sub>   | . I<br>I | 2   | A 2.2                  |
| 1 - 1 / ///          | N                                        | $[B2/mP\bar{1}](\tau_1, \tau_2)$                                                                    | 4         | 58.01            | 1 IV     | 2.8 | 2.1                    |
|                      | ( [                                      | $B2/hP\overline{1}$                                                                                 | •         |                  | 1,1 1    | 2,0 |                        |
| $14_{1}/a$           | Z                                        | $P2_{1}/b(\tau_{2})$                                                                                | 2         | $C_{4}$          | I        | 2   |                        |
| . 17                 |                                          |                                                                                                     |           | 40               | 1 111    | 24  | 44                     |
|                      | ( <sup>n</sup>                           | $B2/b$ $(\tau_1, \tau_2)$                                                                           | 4         | 80.01            | II       | 4   | A 4.1 · A 4.1          |
| P42m                 | Г                                        | $P222(\tau_2)$                                                                                      | 1         | C,               | I        | 1   | proper                 |
|                      | M                                        | $C222(\tilde{\tau_5})$                                                                              | 2         | C4.              | I        | 2   | A21                    |
|                      | Ζ                                        | $P222_{1}(\tau_{5})$                                                                                | 2         | C 4.             | I        | 2   | A 2 1                  |

| nF | TOI | ÉDANO | DICDDC | έı |
|----|-----|-------|--------|----|

| P42m<br>P42c<br>P421m<br>P421c<br>P421c<br>P4m2                             | A<br>R<br>X<br>T<br>M<br>Z<br>A<br>R<br>X<br>T<br>Z<br>T | $F222(\tau_5)$ $C222(\tau_1, \tau_2, \tau_3, \tau_4)$ $P222(\tau_1, \tau_3)P222_1(\tau_2, \tau_4)$ $P222$ $C222(\tau_5)$ $P222_1(\tau_2 + \tau_4, \tau_3 + \tau_5)$ $F222(\tau_2 + \tau_4, \tau_3 + \tau_5)$ $C222(\tau_1, \tau_2, \tau_3, \tau_4)$ $P222(\tau_1, \tau_3)P222_1(\tau_2, \tau_4)$ $P21_2_12$ $P2_1_2_1(\tau_5)$                | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | $C_{4\nu}$ $C_{4\nu}$ $C_{4\nu}$ $C_{4\nu}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ | I<br>I<br>I<br>I<br>I<br>I | 2<br>2<br>2<br>2<br>2 | $\begin{array}{c} A_{2.1} \\ A_{2.1} \\ A_{2.1} \\ A_{2.1} \\ \end{array}$ |
|-----------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|----------------------------|-----------------------|----------------------------------------------------------------------------|
| P42c<br>P421m<br>P421c<br>P4m2                                              | R<br>X<br>M<br>Z<br>A<br>R<br>X<br>T<br>Z<br>T           | $C222(\tau_1, \tau_2, \tau_3, \tau_4)$ $P222(\tau_1, \tau_3)P222_1(\tau_2, \tau_4)$ $P222$ $C222(\tau_5)$ $P222_1(\tau_2 + \tau_4, \tau_3 + \tau_5)$ $F222(\tau_2 + \tau_4, \tau_3 + \tau_5)$ $C222(\tau_1, \tau_2, \tau_3, \tau_4)$ $P222(\tau_1, \tau_3)P222_1(\tau_2, \tau_4)$ $P2_12_12$ $P2_12_12_1(\tau_5)$                             | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2           | $C_{4\nu}$ $C_{4\nu}$ $C_{4\nu}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$    | I<br>I<br>I<br>I<br>I      | 2<br>2<br>2<br>2      | $A_{2.1}$<br>$A_{2.1}$<br>$A_{2.1}$                                        |
| P42c<br>P421m<br>P421c<br>P4m2                                              | X<br>F<br>M<br>Z<br>A<br>R<br>X<br>F<br>Z<br>F<br>F      | $\begin{array}{c} P222(\tau_{1},\tau_{3})P222_{1}(\tau_{2},\tau_{4})\\ P222\\ C222(\tau_{5})\\ P222_{1}(\tau_{2}+\tau_{4},\tau_{3}+\tau_{5})\\ F222(\tau_{2}+\tau_{4},\tau_{3}+\tau_{5})\\ C222(\tau_{1},\tau_{2},\tau_{3},\tau_{4})\\ P222(\tau_{1},\tau_{3})P222_{1}(\tau_{2},\tau_{4})\\ P22_{1}2_{1}2\\ P2_{1}2_{1}(\tau_{5})\end{array}$ | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                | $C_{4\nu}$ $C_{4\nu}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$                       | I<br>I<br>I<br>I           | 2<br>2<br>2           | $A_{2.1}$<br>$A_{2.1}$                                                     |
| $P\overline{4}2c$ $P\overline{4}2_1m$ $P\overline{4}2_1c$ $P\overline{4}m2$ | Γ<br>M<br>Z<br>A<br>R<br>X<br>Γ<br>Z<br>Γ                | $P222 C222(\tau_5) P222_1(\tau_2 + \tau_4, \tau_3 + \tau_5) F222(\tau_2 + \tau_4, \tau_3 + \tau_5) C222(\tau_1, \tau_2, \tau_3, \tau_4) P222(\tau_1, \tau_3) P222_1(\tau_2, \tau_4) P2_{12_12_1} P2_{12_12_1}(\tau_5) $                                                                                                                       | 2<br>2<br>2<br>2<br>2                               | $C_{4\nu}$ $C_{4}$ $C_{4}$ $C_{4}$ $C_{4}$                                  | I<br>I<br>I                | 2<br>2                | A <sub>2.1</sub>                                                           |
| $P\overline{4}2_1m$<br>$P\overline{4}2_1c$<br>$P\overline{4}m2$             | М<br>Z<br>A<br>R<br>X<br>Г<br>Z<br>Г                     | $C222(\tau_5)$ $P222_1(\tau_2 + \tau_4, \tau_3 + \tau_5)$ $F222(\tau_2 + \tau_4, \tau_3 + \tau_5)$ $C222(\tau_1, \tau_2, \tau_3, \tau_4)$ $P222(\tau_1, \tau_3)P222_1(\tau_2, \tau_4)$ $P2_{12_12_2}$ $P2_{12_12_1}(\tau_5)$                                                                                                                  | 2<br>2<br>2<br>2<br>2                               | $C_{4\nu} \\ C_{4} \\ C_{4} \\ C_{4\dots}$                                  | I<br>I<br>I                | 2<br>2                | A <sub>2.1</sub>                                                           |
| P421m<br>P421c<br>P4m2                                                      | Ζ<br>Α<br><i>R</i><br><i>X</i><br>Γ<br>Ζ<br>Γ            | $P222_{1}(\tau_{2} + \tau_{4}, \tau_{3} + \tau_{5})$ $F222(\tau_{2} + \tau_{4}, \tau_{3} + \tau_{5})$ $C222(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4})$ $P222(\tau_{1}, \tau_{3})P222_{1}(\tau_{2}, \tau_{4})$ $P2_{1}2_{1}2$ $P2_{1}2_{1}2_{1}(\tau_{5})$                                                                                       | 2<br>2<br>2<br>2<br>2                               | $C_4$ $C_4$ $C_4$ $C_4$                                                     | I<br>I                     | 2                     | · 2.1                                                                      |
| P421m<br>P421c<br>P4m2                                                      | 2<br>Α<br>R<br>X<br>Γ<br>Ζ<br>Γ                          | $F222(\tau_{2} + \tau_{4}, \tau_{3} + \tau_{5})$ $F222(\tau_{2} + \tau_{4}, \tau_{3} + \tau_{5})$ $C222(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4})$ $P222(\tau_{1}, \tau_{3})P222_{1}(\tau_{2}, \tau_{4})$ $P2_{1}2_{1}2$ $P2_{1}2_{1}2_{1}(\tau_{5})$                                                                                           | 2<br>2<br>2<br>2                                    | C4<br>C4<br>C4                                                              | I                          | 2                     | 4                                                                          |
| $P\overline{4}2_1m$<br>$P\overline{4}2_1c$<br>$P\overline{4}m2$             | R<br>Х<br>Г<br>С                                         | $P222(\tau_{2} + \tau_{4}, \tau_{3} + \tau_{5})$ $C222(\tau_{1}, \tau_{2}, \tau_{3}, \tau_{4})$ $P222(\tau_{1}, \tau_{3})P222_{1}(\tau_{2}, \tau_{4})$ $P2_{1}2_{1}2_{1}$ $P2_{1}2_{1}(\tau_{5})$                                                                                                                                             | 2<br>2<br>2                                         | C4<br>C4                                                                    | 1                          | 2                     | A 2.2                                                                      |
| $P\overline{4}2_1m$<br>$P\overline{4}2_1c$<br>$P\overline{4}m2$             | Х<br>Г<br>Z<br>Г                                         | $P_{222}(\tau_1, \tau_2, \tau_3, \tau_4)$ $P_{222}(\tau_1, \tau_3)P_{222_1}(\tau_2, \tau_4)$ $P_{2_12_12}$ $P_{2_12_12_1}(\tau_5)$                                                                                                                                                                                                            | 2                                                   | C 4                                                                         | T                          | 2                     | A 2.2                                                                      |
| $P\overline{4}2_1m$ $P\overline{4}2_1c$ $P\overline{4}m^2$                  | х<br>Г<br>Z<br>Г                                         | $P222(\tau_1, \tau_3) P2222_1(\tau_2, \tau_4) P2_12_12 P2_12_12_1(\tau_5)$                                                                                                                                                                                                                                                                    | 2                                                   | 40                                                                          | 1                          | 2                     | A 2.1                                                                      |
| $P\overline{4}2_1m$ $P\overline{4}2_1c$ $P\overline{4}m2$                   | Γ<br>Ζ<br>Γ                                              | $P2_12_12$<br>$P2_12_12_1(\tau_5)$                                                                                                                                                                                                                                                                                                            |                                                     | $C_{4v}$                                                                    | 1                          | 2                     | A 2.1                                                                      |
| P421c<br>P4m2                                                               | Z<br>F                                                   | $P2_12_12_1(\tau_5)$                                                                                                                                                                                                                                                                                                                          | -                                                   | ~                                                                           |                            |                       |                                                                            |
| $P42_1c$<br>$P\overline{4}m2$                                               | Г                                                        | • • • •                                                                                                                                                                                                                                                                                                                                       | 2                                                   | $C_{4v}$                                                                    | 1                          | 2                     | A 2.2                                                                      |
| P4m2                                                                        | ~                                                        | <i>P</i> 2 <sub>1</sub> 2 <sub>1</sub> 2                                                                                                                                                                                                                                                                                                      |                                                     | • • •                                                                       |                            |                       |                                                                            |
| P4m2                                                                        | Z                                                        | $P2_12_12_1(\tau_2 + \tau_4, \tau_3 + \tau_5)$                                                                                                                                                                                                                                                                                                | 2                                                   | C4                                                                          | I                          | 2                     | A <sub>2.2</sub>                                                           |
|                                                                             | Г                                                        | C 222                                                                                                                                                                                                                                                                                                                                         |                                                     |                                                                             |                            |                       |                                                                            |
|                                                                             | М                                                        | $P222_{1}(\tau_{5})$                                                                                                                                                                                                                                                                                                                          | 2                                                   | $C_{4\nu}$                                                                  | I                          | 2                     | $A_{21}$                                                                   |
|                                                                             | Ζ                                                        | $C222_{1}(\tau_{5})$                                                                                                                                                                                                                                                                                                                          | 2                                                   | $C_{4y}$                                                                    | I                          | 2                     | A21                                                                        |
| •                                                                           | A                                                        | $1222(\tau_{5})$                                                                                                                                                                                                                                                                                                                              | 2                                                   | $C_{4}$                                                                     | Ι                          | 2                     | A21                                                                        |
| P4c2                                                                        | Г                                                        | C222                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                             |                            |                       | 2.1                                                                        |
|                                                                             | M                                                        | $P_{2_{1}}2_{2}(\tau_{5})$                                                                                                                                                                                                                                                                                                                    | 2                                                   | C.                                                                          | I.                         | 2                     | An                                                                         |
|                                                                             | 7                                                        | $C_{222}(\tau_{2} + \tau_{2}, \tau_{2} + \tau_{4})$                                                                                                                                                                                                                                                                                           | 2                                                   | C 40                                                                        | ī                          | 2                     | 4                                                                          |
|                                                                             | 4                                                        | $(222_1(1_2+1_3,1_3+1_4))$                                                                                                                                                                                                                                                                                                                    | 2                                                   | C 4                                                                         | T I                        | 2                     | A 2.2                                                                      |
| PALA                                                                        | r                                                        | $C_{222}(i_2 + i_5, i_3 + i_4)$                                                                                                                                                                                                                                                                                                               | 2                                                   | C 4                                                                         | 1                          | 2                     | A 2.2                                                                      |
| r402                                                                        | 1                                                        | $C_{222}$                                                                                                                                                                                                                                                                                                                                     | 2                                                   | <i>C</i>                                                                    | T                          | 2                     |                                                                            |
|                                                                             | M                                                        | $P_{2_12_12}(\tau_2 + \tau_5, \tau_3 + \tau_4)$                                                                                                                                                                                                                                                                                               | 2                                                   | C 4                                                                         | 1                          | 2                     | A 2.2                                                                      |
|                                                                             | Z                                                        | $C_{222_1}(\tau_5)$                                                                                                                                                                                                                                                                                                                           | 2                                                   | $C_{4v}$                                                                    | . 1                        | 2                     | A <sub>2.1</sub>                                                           |
|                                                                             | A                                                        | $12_{1}2_{1}2_{1}(\tau_{2}+\tau_{5},\tau_{3}+\tau_{4})$                                                                                                                                                                                                                                                                                       | 2                                                   | $C_4$                                                                       | 1                          | 2                     | A <sub>2.2</sub>                                                           |
| _                                                                           | Г                                                        | C222                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                             |                            |                       |                                                                            |
| P4n2                                                                        | М                                                        | $P2_{1}2_{1}2(\tau_{2}+\tau_{5},\tau_{3}+\tau_{4})$                                                                                                                                                                                                                                                                                           | 2                                                   | $C_4$                                                                       | I                          | 2                     | A 2.2                                                                      |
|                                                                             | Z                                                        | $C222_1(\tau_2 + \tau_5, \tau_3 + \tau_4)$                                                                                                                                                                                                                                                                                                    | 2                                                   | $C_4$                                                                       | I                          | 2                     | A <sub>2.2</sub>                                                           |
|                                                                             | A                                                        | $I2_{1}2_{1}2_{1}(\tau_{5})$                                                                                                                                                                                                                                                                                                                  | 2                                                   | $C_{4v}$                                                                    | Ι                          | 2                     | A <sub>2.1</sub>                                                           |
|                                                                             | Γ                                                        | F222                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                             |                            |                       |                                                                            |
| IĀm2                                                                        | Ζ                                                        | $C222_{1}(\tau_{5})$                                                                                                                                                                                                                                                                                                                          | 2                                                   | $C_{4}$                                                                     | . I                        | 2                     | A21                                                                        |
|                                                                             | X                                                        | $C222(\tau_1, \tau_2)C222_1(\tau_3, \tau_4)$                                                                                                                                                                                                                                                                                                  | 2                                                   | $C_{4n}$                                                                    | I                          | 2                     | A21                                                                        |
|                                                                             | Г                                                        | F222                                                                                                                                                                                                                                                                                                                                          |                                                     |                                                                             |                            |                       | 2.1                                                                        |
| 14c2                                                                        | Z                                                        | $C222_1(\tau_{\rm f})$                                                                                                                                                                                                                                                                                                                        | 2                                                   | C.                                                                          | Ť                          | 2                     | An                                                                         |
|                                                                             | X                                                        | $C_{222}(\tau_1, \tau_2)C_{222}(\tau_2, \tau_4)$                                                                                                                                                                                                                                                                                              | 2                                                   | $C_{4v}$                                                                    | ī                          | 2                     | 4                                                                          |
|                                                                             | Г                                                        | 1222                                                                                                                                                                                                                                                                                                                                          | 2                                                   | C 4v                                                                        | 1                          | 2                     | A 2.1                                                                      |
| 142m                                                                        | 7                                                        | $P_{2}, 2, 2(\pi_{-})$                                                                                                                                                                                                                                                                                                                        | 2                                                   | C                                                                           | T T                        | 2                     | A                                                                          |
| 17211                                                                       | N                                                        | $C_{222}(\pi,\pi)$                                                                                                                                                                                                                                                                                                                            | 2                                                   | C 4υ<br>92 01                                                               | T                          | 2                     | A 2.1                                                                      |
|                                                                             | л<br>Г                                                   | $(222(1_1, 1_2))$                                                                                                                                                                                                                                                                                                                             | 4                                                   | 82.01                                                                       | 1                          | 2                     | A 4.1                                                                      |
| 170.1                                                                       | 1                                                        | $P_{212121}$                                                                                                                                                                                                                                                                                                                                  | 2                                                   | 6                                                                           |                            |                       |                                                                            |
| 1420                                                                        | Z                                                        | $P_{222_1}(\tau_2 + \tau_4)$                                                                                                                                                                                                                                                                                                                  | 2                                                   | C 4                                                                         | 1                          | 2                     | A 2.2                                                                      |
|                                                                             |                                                          | $P2_12_12_1(\tau_3+\tau_5)$                                                                                                                                                                                                                                                                                                                   | 2                                                   | $C_4$                                                                       | 1                          | 2                     | A <sub>2.2</sub>                                                           |
|                                                                             | N                                                        | $C222_{1}(\tau_{1}, \tau_{2})$                                                                                                                                                                                                                                                                                                                | 4                                                   | 80.01                                                                       | III                        | . 4                   | A <sub>4.1</sub>                                                           |
| P422                                                                        | г                                                        | $P_{2}^{x}_{22}(\tau_{2}) C_{2}^{xy}_{22}(\tau_{1})$                                                                                                                                                                                                                                                                                          | 2                                                   | C                                                                           | I .                        | 1                     | proper                                                                     |
|                                                                             | R                                                        | $C2^{2}22(\pi_{3},\pi_{2},\pi_{3},\pi_{3},\pi_{3})$                                                                                                                                                                                                                                                                                           | 2                                                   | Ċ                                                                           | I                          | 2                     | 4                                                                          |
|                                                                             | N<br>V                                                   | $P_{2}^{2} 22(1_{1}, 1_{2}, 1_{3}, 1_{4})$                                                                                                                                                                                                                                                                                                    | 2                                                   | $C_{4\nu}$                                                                  | I                          | 2                     | A 2.1                                                                      |
| DA1 1                                                                       |                                                          | $P_2 = 2 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 2 \cdot 1 \cdot 1 \cdot$                                                                                                                                                                                                                                                       | 2                                                   | 4υ                                                                          | 1                          | 2                     | A 2.1                                                                      |
| r 42 <sub>1</sub> 2                                                         | 1                                                        | $F_{21212}(C_{222})$                                                                                                                                                                                                                                                                                                                          | 2                                                   | с.<br>С                                                                     | Ŧ                          | 2                     | , i                                                                        |
|                                                                             | М                                                        | $P 2^{\infty} 22(\tau_1)$                                                                                                                                                                                                                                                                                                                     | 2                                                   | C <sub>4v</sub>                                                             | 1                          | 2                     | A 2.1                                                                      |
|                                                                             |                                                          | $P2_122(\tau_2 + \tau_3, \tau_4 + \tau_5)$                                                                                                                                                                                                                                                                                                    | 2                                                   | C <sub>4</sub>                                                              | 1                          | 2                     | A 2.2                                                                      |
|                                                                             | A                                                        | $12^{xy}22(\tau_1)$                                                                                                                                                                                                                                                                                                                           | 2                                                   | C <sub>4v</sub>                                                             | I                          | 2                     | A <sub>2.1</sub>                                                           |
|                                                                             |                                                          | $12_12_12_1(\tau_2 + \tau_3, \tau_4 + \tau_5)$                                                                                                                                                                                                                                                                                                | 2                                                   | $C_4$                                                                       | I                          | 2                     | A 2.2                                                                      |
| P4122                                                                       | Γ                                                        | P222 <sub>1</sub> , C222 <sub>1</sub>                                                                                                                                                                                                                                                                                                         |                                                     | . • • •                                                                     |                            |                       |                                                                            |
| P4322 Ĵ                                                                     | X                                                        | $P222_1(\tau_1, \tau_3)P2_12_12(\tau_2, \tau_4)$                                                                                                                                                                                                                                                                                              | 2                                                   | $C_{4u}$                                                                    | · I                        | 2                     | A21                                                                        |
| P41212)                                                                     | Г                                                        | P212121,C2221                                                                                                                                                                                                                                                                                                                                 |                                                     |                                                                             |                            |                       |                                                                            |
| P41212                                                                      | M                                                        | $P222_{1}(\tau_{1})$                                                                                                                                                                                                                                                                                                                          | 2                                                   | Сл.,                                                                        | I                          | 2                     | A                                                                          |

# TABLE VII. (Continued)

| HS<br>group        | BZ<br>point      | Low-symmetry<br>phases                                       | OP<br>dim | (a)               | (b)       | (c)      | (d)                                 |
|--------------------|------------------|--------------------------------------------------------------|-----------|-------------------|-----------|----------|-------------------------------------|
|                    |                  |                                                              |           | · ·               |           |          |                                     |
| P43212             | М                | $P2_12_12(\tau_2 + \tau_3, \tau_4 + \tau_5)$                 | 2         | C <sub>4</sub>    | I         | 2        | A22                                 |
| P4222              | Г                | P222,C222                                                    |           |                   |           |          |                                     |
| -                  | R                | $C222(\tau_1, \tau_2, \tau_3, \tau_4)$                       | 2         | $C_{41}$          | Ι         | 2        | A21                                 |
|                    | X                | $P222(\tau_1, \tau_3)P222_1(\tau_2, \tau_4)$                 | 2         | $C_{4n}$          | I         | 2        | A <sub>21</sub>                     |
| P42212             | Г                | P21212,C222                                                  |           |                   |           |          | 2.1                                 |
|                    | М                | $P222(\tau_1)$                                               | 2         | $C_{4}$           | I         | 2        | $A_{21}$                            |
|                    |                  | $P2_{1}22(\tau_{2}+\tau_{3},\tau_{4}+\tau_{5})$              | 2         | $C_{\mathbf{A}}$  | I         | 2        | A22                                 |
|                    | A                | $12_{1}2_{1}2_{1}(\tau_{1})$                                 | 2         | $C_{4,n}$         | I         | 2        | A21                                 |
|                    |                  | $1222(\tau_2 + \tau_3, \tau_4 + \tau_5)$                     | 2         | $C_4$             | I         | 2        | A22                                 |
| 1422               | Г                | 12×22, F2××22                                                |           | • •               |           |          | 2.2                                 |
|                    | X                | $C2^{xy}22(\tau_1, \tau_4)C222_1(\tau_2, \tau_3)$            | 2         | $C_{A_{11}}$      | I         | 2        | A21                                 |
|                    | Ν                | $C2^{x}22(\tau_{1},\tau_{2})$                                | 4         | 82.01             | Ι         | 4        | AAI                                 |
| /4,22              | Г                | 12,2,2, F222                                                 |           |                   |           |          | 4.1                                 |
| 1                  | X                | $C222(\tau_1, \tau_4)C222(\tau_2, \tau_3)$                   | 2         | C <sub>A</sub> .  | I         | 2        | A21                                 |
|                    |                  | $C222_1$                                                     | -         | - 40              | -         | -        | 2.1                                 |
|                    | N                | $(\tau_1, \tau_2)$                                           | 4         | 80.01             | I         | 4        | $A_{41}$                            |
|                    |                  | 1222                                                         |           |                   |           | 0        |                                     |
| D.4                | Г                | $D_{m}X_{m}Q(-)C_{m}X_{m}Q(-)$                               | `ı        | C                 | 111       | 0        | A 4.1                               |
| P4mm               | 1                | $Pm^*m_2(\tau_3)Cm^*m_2(\tau_4)$                             | 1         | $C_i$             | 1         | 1        | proper                              |
|                    | M                | $[Cm^{*}m2,Pm^{*}a2](\tau_{5})$                              | 2         | C <sub>4v</sub>   | 1,11      | 2,2      | A <sub>2.1</sub> , A <sub>2.1</sub> |
|                    | Z                | $[Pm^{*}c2_{1}, Cm^{*}c2_{1}](\tau_{5})$                     | 2         | $C_{4v}$          | 1,11      | 2,2      | A <sub>2.1</sub> , A <sub>2.1</sub> |
|                    | A                | $[Fm^{*}m^{2}, Im^{*y}a^{2}](\tau_{5})$                      | 2         | $C_{4v}$          | 1,11      | 2,2      | $A_{2,1}, A_{2,1}$                  |
|                    | R                | $Am^{*}m^{2}(\tau_{1}, \tau_{4})Abm^{2}(\tau_{2}, \tau_{3})$ | 2         | $C_{4v}$          | I         | 2        | A 2.1                               |
|                    | X                | $Pm^{\mathbf{x}}m2(\tau_1,\tau_2)Pma2(\tau_3,\tau_4)$        | 2         | $C_{4v}$          | I         | 2        | A <sub>2.1</sub>                    |
| P4bm               | Г                | Pba 2, Cmm 2                                                 | _         | -                 | _         | _        |                                     |
|                    | М                | $Pma2(\tau_1)$                                               | 2         | $C_{4v}$          | I         | 2        | A 2.1                               |
|                    | $\mathbf{Z}_{i}$ | $[Pna 2_1, Cmc 2_1](\tau_5)$                                 | 2         | C <sub>4v</sub>   | 1,11      | 2,2      | $A_{2,1}, A_{2,1}$                  |
|                    | A                | Ima 2( $\tau_1$ )                                            | 2         | C40               | I         | 2        | A <sub>2.1</sub>                    |
| P4 <sub>2</sub> cm | . Γ              | Pcc2,Cmm2                                                    |           |                   |           |          |                                     |
|                    | М                | $[Cmm2, Pma2](\tau_5)$                                       | 2         | $C_{4n}$          | I,II      | 2,2      | A21, A21                            |
|                    | Ζ                | $Cmc 2_1(\tau_1)$                                            | 2         | $C_{4n}$          | I         | 2        | A <sub>21</sub>                     |
|                    | A                | $Iba 2(\tau_1)$                                              | 2         | $C_{4n}$          | Ι         | 2        | A21                                 |
|                    | Х                | $Pcc2(\tau_1, \tau_2) Pnc2(\tau_3, \tau_4)$                  | 2         | C4.               | I         | 2        | A 2.1                               |
| P42nm              | Г                | Pnn2.Cmm2                                                    |           | + <i>v</i>        |           |          | 2.1                                 |
| 2                  | М                | $Pma2(\tau_1)$                                               | 2         | C <sub>4</sub> ., | I         | 2        | Aan                                 |
|                    | Z                | $Cmc2_1(\tau_1)$                                             | 2         | C <sub>40</sub>   | ī         | 2        | A2.1                                |
|                    | Ā                | $[Fdd2.Img2](\tau_{\epsilon})$                               | 2         | $C_{4v}$          | LII       | 22       | A21 A21                             |
| P4cc               | Г                | Pcc 2. Ccc 2                                                 | -         | - 40              | -,        | 2,2      |                                     |
|                    | M                | $[Cmm2,Pma2](\tau_{\epsilon})$                               | 2         | C.                | LH '      | 2.2      | Ann Ann                             |
|                    | X                | $Pcc 2(\tau_1, \tau_2) Pnc 2(\tau_2, \tau_4)$                | 2         | C <sub>4</sub>    | -,<br>I   | 2        | A2.1,2.1                            |
| P4nc               | Г                | Pnn2 Ccc2                                                    | ~         | C 4v              | •         | 2        | 2.1                                 |
|                    | M                | $Pma_2(\tau_1)$                                              | 2         | C                 | ľ         | 2        | An                                  |
|                    | A                | $Fdd2(\tau_1)$                                               | 2         | C 40              | I         | 2        | A 2.1                               |
| P4.mc              | Г                | Pmm2 Ccc2                                                    | -         | C 4υ<br>· · ·     | •         | L        | 2.1                                 |
| 1 121110           | M                | $[Cmm^2, Pma^2](\tau_{\tau})$                                | 2         | C.                | ТП        | 2.2      | 1 1                                 |
|                    | 7                | $Pmc2, (\tau, )$                                             | 2         | $C_{4v}$          | 1,11<br>T | 2,2<br>7 | 4.                                  |
|                    | 4                | $Fmm^2(\tau_1)$                                              | 2         | C 40              | I         | 2        | 4.                                  |
|                    | A<br>D           | $4 mm^2(\pi, \pi) 4 hm^2(\pi, \pi)$                          | 2         | $C_{4v}$          | I<br>T    | 2        | A 2.1                               |
|                    | n<br>V           | $P_{mm2}(\pi, \pi_2) = P_{mm2}(\pi, \pi_4)$                  | 2         | $C_{4v}$          | 1<br>T    | 2        | A 2.1                               |
| DA he              |                  | $Fmm 2(\tau_1, \tau_2) Fma 2(\tau_3, \tau_4)$                | 2         | C <sub>4v</sub>   | 1         | 2        | A 2.1                               |
| 1 42 <i>00</i>     | 1                | F D a 2, C C 2                                               | 2         | <br>C             |           | •        |                                     |
|                    | M                | $rma_2(\tau_1)$                                              | 2         | C <sub>4v</sub>   | 1         | 2        | A 2.1                               |
|                    | Z                | $r_{na} z_1(\tau_1)$                                         | 2         | C <sub>4v</sub>   | I         | 2        | A 2.1                               |

# TABLE VII. (Continued)

| TABLE VII. (Continued) |             |                                                   |  |           |                 |      |     |                    |  |
|------------------------|-------------|---------------------------------------------------|--|-----------|-----------------|------|-----|--------------------|--|
| HS<br>group            | BZ<br>point | Low-symmetry<br>phases                            |  | OP<br>dim | (a)             | (b)  | (c) | (d)                |  |
| I4mm                   | Г           | $Im^x m 2$ , $Fm^{xy} m 2$                        |  |           | • • •           |      |     |                    |  |
|                        | Ζ           | $[Pm^{x}n2_{1}, Cm^{xy}c2_{1}](\tau_{5})$         |  |           | $C_{4v}$        | I,II | 2,2 | $A_{2.1}, A_{2.1}$ |  |
|                        | X           | $Am^{xy}m2(\tau_1)Ama2(\tau_2)$                   |  | 2         | $C_{4v}$        | I    | 2   | A <sub>2.1</sub>   |  |
|                        |             | $Aba2(\tau_3)Abm2(\tau_4)$                        |  | 2         | C4u             | I.   | 2   | A 2.1              |  |
|                        | Ν           | $Am^{\mathbf{x}}m2(\tau_1)Abm2(\tau_2)$           |  | 4         | 82.01           | I    | 4   | A <sub>4.1</sub>   |  |
|                        | A           | $[Im^{x}a^{2}, Fd^{xy}d^{2}](\tau_{2}, \tau_{4})$ |  | 4         | 26.1            | 1,11 | 4,4 | A4.1, A4.3         |  |
| I4cm                   | Г           | Iba 2, Fmm 2                                      |  |           |                 |      |     |                    |  |
|                        | Ζ           | $[Pca2_1, Cmc2_1](\tau_5)$                        |  | 2         | $C_{4v}$        | 1,11 | 2,2 | $A_{2,1}, A_{2,1}$ |  |
|                        | X           | $Ama 2(\tau_1) Amm 2(\tau_2)$                     |  | 2         | $C_{4v}$        | I I  | 2   | A <sub>2.1</sub>   |  |
|                        |             | $Abm2(\tau_3)Aba2(\tau_4)$                        |  | 2         | C <sub>4v</sub> | I    | 2   | $A_{2.1}$          |  |
| $I4_1 md$              | Г           | Imm 2, Fdd 2                                      |  |           |                 |      |     |                    |  |
| •                      | Ζ           | $Pmn2_1(\tau_1)$                                  |  | 2         | $C_{4v}$        | I    | 2   | A <sub>2.1</sub>   |  |
|                        | N           | $Amm2(\tau_1)Abm2(\tau_2)$                        |  | 4         | 80.01           | I    | 4   | A <sub>4.1</sub>   |  |
|                        |             | $Imm 2(\tau_1) Iba 2(\tau_3)$                     |  |           |                 | III  | 8   | $A_{4,1}$          |  |
| 141 cd                 | Г           | Iba 2, Fdd 2                                      |  |           |                 |      |     |                    |  |
| •                      | Ζ           | $Pca 2_1(\tau_1)$                                 |  | 2         | $C_{4\nu}$      | I    | 2   | $A_{2,1}$          |  |
| P4/mmm                 | Г           | $Pm^{x}ma(\tau_{3})Cm^{xy}cm(\tau_{4})$           |  | I         | $C_i$           | I    | 1   | proper             |  |
|                        |             |                                                   |  | •         | <u></u>         |      |     |                    |  |

| Z<br>N | $Pmn2_1(\tau_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                     | $C_{4v}$                                              | I                                                     | 2                                                     | A                                                     |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| N      | $A_{mum}(2(-)) A_{mum}(2(-))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                       |                                                       |                                                       | ··· 2.1                                               |
|        | $Amm 2(\tau_1) A m 2(\tau_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                     | 80.01                                                 | I                                                     | 4                                                     | A <sub>4.1</sub>                                      |
|        | $Imm 2(\tau_1) Iba 2(\tau_3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |                                                       | III                                                   | 8                                                     | A <sub>4.1</sub>                                      |
| Г      | Iba 2, Fdd 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |                                                       |                                                       |                                                       |
| Ζ      | $Pca 2_1(\tau_1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                     | $C_{4\nu}$                                            | I                                                     | 2                                                     | $A_{2,1}$                                             |
| Г      | $Pm^{x}ma(\tau_{3})Cm^{xy}cm(\tau_{4})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | I                                                     | $C_i$                                                 | Ι                                                     | 1                                                     | proper                                                |
|        | $[P2^{x}/m, B2^{xy}/m](\tau_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                     | $C_{4y}$                                              | 1,11                                                  | 2,2                                                   | proper                                                |
| М      | $[Cm^{x}ma, Pb^{xy}am](\tau_{5})[Cmmm, Pmma](\tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2                                                     | C <sub>4v</sub>                                       | 1,11                                                  | 2,2                                                   | $A_{2,1}, A_{2,1}$                                    |
| A      | $[Fm^{x}mm, Im^{xy}ma](\tau_{5}, \tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                     | $C_{4y}$                                              | Í,II                                                  | 2,2                                                   | $A_{2,1}, A_{2,1}$                                    |
| Z      | $[Pm^{x}maCm^{xy}cm](\tau_{5},\tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                     | $C_{4y}$                                              | 1,11                                                  | 2,2                                                   | $A_{2,1}, A_{2,1}$                                    |
| R      | $Cm^{x}mm(\tau_{1}, \tau_{2}, \tau_{7}, \tau_{8})Cmcm(\tau_{3}, \tau_{4}, \tau_{5}, \tau_{6})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2                                                     | $C_{4y}$                                              | I                                                     | 2                                                     | A <sub>21</sub>                                       |
| X      | $Pm^{x}mm(\tau_{1}, \tau_{7})Pmma(\tau_{2}, \tau_{4}, \tau_{5}, \tau_{8})Pbam(\tau_{3}, \tau_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                                                     | C4,                                                   | 1                                                     | 2                                                     | A <sub>21</sub>                                       |
| Г      | Pccm, Cccm, P2/c, B2/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       | 2.1                                                   |
| X      | $Pccm(\tau_{1}, \tau_{7}) Pcca(\tau_{2}, \tau_{4}, \tau_{6}, \tau_{8}) Pban(\tau_{3}, \tau_{5})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                     | $C_{4y}$                                              | I                                                     | 2                                                     | $A_{21}$                                              |
| Г      | Pban, Cmma, P2/b, B2/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |
| М      | $Pccm(\tau_1)Pmma(\tau_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                     | $C_{4\nu}$                                            | I                                                     | 2                                                     | A2.1                                                  |
| A      | $Ibam(\tau_1, \tau_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                     | $C_{4v}$                                              | I                                                     | 2                                                     | A <sub>2.1</sub>                                      |
| Ζ      | $[Pnna, Cmca](\tau_{5}, \tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                                                     | $C_{4y}$                                              | 1,11                                                  | 2,2                                                   | $A_{21}, A_{21}$                                      |
| Г      | Pnnn, Ccca, P2/b, B2/b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |                                                       |                                                       |                                                       |                                                       |
| М      | $Pban(\tau_3) Pbcn(\tau_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                                                     | $C_{4y}$                                              | I ·                                                   | 2                                                     | $A_{2,1}$                                             |
| A      | $Fddd(\tau_3, \tau_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                     | $C_{4y}$                                              | I                                                     | 2                                                     | A <sub>2.1</sub>                                      |
| Г      | $Pbam, Cmmm, P2_1/b, B2/b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                       |
| М      | $Pmma(\tau_1)Pmna(\tau_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                     | $C_{4n}$                                              | I                                                     | 2                                                     | A21                                                   |
|        | $Pban(\tau_{2} + \tau_{5}) Pmmn(\tau_{3} + \tau_{4}) Pbam(\tau_{7}, \tau_{10}) Pmmm(\tau_{8} + \tau_{9})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2                                                     | C <sub>4</sub>                                        | I                                                     | 2                                                     | A22                                                   |
| A      | Imma $(\tau_1)$ Ibam $(\tau_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                                     | $C_{4,n}$                                             | I                                                     | 2                                                     | $A_{21}$                                              |
|        | Imma $(\tau_{1} + \tau_{4}, \tau_{8} + \tau_{9})$ Ibam $(\tau_{2} + \tau_{5}, \tau_{7} + \tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                     | C <sub>4</sub>                                        | I                                                     | 2                                                     | A22                                                   |
| Ζ      | $[Pnma, Cmcm](\tau_5, \tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                     | $C_{4n}$                                              | 1,11                                                  | 2,2                                                   | $A_{21}, A_{21}$                                      |
| Г      | $Pnnm, Cccm, P2_1/b, B2/b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                       |
| М      | $Pmna(\tau_1)Pnna(\tau_6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                     | $C_{4n}$                                              | I                                                     | 2                                                     | A21                                                   |
|        | $P_{nnn}(\tau_{2} + \tau_{5}) P_{ccn}(\tau_{3} + \tau_{4}) P_{nnm}(\tau_{7} + \tau_{10}) P_{ccm}(\tau_{8} + \tau_{9})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                     | $C_{\mathbf{A}}$                                      | I                                                     | 2                                                     | A 2 2                                                 |
|        | $B2^{z}/m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       | 2.2                                                   |
| n      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | T                                                     | 2                                                     | (A A')                                                |
| ĸ      | $\tau_{a} = \tau_{a} = \tau_{a$ |                                                       |                                                       | 1                                                     | Z                                                     | $(A_{4,1} - A_{4,1})$                                 |
|        | $P2_1^{\star}/b, B2^{\star}/b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                       |                                                       |                                                       |                                                       |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                     | 58.01                                                 | IV                                                    | 4                                                     | A <sub>4.1</sub>                                      |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       | 11,V                                                  | 2,4                                                   | $E_{4.5}, E_{4.5}$                                    |
| Γ      | $Pmmn, Cmma, P2_1/m, B2/m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                       |
| М      | $Pbam(\tau_3)Pccm(\tau_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                     | C4v                                                   | I                                                     | 2                                                     | A <sub>2.1</sub>                                      |
| A      | $Ibam(\tau_3, \tau_4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                                                     | C4v                                                   | I                                                     | 2                                                     | A <sub>2.1</sub>                                      |
| Ζ      | $[Pnma, Cmca](\tau_5, \tau_{10})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                                     | $C_{4\nu}$                                            | I,II                                                  | 2,2                                                   | $A_{2.1}, A_{2.1}$                                    |
| Г      | $Pccn, Ccca, P2_1/b, B2/b$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                                                       |                                                       |                                                       |                                                       |
| М      | $Pbcn(\tau_1)Pban(\tau_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                     | $C_{4\nu}$                                            | I                                                     | 2                                                     | A <sub>2.1</sub>                                      |
|        | Γ<br>MAZRXΓXΓMAZΓMAΓM<br>A<br>ZΓM<br>R<br>Γ<br>MAZΓM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |

| HS                     | BZ     | Low-symmetry                                                                                                            | OP  | (a)                         | (b)    | (c)  | (d)                                 |
|------------------------|--------|-------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------|--------|------|-------------------------------------|
| group                  | point  | phases                                                                                                                  | dim | (4)                         | (0)    | (0)  |                                     |
| DA /                   | г      | Burner Com D2/ D2/ h                                                                                                    |     |                             |        |      |                                     |
| P4 <sub>2</sub> /mmc   | 1      | Pmmm, Cccm, P 2/m, B 2/0 $[Cmmm, Pmma](r)$                                                                              | 2   | C                           | 1 11   | 2.2  |                                     |
|                        | 1/1    | $[Cmma, Fma](\tau_5)[Cmmm, Fmna](\tau_{10})$                                                                            | 2   | C <sub>4</sub> <sub>v</sub> | 1,11   | 2,2  | A 2.1, A 2.1                        |
|                        | 7      | $P_{mma}(\tau_3, \tau_4)$                                                                                               | 2   | C <sub>4v</sub>             | I<br>T | 2    | A 2.1                               |
|                        |        | $Fmma(\tau_3, \tau_4)$                                                                                                  | 2   | $C_{4v}$                    | I      | 2    | A 2.1                               |
|                        | ĸ      | $Cmmm(\tau_1, \tau_2, \tau_7, \tau_8) Cmcm(\tau_3, \tau_4, \tau_5, \tau_6)$                                             | 2   | C <sub>4v</sub>             | I ·    | 2    | A 2.1                               |
| D4 /                   | X      | $Pmmm(\tau_1, \tau_7)Pmma(\tau_2, \tau_4, \tau_6, \tau_8)Pbam(\tau_3, \tau_5)$                                          | 2   | C <sub>4v</sub>             | I      | 2    | A <sub>2.1</sub>                    |
| $P4_2/mcm$             | 1      | Pccm, Cmmm, P2/b, B2/m                                                                                                  | •   | · · ·                       |        | • •  |                                     |
|                        | M      | $[Ccca, Pbam](\tau_5)[Cccm, Pmma](\tau_{10})$                                                                           | 2   | $C_{4v}$                    | 1,11   | 2,2  | $A_{2,1}, A_{2,1}$                  |
|                        | A      | $Immm(\tau_3, \tau_4)$                                                                                                  | 2   | $C_{4v}$                    | I      | 2    | A 2.1                               |
|                        | Z      | $Cmcm(\tau_3, \tau_4)$                                                                                                  | 2   | $C_{4v}$                    | I      | 2    | A <sub>2.1</sub>                    |
|                        | X      | $Pccm(\tau_1, \tau_7) Pcca(\tau_2, \tau_4, \tau_6, \tau_8)$                                                             | 2   | $C_{4v}$                    | I      | 2    | A <sub>2.1</sub>                    |
|                        |        | $Pban(\tau_3, \tau_5)$                                                                                                  | 2   | $C_{4v}$                    | I      | 2    | A <sub>2.1</sub>                    |
| P4 <sub>2</sub> /nbc   | Γ      | Pban, Ccca, P2/b, B2/b                                                                                                  |     | • • •                       |        |      |                                     |
|                        | М      | $Pban(\tau_3)Pbcn(\tau_4)$                                                                                              | 2   | $C_{4\nu}$                  | I      | 2    | A2.1                                |
|                        | Ζ      | $Pnna(\tau_3, \tau_4)$                                                                                                  | 2   | $C_{4v}$                    | I      | 2    | A21                                 |
| $P4_2/nnm$             | Г      | Pnnn, Cmma, P2/b, B2/b                                                                                                  |     |                             |        |      |                                     |
| -                      | М      | $Pcca(\tau_3) Pnma(\tau_4)$                                                                                             | 2   | $C_{4n}$                    | I      | 2    | A21                                 |
|                        | A      | $[Fddd, Ibam](\tau_5, \tau_{10})$                                                                                       | 2   | C                           | LII    | 2.2  | A21.A21                             |
|                        | Z      | $Cmca(\tau_2, \tau_4)$                                                                                                  | 2   | C.                          | I      | 2    | A2.1, 2.1                           |
| P4-/mbc                | Г      | Pham Cocin $P2_1/h B2/h$                                                                                                | -   |                             | -      | -    |                                     |
|                        | M      | $Pmna(\tau,)Pnna(\tau_{c})$                                                                                             | 2   | C.                          | T      | 2    | 4                                   |
|                        |        | $P_{nnn}(\tau_{1} + \tau_{2}) P_{con}(\tau_{2} + \tau_{2}) P_{nnm}(\tau_{2} + \tau_{2}) P_{com}(\tau_{2} + \tau_{2})$   | 2   | $C_{4v}$                    | I I    | 2    | 4 2.1                               |
|                        | 7      | $P_{nma}(\tau_{2}, \tau_{3})$                                                                                           | 2   | C <sub>4</sub>              | I      | 2    | A 2.2                               |
| DA / mana              | г<br>Г | $P_{nnma}\left(1_{3}, 1_{4}\right)$                                                                                     | 2   | C4v                         | 1      | 2    | A 2.1                               |
| r 4 <sub>2</sub> / mmm |        | $P_{mmn}(c_1)P_{mmn}(c_2)$                                                                                              | 2   | C                           | т      | 2    |                                     |
|                        | IVI    | $Phrm(\tau_1) Fmnu(\tau_6)$                                                                                             | 2   | C <sub>4v</sub>             | I<br>T | 2    | A 2.1                               |
|                        |        | $Podn(\tau_{2} + \tau_{5})Pmmn(\tau_{3} + \tau_{4})Podm(\tau_{7} + \tau_{10})Pmmm(\tau_{8} + \tau_{9})$                 | 2   | C4                          | 1      | 2    | A 2.2                               |
|                        | A      | $Imma(\tau_1, \tau_2) Ibam(\tau_4) Immm(\tau_3)$                                                                        | 2   | C <sub>4v</sub>             | 1      | 2    | A <sub>2.1</sub>                    |
|                        | Z      | $Cmcm(\tau_3, \tau_4)$                                                                                                  | 2   | $C_{4v}$                    | 1      | 2    | A <sub>2.1</sub>                    |
|                        |        | $B 2^{z}/m$                                                                                                             |     |                             |        |      |                                     |
|                        | R      | $Fm^{xy}mm \qquad \left\{(\tau_1, \tau_2)\right\}$                                                                      | 4   | 58.01                       | · I    | 2    | $(A_{41} - A'_{41})$                |
|                        |        | $P2^{*}/b B2^{xy}/m$                                                                                                    |     |                             | IV     | 4    | A                                   |
|                        |        | · -[/ · · · · ]                                                                                                         |     |                             | II.V   | 2.4  | EAS.EAS                             |
| P42/nmc                | Г      | $Pmmn, Ccca, P2_1/m, B2/b$                                                                                              |     | • • •                       | ,      | _, . | - 4.37 - 4.3                        |
| 2.                     | М      | $Pbcn(\tau_2)Pban(\tau_4)$                                                                                              | 2   | <i>C</i> <sub>4</sub>       | I      | 2    | A21                                 |
|                        | Z      | $Pmma(\tau_2, \tau_4)$                                                                                                  | 2   | CA                          | I      | 2    | A21                                 |
| P4-Incm                | Г      | $P_{ccn} Cmma P_{2}/b B_{2}/b$                                                                                          | -   | - 40                        | -      | -    | - 2.1                               |
|                        | м<br>М | $Pham(\tau_2)Pccm(\tau_1)$                                                                                              | 2   | С.                          | Т      | 2    | <i>A</i> <b>.</b> .                 |
|                        | 4      | $I_{ham}(\tau, \tau_{e})$                                                                                               | 2   | $C_{4v}$                    | Î      | 2    | 4                                   |
|                        | 4      | $Imma(\tau_1, \tau_2, \tau_2 + \tau_{12}) Ibca(\tau_2 + \tau_2, \tau_2 + \tau_2)$                                       | 2   | C.                          | ī      | I    | A                                   |
|                        | 7      | $Cmca(\pi_{2},\pi_{3})$                                                                                                 | 2   | C.                          | T      | 2    | A 2.2                               |
| 11/10000               | г<br>Г | $\lim_{n \to \infty} \lim_{m \to \infty} E_{n} \frac{B_{n} x}{m} \frac{B_{n} x}{m} \frac{B_{n} x}{m} \frac{B_{n} x}{m}$ | 2   | - 4υ                        | 1      | . 2  | 2.1                                 |
| 14/11/11               | 7      | $[P_n \times_{nm} C_m \times_{nm} D_n ] (\pi) ]$                                                                        | 2   | C                           | тп     | 2.2  | 1. 1                                |
|                        | L<br>V | (1 m m, Cm (a)) = Cmm(a) = Cmm(a) = Cmm(a)                                                                              | 2   | $C_{4v}$                    | 1,11   | 2,2  | A 2.1, A 2.1                        |
|                        | Л      | $C_{m} = mm(\tau_1) C_{m}(\tau_2) C_{m}(\tau_3, \tau_4)$                                                                | 2   | $C_{4v}$                    | 1      | 2    | A 2.1                               |
|                        | A.     | $Ccca(\tau_5)Cmma(\tau_6)Cmcm(\tau_7, \tau_8)$                                                                          | 2   | 02 01                       | 1      | 4.2  | A 2.1                               |
|                        | 11     | $[Cm^{*}mm, B2^{*}/m](\tau_1, \tau_4)[Cmca, B2/b](\tau_2, \tau_3)]$                                                     | 4   | 82.01                       | 11,1   | 4,2  | A <sub>4.1</sub> , L <sub>4.5</sub> |
|                        | F      | $B Z^{*}/m(\tau_1, \tau_4) B Z/b(\tau_2, \tau_3)$                                                                       |     |                             | v      | 4    | E <sub>4.5</sub>                    |
| 14/ <i>mcm</i>         | 1<br>7 | Ibam, Fmmm, B 2/b, B 2/m                                                                                                | 2   |                             | T 11   | 2.2  | 4 . 4                               |
|                        | Z      | $(rocn, Cmca)(\tau_5)(rocm, Cmcm)(\tau_{10})$                                                                           | 2   | C <sub>4v</sub>             | 1,11   | 2,2  | A 2.1, A 2.1                        |
|                        | X      | $Cmma(\tau_1)Ccca(\tau_2)Cmcm(\tau_3, \tau_4)$                                                                          | 2   | C <sub>4v</sub>             | 1      | 2    | A 2.1                               |
|                        | -      | $Cccm(\tau_5)Cmmm(\tau_6)Cmca(\tau_{7},\tau_8)$                                                                         | 2   | C <sub>4v</sub>             | 1      | 2    | A <sub>2.1</sub>                    |
| 14 <sub>1</sub> /amd   | Г      | Imma, Fddd, B2/m, B2/b                                                                                                  |     | • • •                       |        | -    |                                     |
|                        | Ζ      | $Pnma(\tau_3)Pmna(\tau_4)$                                                                                              | 2   | C <sub>4v</sub>             | I      | 2    | A <sub>2.1</sub>                    |
|                        | N      | $[Cmmm, B2/m](\tau_1, \tau_4)[Cmca, B2/b](\tau_2, \tau_3)]$                                                             | 4   | 101.01                      | 11,1   | 4,2  | $A_{4,1}, E_{4,4}$                  |
|                        |        | $B2/b(\tau_1, \tau_2, \tau_3, \tau_4)$                                                                                  |     |                             | Ш      | 4    | E <sub>4.4</sub>                    |
| I4 <sub>1</sub> /acd   | Γ      | Ibca, Fddd, B2/b, B2/b                                                                                                  |     | • • •                       |        |      |                                     |
|                        | Ζ      | $Pbca(\tau_3)Pcca(\tau_4)$                                                                                              | 2   | C <sub>4v</sub>             | I      | 2    | A <sub>2.1</sub>                    |
|                        |        |                                                                                                                         |     | · · ·                       |        |      |                                     |

TABLE VII (Continued)

TABLE VIII. Ferroelastic transitions with a trigonal or hexagonal high-symmetry phase. Same conventions as Table VII.

| HS<br>group            | BZ<br>point | Low-symmetry phases                                                                                                                                    | OP<br>dim | (a)              | (b)      | (c) | (d)                    |
|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------|----------|-----|------------------------|
| P3                     | A           | $P\overline{1}(\tau_2 + \tau_3, \tau_5 + \tau_6)$                                                                                                      | 2         | C <sub>6</sub>   | I        | 2   | E <sub>2.1</sub>       |
| R3 )                   | М           | $P\overline{1}(\tau_2)$                                                                                                                                | 3         | T <sub>h</sub>   | I        | 2   | $E_{3.1}$              |
| nāt )                  | L           | $P1(\tau_1, \tau_2)$                                                                                                                                   |           |                  |          |     |                        |
| $P_{\overline{2}}$ m 1 | A<br>M      | $[B2/m, B2/b](\tau_3, \tau_6)$                                                                                                                         | 2         | C <sub>6v</sub>  | 1,11     | 2,2 | $E_{2.1}; E_{2.1}$     |
| P 3m 1 )               | <i>M</i> 1  | $\left.\begin{array}{c} P_{2_{1}}/b(\tau_{2}) \\ P_{2}/b(\tau_{3})P_{2_{1}}/m(\tau_{4}) \\ P_{2}/b(\tau_{3})P_{2_{1}}/m(\tau_{4}) \end{array}\right\}$ | 3         | 0<br>0h          | I        | 2   | $E_{3.1}$<br>$E_{3.1}$ |
| nī1.)                  |             | $B2/m(\tau_1, \tau_4)B2/b(\tau_2, \tau_3)$                                                                                                             | 2         | 0                | T        | 2   | r                      |
| $P_{\overline{3}c1}$   | 11/1        | $P_{1/0}(\tau_{2})$<br>$P_{2/b}(\tau_{1})P_{2/b}(\tau_{2})$                                                                                            | 3         | 0                | , I<br>I | 2   | $E_{3.1}$              |
| Rām                    | 4           | $[B2/m B2/b](\tau_{2}, \tau_{2})$                                                                                                                      | 2         | C i              | I II     | 22  | $L_{3,1}$              |
| K JM                   | M           | $P_{2}/m(\tau_{1})P_{2}/c(\tau_{2})$                                                                                                                   | 3         | $C_{6\nu}$       | 1,11     | 2,2 | $E_{2.1}, E_{2.1}$     |
|                        | 101         | $P_{2_1/c}(\tau_2)$                                                                                                                                    | 3         | 0                | I        | 2   | $E_{3.1}$              |
|                        | L           | $B2/m(\tau_1, \tau_4)B2/b(\tau_2, \tau_2)$                                                                                                             | 3         | Ő.               | I        | 2   | $E_{3,1}$              |
| $R\overline{3}c$       | X           | $P2_1/c(\tau_2)$                                                                                                                                       | 3         | 0                | Î        | 2   | $E_{2,1}$              |
|                        |             | $P2_{1}/c(\tau_{A})P2/c(\tau_{3})$                                                                                                                     | 3 "       | . O.             | Ī        | 2   | $E_{2,1}$              |
| P6 )                   | М           | $P2(\tau_2)$                                                                                                                                           | 3         | Т <b>ь</b>       | I        | 2   | E <sub>21</sub>        |
| $P6_2$                 | Ĺ           | $B2(\tau_2)$                                                                                                                                           |           | "                |          |     | 5.1                    |
| $P_{6_1}$              | М           | $P2_1(\tau_2)$                                                                                                                                         |           |                  |          |     |                        |
| P63                    |             | 1(.,2)                                                                                                                                                 |           |                  |          |     |                        |
| $P_{0_5}$ )            | P           | $\overline{n_1}$                                                                                                                                       | •         | C                |          |     |                        |
| P6/m                   | 1           | $P_1(\tau_{11} + \tau_{12})$                                                                                                                           | 2         | C <sub>6</sub>   | . 1      | 1   | proper                 |
|                        | A           | $\frac{P2}{m}(\tau_{3} + \tau_{4}, \tau_{9} + \tau_{10})$                                                                                              | 2         | C <sub>6</sub>   | 1 .      | 2   | $E_{2.1}$              |
|                        | м           | $P_{21}/m(\tau_5 + \tau_6, \tau_{11} + \tau_{12})$                                                                                                     | 2         | T                | т        | 2   | F                      |
|                        | NI<br>I     | $= \frac{F2/m(\tau_4)F2/b(\tau_2,\tau_3)}{B2/m(\tau_2,\tau_2,\tau_3)}$                                                                                 | 3         | h .              | . 1      | 2   | L <sub>3.1</sub>       |
| P6./m                  | Г<br>Г      | $P\overline{1}$                                                                                                                                        |           |                  |          |     |                        |
| 1 03/11                | M           | $P_{2_1}/m(\tau_1)P_{2_2}/h(\tau_2,\tau_2)$                                                                                                            | 3         | Τ.               | I        | 2   | F.                     |
| P622)                  | M           | $P_{2_12_2}(\tau_4)$                                                                                                                                   | 3         | $\tilde{O}$      | Î        | 2   | $E_{3,1}$              |
| P6,22                  |             | $P222_1(\tau_2, \tau_3)$                                                                                                                               | 3         | 0.               | ·I       | 2   | $E_{2,1}$              |
| $P6_{4}22$             | L           | $ \frac{1}{222(\tau_1, \tau_4)} $                                                                                                                      |           | - n              |          |     | -3.1                   |
| P6,22                  |             |                                                                                                                                                        |           |                  |          |     |                        |
| P6,22                  | М           | $P2_{1}2_{1}2_{1}(\tau_{4})$                                                                                                                           | 3         | 0                | I        | 2   | $E_{3,1}$              |
| P6,22                  |             | $P2_12_12(\tau_2, \tau_3)$                                                                                                                             | 3         | O <sub>h</sub>   | I        | 2   | $E_{3.1}^{3.1}$        |
| P6mm                   | A           | $[CmC2_1, Cmc2_1](\tau_5)$                                                                                                                             | 2         | С <sub>6</sub> , | 1,11     | 2,2 | E21.E21                |
|                        |             | $[Ccc2,Cmm2](\tau_6)$                                                                                                                                  | 2         | $C_{6y}$         | 1,11     | 2,2 | $E_{21}, E_{21}$       |
|                        | M           | $Pba2(\tau_3)$                                                                                                                                         | 3         | õ                | I        | 2   | $E_{3,1}$              |
|                        | L           | $Pma2(\tau_2, \tau_4)$ $Imm2(\tau_1)Iba2(\tau_3)$ $Imma2(\tau_2, \tau_2)$                                                                              | 3         | O <sub>h</sub>   | · I      | 2   | E <sub>3.1</sub>       |
| P6cc                   | М           | $Pnn2(\tau_2, \tau_4)$ $Pnn2(\tau_3)$ $Pnc2(\tau_2, \tau_4)$                                                                                           | 3         | 0<br>0           | I.       | 2   | $E_{3.1}$              |
| P63cm                  | М           | $Pna 2_1(\tau_3)$                                                                                                                                      | 3         | O<br>O           | I ·      | 2   | $E_{3.1}$              |
| P63mc                  | М           | $Pmn 2_1(\tau_2) Pca 2_1(\tau_4)$ $Pna 2_1(\tau_3)$                                                                                                    | 3         | 0<br>0           | I        | 2   | $E_{3.1}$<br>$E_{3.1}$ |
| -                      |             | $Pca 2_1(\tau_2) Pmn 2_1(\tau_4)$                                                                                                                      | 3         | O <sub>h</sub>   | Ι        | 2   | $E_{3.1}$              |
| P6/mmm                 | Г           | $[B2^{x}/m, B2^{x}/m](\tau_{5})$                                                                                                                       | 2         | C <sub>6v</sub>  | I,II     | 1,1 | proper                 |
|                        |             | $C222(\tau_{12})$                                                                                                                                      | 2         | C <sub>6v</sub>  | Ι        | 1   | E <sub>2.1</sub>       |
|                        | A           | $[Cccm, Cmmm](\tau_6, \tau_{12})$                                                                                                                      | 2         | C <sub>6v</sub>  | I,II     | 2,2 | $E_{2.1}, E_{2.1}$     |
|                        |             | $[Cmcm, Cmcm](\tau_5, \tau_{11})$                                                                                                                      | 2         | C <sub>6v</sub>  | I,II     | 2,2 | $E_{2.1}, E_{2.1}$     |
|                        | М           | $Pbam(\tau_4)$                                                                                                                                         | 3         | 0                | I        | 2   | $E_{3.1}$              |

| HS<br>group | BZ<br>point | Low-symmetry phases                                                                                                                                                                                   | OP<br>dim | (a)            | (b) | (c) | (d)              |
|-------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------|-----|-----|------------------|
| P6/mmm      | М           | $Pmna(\tau_2, \tau_3) Pban(\tau_5)$ $Pmma(\tau_4, \tau_7) Pmmn(\tau_8)$                                                                                                                               | 3         | 0              | I   | 2   | E <sub>3.1</sub> |
|             | L           | $Immm(\tau_1, \tau_8) Ibam(\tau_4, \tau_5)$ $Imma(\tau_2, \tau_3, \tau_6, \tau_7)$                                                                                                                    | 3         | Oh             | 1   | 2   | E <sub>3.1</sub> |
| P6/mcc      | Г           | B2/b, B2/b, C222                                                                                                                                                                                      |           |                |     |     |                  |
|             | М           | $Pnnm(\tau_4)$                                                                                                                                                                                        | 3         | 0              | I   | 2   | $E_{3,1}$        |
|             |             | $Pnna(\tau_2, \tau_3) Pnnn(\tau_5) Pmna(\tau_6, \tau_7) Pccn(\tau_8) $                                                                                                                                | 3         | O <sub>h</sub> | I   | 2   | E <sub>3.1</sub> |
| P63/mcm     | Г           | $B2/b, B2/m, C222_1$                                                                                                                                                                                  |           |                | ъ.  |     |                  |
| ·           | М           | $Pnma(\tau_4)$                                                                                                                                                                                        | 3         | 0              | I   | 2   | $E_{3,1}$        |
|             |             | $Pnnm(\tau_{2})Pbcn(\tau_{3})$ $Pnna(\tau_{5})Pbcm(\tau_{6})$ $Pmmn(\tau_{7})Pnma(\tau_{9})$                                                                                                          | 3         | 0 <sub>h</sub> | I   | 2   | $E_{3.1}^{-1}$   |
| P61/mmc     | Г           | $B2/m, B2/b, C222_1$                                                                                                                                                                                  |           |                |     |     |                  |
| 5.          | M           | $Pnma(\tau_{A})$                                                                                                                                                                                      | 3         | 0              | I   | 2   | $E_{3,1}$        |
|             |             | $\left.\begin{array}{l}Pbcn\left(\tau_{2}\right)Pnnm\left(\tau_{3}\right)\\Pnna\left(\tau_{5}\right)Pmmn\left(\tau_{6}\right)\\Pbcm\left(\tau_{7}\right)Pnma\left(\tau_{8}\right)\end{array}\right\}$ | 3         | 0 <sub>h</sub> | I   | 2   | $E_{3.1}$        |

TABLE VIII. (Continued)

TABLE IX. Ferroelastic transition with a cubic high-symmetry phase. Same conventions as Table VII.

| HS<br>group   | BZ<br>point | Low-symmetry<br>phases                                                                                          | OP<br>dim | (a)            | (b)         | (c)      | (d)                                         |
|---------------|-------------|-----------------------------------------------------------------------------------------------------------------|-----------|----------------|-------------|----------|---------------------------------------------|
| P23           | R           | $F222(\tau_2 + \tau_3)$                                                                                         | 2         | C <sub>6</sub> | I           | 2        | $E_{2,1}$                                   |
|               | X           | $P222(\tau_1, \tau_2)P222_1(\tau_3, \tau_4)$                                                                    | 3         | T <sub>h</sub> | I           | 2        | $E_{31}^{2.1}$                              |
| F23           |             | No continuous PFT transitions                                                                                   |           | "              |             |          | 5.1                                         |
| 123           | Н           | $P222(\tau_2 + \tau_3)$                                                                                         | 2         | $C_6$          | I           | 2        | $E_{2,1}$                                   |
|               | Р           | $F222(\tau_2 + \tau_3)$                                                                                         | 2         | C12            | I           | 4        | $E_{2,2}$                                   |
| P213          |             | No continuous transitions                                                                                       |           |                |             |          | 2.2                                         |
| $12_{1}^{2}3$ | Н           | $P2_12_12_1(\tau_2 + \tau_3)$                                                                                   | 2         | $C_6$          | I           | 2        | $E_{21}$                                    |
| Pm3           | Г           | $P222(\tau_{6}, \tau_{7})$                                                                                      | 2         | $C_6$          | I           | 1        | $E_{21}$                                    |
|               | R           | $Fmmm(\tau_{2} + \tau_{3}, \tau_{6} + \tau_{7})$                                                                | 2         | $\tilde{C_6}$  | I           | 2        | $E_{21}^{2.1}$                              |
|               |             | $[Fmmm, R\overline{3}](\tau_4, \tau_8)$                                                                         | 3         | T <sub>b</sub> | 1,11        | 2,2      | $E_{3,1}^{2,1}, T_{3,1}$                    |
|               | Х           | $Pmmm(\tau_1, \tau_6)Pccm(\tau_2, \tau_5)$                                                                      |           |                |             |          | 0.1 0.1                                     |
|               |             | $Pmma(\tau_{3}, \tau_{4}, \tau_{7}, \tau_{8})$                                                                  | 3         | T <sub>h</sub> | I           | 2        | E31 .                                       |
|               | М           | $Cmmm(\tau_7, \tau_8)Cmma(\tau_5, \tau_6)$                                                                      | 3         | T <sub>h</sub> | I           | 2        | $E_{3,1}$                                   |
| Pn3           | Г           | P222                                                                                                            |           |                |             |          | 5.1                                         |
|               | R           | $Fddd(\tau_{2} + \tau_{3}, \tau_{6} + \tau_{7})$                                                                | 2         | $C_6$          | I           | 2        | $E_{21}$                                    |
|               |             | $[Fddd, R\overline{3}](\tau_4, \tau_8)$                                                                         | 3         | $T_h$          | I,II        | 2,2      | $E_{3,1}, T_{3,1}$                          |
| -<br>Fm 3     | Γ           | F222                                                                                                            |           |                |             |          | 011 011                                     |
|               | X           | $Ccca(\tau_5)Cmcm(\tau_6,\tau_7)Cmma(\tau_8)$                                                                   | 3         | Th             | · I         | 2        | $E_{3.1}$                                   |
|               | L           | $R\bar{3}(\tau_1,\tau_4)$                                                                                       | 4         | 95.1           | I           | 2        | $T_{4,1}$                                   |
|               |             | $\left. \begin{array}{c} P\overline{1} \\ [B2/m, Fmmm] \end{array} \right\} (\tau_2 + \tau_3, \tau_5 + \tau_6)$ | 8         | M <sub>4</sub> | I<br>11,111 | 2<br>4,8 | $(E_{8.1} - T_{8.1})$<br>$T_{8.1}, E_{8.1}$ |

| HS<br>group              | BZ<br>point                  | Low-symmetry phases                                                                         | OP<br>dim | (a)                   | (b)            | (c)   | (d)                          |
|--------------------------|------------------------------|---------------------------------------------------------------------------------------------|-----------|-----------------------|----------------|-------|------------------------------|
| Fd 3                     | Г                            | F222                                                                                        |           |                       |                |       |                              |
|                          | L                            | $R\overline{3}(\tau_1, \tau_4)$                                                             | 4         | 108.01                | I              | 2     | T <sub>4.1</sub>             |
|                          |                              | PĪ                                                                                          |           |                       | I              | 2     | $(E_{8,1} - T_{8,1})$        |
|                          |                              | $[B2/b, F222] \int (\tau_2 + \tau_3, \tau_5 + \tau_6)$                                      | 8         | $M_3$                 | II,III         | 4,8   | $T_{8.1}(E_{8.1} - A_{8.1})$ |
| Im3                      | Г                            | 1222                                                                                        |           | • • •                 |                |       |                              |
|                          | $H^{-1}$                     | $Pmmm(\tau_2 + \tau_3) Pnnn(\tau_6 + \tau_7)$                                               | 2         | C6                    | I .            | 2     | E <sub>2.1</sub>             |
|                          |                              | $[Pnnm, R\overline{3}](\tau_4)[Pmmn, R\overline{3}](\tau_8)$                                | 3         | T <sub>h</sub>        | I,II           | 2,2   | $E_{3,1}, T_{3,1}$           |
|                          | N                            | $[B2/b, Cmma](\tau_3)[B2/m, Cmmm](\tau_4)$                                                  | 6         | $L_8$                 | I,II           | 2,4   | $T_{6,1}, E_{6,1}$           |
|                          |                              | $[Ibca, R\overline{3}](\tau_3)[Immm, R\overline{3}](\tau_4)$                                |           | -                     | VI,III         | 8,8   | $E_{6,1}, T_{6,1}$           |
|                          | Р                            | $[F222, Fmmm, Fddd](\tau_2 + \overline{\tau}_2, \tau_3 + \overline{\tau}_3)$                | 4         | 42.1                  | I,II,III       | 4,4,4 | $E_{41}, E_{42}, E_{42}$     |
| Pa 3                     | Г                            | P212121                                                                                     |           |                       |                |       |                              |
|                          | R                            | $P\overline{1}(\tau_1+\overline{\tau}_1,\tau_4+\overline{\tau}_4)$                          | 4         | 49.1                  | I              | 2     | $T_{A2}$                     |
|                          |                              | $R\bar{3}(\tau_2+\bar{\tau}_2,\tau_3+\bar{\tau}_3,\tau_5+\bar{\tau}_5,\tau_6+\bar{\tau}_6)$ | 4         | 49.2                  | I              | 2     | $T_{A1}$                     |
| la 3                     | Г                            | 1212121                                                                                     |           |                       |                |       | - 4.1                        |
|                          | -<br>H                       | $Phca(\tau_{2} + \tau_{2}, \tau_{3} + \tau_{7})$                                            | 2         | C,                    | T              | 2     | Fai                          |
|                          |                              | $[Pcca, R\bar{3}](\tau, \tau_{0})$                                                          | 3         | с <sub>6</sub><br>Т.  | т.<br>ГП       | 22    | $E_{2,1}$                    |
| P432                     | R                            | $[1422, 1422](\pi_{2})$                                                                     | 2         | C.                    | 1,11           | 2,2   | $E_{3,1}, F_{3,1}$           |
| 1 452                    | Y                            | $P_{422}(\pi_{1},\pi_{2})P_{4,22}(\pi_{1},\pi_{1})$                                         | 2         | 0                     | 1,11<br>I      | 2,2   | $E_{2,1}, E_{2,1}$           |
|                          | M                            | $P_{422}(1, 12) = 222(13, 14)$                                                              | 2         | 0                     | I<br>T         | 2     | L 3.1<br>F                   |
|                          | IVI                          | $1422(1_2, 1_3)$                                                                            | 3         | 0                     | 1              | 2     | L <sub>3.1</sub>             |
|                          | $\int R$                     | $[14_{1}22, 14_{1}22](\tau_{3})$                                                            | 2         | C <sub>6v</sub>       | 1,11           | 2,2   | $E_{2.1}, E_{2.1}$           |
| P4 <sub>2</sub> 32       | { X                          | $P4_{1}22(\tau_{2}, \tau_{3})P4_{3}22(\tau_{4}, \tau_{5})$                                  | 3         | O <sub>h</sub>        | I              | 2     | $E_{3.1}$                    |
|                          | (M                           | $P4_{2}22(\tau_{3},\tau_{4})$                                                               | 3         | 0                     | I              | 2     | $E_{3.1}$                    |
|                          | $\int X$                     | $P4_{1}22(\tau_{2})P4_{2}2_{1}2(\tau_{3})$                                                  | 3         | 0                     | I              | 2     | $E_{3.1}$                    |
| F432                     | $\{L\}$                      | $R  32(\tau_1, \tau_2)$                                                                     | 4         | 109.01                | I              | 2     | T <sub>4.1</sub>             |
|                          | W                            | $[1422, 14_{1}22](\tau_{1}, \tau_{4})$                                                      | 6         | $L_2$                 | 1,11           | 4,4   | $E_{6.1}, E_{6.1}$           |
| F4132                    | X                            | $P4_{1}2_{1}2(\tau_{3})P4_{3}2_{1}2(\tau_{4})$                                              | 3         | 0                     | I              | 2     | $E_{3.1}$                    |
|                          | L                            | $R32(\tau_1, \tau_2)$                                                                       | 4         | 110.1                 | I              | 2     | $T_{4.1}$                    |
|                          | ( H                          | $[P422, P4_222](\tau_3)$                                                                    | 2         | $C_{6y}$              | I,II           | 2     | $E_{2,1}$                    |
| 1432                     | N                            | $[C222_1, P4_222](\tau_3)[C222_1, P42_12](\tau_4)]$                                         | 6         | $L_6$                 | I,II           | 2,4   | $T_{61}^{2.1}, E_{61}$       |
|                          | {                            | $[1422, R32](\tau_2)[14, 22, R32](\tau_4)$                                                  |           | ů,                    | VI,III         | 8,8   | $E_{61}, T_{61}$             |
| L.                       | Р                            | $[/422, /4, 22](\tau_2 + \overline{\tau}_2, \tau_2 + \overline{\tau}_2)$                    | 2         | C12.                  | I.H            | 4     | $E_{2,2}, E_{2,2}$           |
| $P4_{3}32$<br>$P4_{1}32$ |                              | No continuous <i>PFT</i> transitions                                                        |           | - 120                 | - <del>,</del> |       |                              |
| 14.32                    | H                            | $[P4_{2}2_{1}2_{2}P4_{1}2_{1}2](\tau_{2})$                                                  | 2         | C.                    | 1.11           | 2.2   | $E_{2,1},E_{2,1}$            |
| 1                        | N                            | $[C222, P4, 2, 2, R32](\tau_2, \tau_4)$                                                     | 6         |                       | LILIII         | 2.4.8 | $T_{c1}, E_{c1}, T_{c1}$     |
|                          | <u>(</u> Г                   | $[P\bar{4}(\tau_{c})]$                                                                      | 3         | -3                    | I              | 1     | $E_{2,1}$                    |
|                          | R                            | $[I\overline{A}m^2, I\overline{A}c^2](\tau_2)$                                              | 2         | Č                     | 1 II           | 2.2   | $E_{2,1}$                    |
| PAZm                     |                              | $I\bar{A}m^{2}(\pi)I\bar{A}c^{2}(\pi)$                                                      | 3         | 0.                    | I              | 2,2   | $E_{2.1}$                    |
| 1 45 m                   | v                            | $P\overline{A}$ $(\pi, \pi) P\overline{A}$ $(\pi, \pi)$                                     | 3         | $O_h$                 | I              | 2     | $E_{3,1}$                    |
|                          |                              | $P_{222}(-)$                                                                                | 5         | 0 <sub>h</sub>        | I<br>II        |       | $(A_{1} - F_{1})$            |
|                          |                              | $F_{222_1}(\tau_5)$                                                                         | 6         | ,                     |                | 4.4   | $(A_{6.1} - L_{6.1})$        |
|                          |                              | $[P42_1m, P42_1m](\tau_5)]$                                                                 | 2         | $L_7$                 | v1, v11        | 4,4   | $E_{6,1}, E_{6,1}$           |
|                          |                              | $P4b2(\tau_2, \tau_3)$                                                                      | 3         | 0                     | 1              | Z     | L <sub>3.1</sub>             |
| c72                      | ľ                            | $\overline{P}$                                                                              | 2         |                       | т<br>Т         | n     | E                            |
| r 45m                    | X                            | $P4n2(\tau_2, \tau_3)$                                                                      | 3         |                       |                | 2     | L <sub>3.1</sub>             |
|                          |                              | $[14m2, 14c2](\tau_3)$                                                                      | 0         | <i>M</i> <sub>2</sub> | 10,0           | 0,0   | $E_{8.1}$                    |
|                          | W                            | $[142m, 142d](\tau_1, \tau_2)$                                                              | Ċ         | $L_3$                 | 1,11           | 4,4   | $E_{6.1}, E_{6.1}$           |
|                          | $\int \frac{\Gamma}{\Gamma}$ |                                                                                             | ~         | · · ·                 |                |       | r.                           |
|                          | H                            | $[P42m, P42c](\tau_3)$                                                                      | 2         | C60                   | 1,11           | 2,2   | E <sub>2.1</sub>             |
| 143m                     | 1.                           | $P42m(\tau_4)P42c(\tau_5)$                                                                  | 3         | 0 <sub>h</sub>        | 1              | 2     | $E_{3.1}$                    |
|                          | N                            | $[P4c2, I42m](\tau_3)[P4b2, I42d](\tau_4)$                                                  | 6         | $L_6$                 | 11,VI          | 4,8   | $E_{6.2}, E_{6.1}$           |
|                          | (P                           | $[F222, 14m2, 14c2](\tau_3 + \overline{\tau}_3)$                                            | 4         | 44.1                  | 1,11,111       | 4,4,4 | $E_{4,2}, E_{4,2}, E_{4,2}$  |
| P43n                     | Γ                            | P4                                                                                          |           | • • •                 |                |       |                              |

TABLE IX. (Continued)

| HS       BZ       Low-symmetry phases       OP       (a)       (b) $P\bar{4}3n$ R $F222(\tau_3 + \bar{\tau}_3)$ 4 $21.1$ 1 $X$ $[P222_1, P\bar{4}2_1c](\tau_2 + \tau_4, \tau_3 + \tau_5)$ 6 $L_{10}$ $I,II$ $M$ $P\bar{4}n2(\tau_3, \tau_4)$ 3       O       1 $F\bar{4}3c$ $\Gamma$ $I\bar{4}$ $X$ $P\bar{4}b2(\tau_3, \tau_4)$ 3       O       1 $F\bar{4}3c$ $\Gamma$ $I\bar{4}$ $X$ $P\bar{4}b2(\tau_3, \tau_4)$ 3       O       1 $I\bar{4}3d$ $\begin{cases} \Gamma$ $I\bar{4}$ $I\bar{4}3d$ $\begin{cases} P422, P\bar{4}2n](\tau_8 + \bar{\tau}_3)$ 4       21.1       I $Pm3m$ $\Gamma$ $[P422, P\bar{4}2m](\tau_8)$ 2 $C_{6\nu}$ I,II $[P4/m, R, \bar{3}](\tau_5)$ 3 $O_h$ I,II       I $R$ $[I4/mmm, I4/mcm](\tau_3, \tau_8)$ 2 $C_{6\nu}$ I,II $R$ $[I4/mmm, R, \bar{3}m](\tau_4, \tau_9)[14/mcm, R \bar{3}c](\tau_5, \tau_{10})$ 3 $O_h$ I,II $R$ $[I4/mmm(\tau_1, \tau_7)P4/mcc(\tau_2, \tau_6)$ <th colspan="11">TABLE IX. (Continued)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TABLE IX. (Continued)                |                                         |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------|--|--|--|--|--|--|--|--|--|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (c)                                  | (d)                                     |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 E                                  | 43                                      |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2,2 (                                | $E_{63} - A_{61} E_{63}$                |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 E                                  | 31                                      |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                         |  |  |  |  |  |  |  |  |  |
| $I\overline{4}3d \begin{cases} \Gamma & I\overline{4} & & & & \\ H & P_{2_{1}2_{1}2_{1}(\tau_{3}+\overline{\tau}_{3})} & & 4 & 21.1 & I \\ P & I\overline{4}(\tau_{2}+\overline{\tau}_{2},\tau_{3}+\overline{\tau}_{3}) & & 4 & 98.1 & I \\ \end{array}$ $Pm3m \qquad \Gamma \qquad \begin{bmatrix} P422, P\overline{4}2m](\tau_{8}) & & 2 & C_{6\nu} & I,II \\ [P4/m,R\overline{3}](\tau_{5}) & & 3 & O & I,II \\ [P\overline{4}m2,R32](\tau_{9}) & & 3 & O_{h} & I,II \\ [I4/mmm,I4/mcm](\tau_{3},\tau_{8}) & & 2 & C_{6\nu} & I,II \\ [I4/mmm,R\overline{3}m](\tau_{4},\tau_{9})[14/mcm,R\overline{3}c](\tau_{5},\tau_{10}) & & 3 & O_{h} & I,II \\ \end{bmatrix}$ $X \qquad \begin{cases} P4/mmm(\tau_{1},\tau_{7})P4/mcc(\tau_{2},\tau_{6}) \\ P4/mmm(\tau_{1},\tau_{7})P4/mcc(\tau_{1},\tau_{7})P4/mcc(\tau_{1},\tau_{7})P4/mcc(\tau_{1},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7},\tau_{7})P4/mcc(\tau_{1},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{7},\tau_{$ | 2 E                                  | 3.1                                     |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                      |                                         |  |  |  |  |  |  |  |  |  |
| $\begin{bmatrix} P & I\overline{4}(\tau_{2} + \overline{\tau}_{2}, \tau_{3} + \overline{\tau}_{3}) & 4 & 98.1 & 1 \\ Pm3m & \Gamma & [P422, P\overline{4}2m](\tau_{8}) & 2 & C_{6\nu} & I,II \\ [P4/m, R\overline{3}](\tau_{5}) & 3 & O & I,II \\ [P\overline{4}m2, R32](\tau_{9}) & 3 & O_{h} & I,II \\ [I4/mmm, R\overline{3}m](\tau_{3}, \tau_{8}) & 2 & C_{6\nu} & I,II \\ [I4/mmm, R\overline{3}m](\tau_{4}, \tau_{9})[14/mcm, R\overline{3}c](\tau_{5}, \tau_{10}) & 3 & O_{h} & I,II \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 E                                  | 4.3                                     |  |  |  |  |  |  |  |  |  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 <i>T</i>                           | 4.2                                     |  |  |  |  |  |  |  |  |  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11 F                                 | F                                       |  |  |  |  |  |  |  |  |  |
| $ \left\{ \begin{array}{cccc} P\bar{4}m_{2}, R \ 32](\tau_{5}) & 3 & O_{h} & I, II \\ P\bar{4}m_{2}, R \ 32](\tau_{5}) & 3 & O_{h} & I, II \\ I \ 4/mm, I \ 4/mcm](\tau_{3}, \tau_{8}) & 2 & C_{6\nu} & I, II \\ I \ 4/mm, R \ 3m](\tau_{4}, \tau_{5})[14/mcm, R \ 3c](\tau_{5}, \tau_{10}) & 3 & O_{h} & I, II \\ \end{array} \right. $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $1,1$ $E_{1}^{2}$<br>1.1 $F_{2}^{2}$ | $2.1, L_{2.1}$                          |  |  |  |  |  |  |  |  |  |
| $R \left\{ \begin{bmatrix} I 4/mm, I 4/mcm](\tau_3, \tau_8) & 2 & C_{6\nu} & I, II \\ [I 4/mmm, R \overline{3}m](\tau_4, \tau_9) [14/mcm, R \overline{3}c](\tau_5, \tau_{10}) & 3 & O_h & I, II \\ \end{bmatrix} X \left\{ \begin{array}{c} P 4/mmm(\tau_1, \tau_7) P 4/mcc(\tau_2, \tau_6) \\ P 4/mmm(\tau_1, \tau_7) P 4/mcc(\tau_2, \tau_6) \\ P 4/mmm(\tau_1, \tau_7) P 4/mcc(\tau_2, \tau_6) \\ \end{array} \right\} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,1 $E1.1 F$                         | $2.1, T_{3.1}$                          |  |  |  |  |  |  |  |  |  |
| $X \left\{ \begin{array}{ccc} (14/mmn, 14/mmn_{1}(\tau_{1}, \tau_{8}) & 2 & C_{60} & 1, 11 \\ [14/mmm, R\bar{3}m](\tau_{4}, \tau_{9})[14/mcm, R\bar{3}c](\tau_{5}, \tau_{10}) & 3 & O_{h} & 1, 11 \\ \end{array} \right.$ $X \left\{ \begin{array}{ccc} P4/mmm(\tau_{1}, \tau_{7})P4/mcc(\tau_{2}, \tau_{6}) \\ [14/mmm(\tau_{1}, \tau_{7})P4/mcc(\tau_{2}, \tau_{6})] & 3 & O_{h} & 1 \\ \end{array} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1, I = L<br>2, 2 = F                 | 2.1, I, 3.1                             |  |  |  |  |  |  |  |  |  |
| $X \left\{ \frac{P4/mm(\tau_1, \tau_7)P4/mcc(\tau_2, \tau_6)}{3} \right\} = \frac{3}{0_h} O_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2,2$ $L_{1}^{2}$                    | $2.1, L_{2.1}$                          |  |  |  |  |  |  |  |  |  |
| $X \left\{ \frac{P4/mmm(\tau_1, \tau_7)P4/mcc(\tau_2, \tau_6)}{3} \right\} \qquad 3  O_h \qquad 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,2 L                                | 3.1, 7 3.1                              |  |  |  |  |  |  |  |  |  |
| $P_{4_2}/mmc(\tau_3, \tau_9)P_{4_2}/mcm(\tau_4, \tau_9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 E                                  | 3.1                                     |  |  |  |  |  |  |  |  |  |
| $\{[Cmcm, Pmma](\tau_5, \tau_{10}), \{0, 1, 1, 2, 3, 5, 5, 6, 1, 2, 3, 5, 6, 1, 2, 5, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,2 T                                | $(E_{61} - A_{62})$                     |  |  |  |  |  |  |  |  |  |
| $[P4/nmm, P4/mbm](\tau_{5})[P4/mbm, P4/nmm](\tau_{10})]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.4 E                                | 6.1. E 6.1 0.2                          |  |  |  |  |  |  |  |  |  |
| $\left[ R\overline{3}_{c}, R\overline{3}_{m} \right](\tau_{c}) \left[ R\overline{3}_{m}, R\overline{3}_{c} \right](\tau_{10}) $ III.IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8.8 T                                | 6.1. T 6.1                              |  |  |  |  |  |  |  |  |  |
| $M (P4/mbm(\tau_2, \tau_2)) = 3 O I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 E                                  | 2.1                                     |  |  |  |  |  |  |  |  |  |
| $P4/nbm(\tau_{t_1}, \tau_0)P4/nmm(\tau_{t_1}, \tau_0)$ 3 $O_{t_1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1}{2}$ $E$                    | 3.1                                     |  |  |  |  |  |  |  |  |  |
| $\begin{bmatrix} Pmma. Cmmm \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.2 T                                | (E(x,A(z)))                             |  |  |  |  |  |  |  |  |  |
| $\begin{cases} 1/4/mmm I 4/mmm R 321 \end{cases} (\tau_{10}) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.4 T                                | 6.1, (26.1,                             |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 E                                  | 6.2, 20.1                               |  |  |  |  |  |  |  |  |  |
| $Pn3n$ $\Gamma$ $P422, P\overline{4}2c, P4/n, R\overline{3}, P\overline{4}n2, R32$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . –                                  | 0.1                                     |  |  |  |  |  |  |  |  |  |
| $R \qquad [Fddd, I422](\tau_2 + \overline{\tau}_2, \tau_4 + \overline{\tau}_4) \qquad 4  48.1 \qquad \text{I.II}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2,2 E                                | A 3. EA 6                               |  |  |  |  |  |  |  |  |  |
| M = [Pbcn, P42, 2]) 6 L 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,2 T                                | 61.E62                                  |  |  |  |  |  |  |  |  |  |
| $[1\overline{4}2d,R\overline{3}]$ $(\tau_2)$ VI,IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4,4 E                                | $K_{2}, T_{62}$                         |  |  |  |  |  |  |  |  |  |
| $Pm3n$ $\Gamma$ $P4_222, P\overline{4}2c, P4_2/m, R\overline{3}, P\overline{4}m2, R32$ $\cdots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                                    | 0.2 0.2                                 |  |  |  |  |  |  |  |  |  |
| $R  [Fmmm, I4_{1}22](\tau_{2} + \overline{\tau}_{2}, \tau_{4} + \overline{\tau}_{4}) \qquad 4  48.1 \qquad I.II$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,2 E                                | A 3. EA 6                               |  |  |  |  |  |  |  |  |  |
| $X = [Pmma, P4_{1,3}22]$ 6 L <sub>0</sub> 1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2 (2                               | $E_{61} - A_{61}$ ) $E_{62}$            |  |  |  |  |  |  |  |  |  |
| $P\bar{4}2_{1c}$ ( $\tau_{3}, \tau_{4}$ ) VI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4 <i>E</i>                           | - 0.1 - 0.1 / / - 0.2                   |  |  |  |  |  |  |  |  |  |
| $M = \frac{P4_2}{ncm}(\tau_2, \tau_4)$ 3 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 E                                  | 2 1                                     |  |  |  |  |  |  |  |  |  |
| $[P4_{2}/mnm(\tau_{2},\tau_{2})P4_{2}/mcm(\tau_{2},\tau_{10}) \qquad 3 O_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2 E                                  | <b>3</b> .1                             |  |  |  |  |  |  |  |  |  |
| $\begin{bmatrix} Pnna, Cmma \end{bmatrix} \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.2 T                                | $E_{1}(E_{1} - A_{1})$                  |  |  |  |  |  |  |  |  |  |
| [14,  acd, 14,  acd, R32]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .4.4 E                               | 6.1 (2.6.1 (A.6.2)                      |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,.,                                  | 0.1, -0.1, -0.2                         |  |  |  |  |  |  |  |  |  |
| $Pn3m \qquad \Gamma \qquad P4_{2}22, P\overline{4}2m, P4_{3}/n, R\overline{3}, P\overline{4}n2, R\overline{3}2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                                         |  |  |  |  |  |  |  |  |  |
| $R  [14_1/amd, 14_1/acd](\tau_2, \tau_2) \qquad 2  C_{6y} \qquad 1.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,2 E                                | $(1, E_{2})$                            |  |  |  |  |  |  |  |  |  |
| $X = [Cmca, P4_{1}, 22]$ $(Cmca, P4_{1}, 22)$ $(Cm$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2,2                                  | 2.1 2.1                                 |  |  |  |  |  |  |  |  |  |
| $\left[P\overline{4}2_{1}m,R\overline{3}c,R\overline{3}c\right] \left\{ \begin{array}{c} (\tau_{3},\tau_{4}) \\ \forall I,III,IV \end{array} \right\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,8,8 E                               | $_{6.2}, T_{6.1}, T_{6.1}$              |  |  |  |  |  |  |  |  |  |
| $M = [Pbcm, P4_22_12]  (\tau_4) $ 6 $L_6 = 1.11$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,2 T                                | $E_{6,1}, E_{6,2}$                      |  |  |  |  |  |  |  |  |  |
| $[I\overline{4}m2,R\overline{3}]$ VI,IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4,4 F                                | Tra                                     |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1. 1.6                               | <b>5.2</b> , <b>1</b> 6.2               |  |  |  |  |  |  |  |  |  |
| $Fm3m$ $\Gamma$ $[422, 142m, 14/m, R3, 14m2, R32 \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma \Gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | а г                                  |                                         |  |  |  |  |  |  |  |  |  |
| $X = \frac{P4}{mnc(\tau_2)} \frac{P4_2}{mnm(\tau_3)} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $2 E_3$                              | .1                                      |  |  |  |  |  |  |  |  |  |
| $P4/nnc(\tau_6)P4/nmm(\tau_7)P4_2/nmc(\tau_8)P4_2/nnm(\tau_9) = 3 = O_h = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2 E_3$                              | .1                                      |  |  |  |  |  |  |  |  |  |
| $[Pmmm, Cmcm] \qquad \qquad 6  L_7 \qquad 1,11 \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $Z, Z = T_6$                         | $(L_{6.1} - A_{6.2})$                   |  |  |  |  |  |  |  |  |  |
| VI,VII,IV = VI,VII,IV = VI,VII,IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ,4,4 E <sub>6</sub>                  | .1, £ <sub>6.1</sub> , 1 <sub>6.2</sub> |  |  |  |  |  |  |  |  |  |
| $L = R \sin(\tau_1, \tau_4) R \sin(\tau_2, \tau_5) + 4 = 109.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $Z T_4$                              | (1)                                     |  |  |  |  |  |  |  |  |  |
| $[B2/b, B2/m](\tau_3)[B2/m, B2/b](\tau_6) $ 8 $M_2$ 1,11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $2,2 (T_{8,1})$                      | $(T_{8,1}), (T_{8,1} - E_{8,1})$        |  |  |  |  |  |  |  |  |  |
| $[14/mcm, 14/mmm](\tau_3)[14/mmm, 14/mcm](\tau_6) $ IV,V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8,8 E <sub>8.</sub>                  | $_{1}, E_{8,1}$                         |  |  |  |  |  |  |  |  |  |
| $Cmma(\tau_3)Cmmm(\tau_6) \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 T.                                 | •                                       |  |  |  |  |  |  |  |  |  |
| $W  [14/mmm, 14_1/amd](\tau_1, \tau_4)[14/mcm, 14_1/acd](\tau_2, \tau_3)  6  L_1 \qquad I, II$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                      | 2                                       |  |  |  |  |  |  |  |  |  |

=

\_\_\_\_

| HS    | BZ   | Low-symmetry                                                                          | OP  | (a)            | (b)           | (c)   | (d)                            |
|-------|------|---------------------------------------------------------------------------------------|-----|----------------|---------------|-------|--------------------------------|
| group | poir | nt phases                                                                             | dim |                |               | -     |                                |
| Fm3c  | Г    | $1422, I\overline{4}2m, I4/m, R\overline{3}, I\overline{4}m2, R32$                    |     | • • • •        |               |       |                                |
|       | X    | $P4/mbm(\tau_1)P4_2/mbc(\tau_4)$                                                      | 3   | 0              | I             | 2     | $E_{3,1}$                      |
|       |      | $P4/ncc(\tau_6)P4/nbm(\tau_7)P4_2/nbc(\tau_8)P4_2/ncm(\tau_9)$                        | 3   | O <sub>h</sub> | I             | 2     | E <sub>3.1</sub>               |
|       |      | [Pbcm, Cmcm]                                                                          | 6   | $L_7$          | 1,11          | 2,2   | $T_{6,1}, (E_{6,1} - A_{6,2})$ |
|       |      | $[P4_2/nmc, P4/mnc, R32]$ ( $\tau_{10}$ )                                             |     |                | VI,VII,IV     | 4,4,4 | $E_{6,1}, E_{6,1}, T_{6,2}$    |
| Fd3m  | Г    | $I4_{1}\overline{22}, I\overline{4}2m, I4_{1}/a, R\overline{3}, I\overline{4}m2, R32$ |     |                |               |       |                                |
|       | X    | $[Pnma, P4_{3}2_{1}2]$                                                                |     | $L_6$          | 1,11          | 2,2   | $T_{6,1}, E_{6,2}$             |
|       |      | $[P\overline{4}2_1m,R\overline{3}] \int (\sqrt[4]{4})$                                |     |                | VI,IV         | 4,4   | $E_{6.2}, T_{6.2}$             |
|       | L    | $R\overline{3}m(\tau_1,\tau_4)(R\overline{3}c(\tau_2,\tau_5))$                        | 4   | 115.01         | Ι             | 2     | $T_{4,1}$                      |
|       |      | $[B2/b, B2/m](\tau_3)[B2/m, B2/b](\tau_6)$                                            | 8   | $M_1$          | I,II          | 2,2   | $(T_{8,1} - E_{8,1}),$         |
|       |      |                                                                                       |     |                |               |       | $(T_{8,1} - E_{8,1})$          |
|       |      | $[I\bar{4}c_2 \ I\bar{4}m_2](\tau_2)[I\bar{4}m_2 \ I\bar{4}c_2](\tau_2)$              |     |                | IV.V          | 8.8   | $(F_{0,1} - A_{0,1})$          |
|       |      |                                                                                       |     |                |               | 0.0   | $(E_{8,1} - A_{8,1}),$         |
|       |      | $Cmca(\tau_{\star})Cmcm(\tau_{\star})$                                                |     |                | 111           |       | (28.1 A8.1)                    |
| Fd3c  | Г    | $14.22 I\overline{A}_{2m} IA_{1/2} R\overline{3} I\overline{A}_{22} R\overline{3}$    |     |                | 111           | 4     | 1 8.2                          |
| 1450  | x    | $[P_{nma} P_{4, 2}, 22]$                                                              | 6   | I              | 1.11          | 2.2   | ТЕ                             |
|       | ~    | $[P\overline{A}2, CR\overline{3}]$ $[(\tau_4)$                                        | 0   | L6             |               | 2,2   | $F_{6.1}, F_{6.2}$             |
| Im 3m | Г    | $[427, 142m] 4/m R \overline{3} 1 \overline{4} m 2 R 32$                              |     |                | v 1,1 v       | 4,4   | E 6.2. 1 6.2                   |
| 1     | H    | $[P4/mm, P4_2/mmc](\tau_2)[P4/nnc[P4_2/nnm](\tau_2)]$                                 | 2   | C,             | I II          | 2.2   | <i>F</i> . <i>F</i> .          |
|       | N    | $Cmca. P4/mbm. I4_1/amd(\tau_2) Cmca. P4_2/ncm I4/mcm(\tau_4)$                        | 6   | C 60           |               | 2,2   | $L_{2.1}, L_{2.1}$             |
|       |      | $R\overline{3}c, R\overline{3}(\tau_2)R\overline{3}m, R\overline{3}(\tau_4)$          | Ū   | 26             |               | 2,4,0 | $T_{6.1}, L_{6.1}, L_{6.1}$    |
|       |      | $Ccca, P4/nbm(\tau_5)Cmma, P4_2/mnm(\tau_6)$                                          | 6   | L              | I II          | 2 2   | $T_{6.1}, T_{6.2}$             |
|       |      | $Cmcm.P4_2/mcm(\tau_7)Cmcm.P4/nmm(\tau_8)$                                            | U   | ~4             | 1,11          | 2,2   | $T_{6,1}, E_{6,1}$             |
|       |      | $[4_1/acd(\tau_5, \tau_8)]4/mmm(\tau_6)[4/mmc(\tau_7)]$                               |     |                | VI            | 2,2   | $F_{6.1}, E_{6.1}$             |
|       |      | $R\frac{1}{3}m(\tau_{6},\tau_{8})R\frac{3}{3}c(\tau_{5},\tau_{7})$                    |     |                | Ш             | 8     | $L_{6.1}$                      |
|       |      | $R_{32}(\tau_{5},\tau_{6})$                                                           |     |                | IV            | 8     | $(T_{c_1} - A_{c_2})$          |
|       | Р    | [1422.14,22.14/mmm]                                                                   | 4   | 74 1           |               | 444   | $F_{11}$ $F_{12}$ $F_{13}$     |
|       |      | $[14/mmm, 14_1/amd, 14_1/amd]$ $\{\tau_3 + \overline{\tau}_3\}$                       | •   |                |               | 4.4.4 | $E_{4,1}, E_{4,1}, E_{4,2}$    |
| la 3d | Г    | $I_{4_1}22.I_{4_2}I_{4_1}/a, R_{3_1}I_{4_2}C_{2_1}R_{3_2}$                            |     |                | 1 * , * , * 1 | 7,7,4 | -4.2, -4.2, -4.2               |
|       | H    | $Pbca, P4_{1,2}22(\tau_2 + \overline{\tau}_2, \tau_4 + \overline{\tau}_4)$            | 4   | 48 1           | I II          | 22    | F. F.                          |
|       |      |                                                                                       | -   | 10.1           | 1,11          | 2,2   | L4.3. L4.6                     |

TABLE IX. (Continued)

exceptions for the sake of a more compact presentation, the order is that of the international tables of x-ray crystallography.<sup>44</sup> Space groups have been specified by their international symbol corresponding to the standard setting of axes.<sup>44</sup>

Column 2 lists, for each HS group, the relevant points of the first Brillouin zone. Except for the simple cubic BZ, there is no universally used notation for these points. The adopted one refers to the space-group-representation tables of Zak *et al.*<sup>45</sup> The components of the  $\vec{k}$  vector represented by each of the former points as well as the number of arms in the corresponding star are available in TTI and TTII. For each space group we have only reproduced the BZ points associated to active IR's (see Sec. II) which are related to transitions of the purely ferroelastic type. The results of the selection of active IR's were presented formerly in TTI and TTII for the BZboundary points and in Ref. 28 for the BZ center ( $\Gamma$ point).

Column 3 lists the ferroelastic LS space groups identified by their standard international symbol.

The relative orientation of the LS and HS symmetry elements has only been specified when the knowledge of the ferroelastic species relative to the transition was not entirely determined by the LS group. Thus we do not distinguish in the tables the point-symmetry changes  $mmm \rightarrow 2^{z}/m$  and  $mmm \rightarrow 2^{y}/m$  as both correspond to the same species and to the same spontaneous-strain component, within a permutation of the corrdinates. By contrast, the symmetry changes  $4/mmm \rightarrow 2^{z}/m$  and  $4/mmm \rightarrow 2^{x}/m$  are physically distinct,<sup>11</sup> and their respective occurrence has been shown in the tables. The IR inducing a LS phase is indicated by the symbol  $\tau_i$  of the small representation referred to Zak's table for the HS space group. Whenever identical LS phases arise from different IR's at the same BZ point, the symbols for the various small representations are grouped together between parentheses following the symbol of the LS group. On the other hand, each  $\tau_i$  corresponds, in general, to several LS phases with distinct symmetries. These phases are either grouped between square brackets on the same

line of the table, or listed on consecutive lines.

Column 4 states the dimension of each relevant IR. This dimension is equal to the number of components of the transition's order parameter.

Column 5 contains the symbols for the images of the IR's. These symbols refer to Table V for OP dimensions in the range 1-3, to Fig. 1 for an OP dimension of 4, and to Fig. 2 for OP dimensions equal to 6 and 8. As stressed in Sec. III, one then has access through Tables II and III (and Ref. 37 for lower-dimensional images) to the form of the OP expansions.

Column 6 of Tables VI–IX specifies by a symbol (referred to Tables II, III, and V) the direction in  $\epsilon$ associated to each ferroelastic phase. In addition, column 7 indicates the change in the number of atoms in the crystal's unit cell which accompanies the lowering of symmetry. Whenever several indications are contained in these columns, they are placed in the same order as the corresponding phases located between brackets.

Column 8 is relative to the construction of the term representing the coupling between the OP and the spontaneous strain (or higher-rank-tensorial components when the considered ferroelastic species is not a "full" one). The symbol contained in this column refers to Table IV and specifies a set of homogeneous polynomials  $\psi_j$  (see Sec. III) spanning an IR of the HS point group and associated to the relevant ferroelastic species. Whenever the latter species involves two distinct IR's, the corresponding symbols for the two sets of  $\psi_j$  functions are grouped between parentheses.

To illustrate by a simple example the use of the various tables, let us consider the PFT transitions which arise from the *Fmm2* space group. As shown by Table VI, such transitions exist at the  $\Gamma$  and R points of the BZ.

The transition at the  $\Gamma$  point corresponds to the symmetry change  $Fmm2 \rightarrow B2$  (column 3) without change of the number of atoms in the unit cell (column 7). It is induced by the one-dimensional IR ( $\tau_3$ ) (columns 3 and 4), and it can be classifed as a proper ferroelastic transition (column 8). Thus, its OP can be taken as the spontaneous-strain component spanning  $\tau_3$ . Referring to the species  $mm2 \rightarrow 2$  in Table I, we find that this component is the pure shear  $x_6$ . As explained in Sec. III, the Landau free energy for this transition can therefore be written

$$F = (C_{66}/2)x_6^2 + (C'/4)x_6^4$$
(3)

The space-group change at the R point is also  $Fmm2 \rightarrow B2$ . It corresponds to the same ferroelastic species  $mm2 \rightarrow 2$  and to the same spontaneous strain  $x_6$  but, as shown by column 7, it is accompanied by a fourfold expansion of the unit cell. By contrast to

the former one, this PFT transition is of the improper type.

It appears from Table VI (columns 4 and 5) that the OP is four dimensional and that its symmetry properties are described by the image denoted 56.1.

This image gives rise to an OP expansion labeled  $f_5$  (Fig. 1) whose expression is (Table II)

$$f_{5} = \frac{1}{2} \alpha \left( \sum_{1,4} \eta_{i}^{2} \right) + \frac{1}{4} \beta_{1} \left( \sum_{1,4} \eta_{i}^{4} \right) + \frac{1}{2} \beta_{2} (\eta_{1}^{2} \eta_{2}^{2} + \eta_{3}^{2} \eta_{4}^{2}) + \frac{1}{2} \beta_{3} (\eta_{1}^{2} \eta_{3}^{2} + \eta_{2}^{2} \eta_{4}^{2}) + \frac{1}{2} \beta_{4} (\eta_{1}^{2} \eta_{4}^{2} + \eta_{2}^{2} \eta_{3}^{2}) + \beta_{5} \eta_{1} \eta_{2} \eta_{3} \eta_{4} \qquad (4)$$

Such an expansion is compatible (Table II) with six distinct LS phases depending on the relative values of the  $\beta_i$  coefficients.

When the HS group is Fmm2, the only LS phase associated to ferroelasticity is the one labeled IV and corresponding to the [1001] direction in the representation space  $\epsilon$ . The function labeled  $A_{4,1}$  (column 8 of Table VI) of the OP components, transforms like the spontaneous strain  $x_6$ . Its expression is supplied by Table IV within a permutation of the OP components (among the various possible expressions the one to be retained is nonzero for the [1001] direction in  $\epsilon$ ). Accordingly, the term representing the coupling between  $x_6$  and  $(\eta_i)$  components can be written (Sec. III)

$$F_{3}(\eta_{i}, x_{6}, \delta) = \delta x_{6} A_{4,1}$$
$$= \delta x_{6}(\eta_{1}^{2} + \eta_{4}^{2} - \eta_{2}^{2} - \eta_{3}^{2}) \quad . \tag{5}$$

On the other hand, the truncated elastic energy of the crystal, limited to the  $x_6$  component is<sup>43</sup>

$$F_2 = (C_{66}/2)x_6^2 \quad . \tag{6}$$

The required LFE associated to the considered transition is the sum of Eqs. (4)-(6).

The crystallographic information contained in the tables is not complete, in that it does not state explicitly the primitive translations of the LS phases. However, possible translational modifications accompanying continuous phase transitions have been worked out formerly by Lifshitz<sup>46</sup> and in a more complete way by Naish *et al.*<sup>17</sup> By reporting to these tables on the basis of the indications of Tables VI–IX, one is able to obtain unambiguously the missing data. Thus, in the case of the considered transition the *k* vector relative to the *R* point is<sup>3,45</sup>  $\vec{k} = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}]$ . For this  $\vec{k}$  vector Naish's tables<sup>47</sup> indicate a single translational change compatible with the fourfold unit-cell expansion of the crystal.

For many of the 188 considered space groups, the situation is more complex than in the preceding example. Thus, the Fm3m space group (Table IX) is

likely to give rise to 39 ferroelastic phases corresponding to 20 different IR's with dimensions ranging from 2 to 8. However, working out the characteristics of each transition can be achieved, using the tables, indentically as above.

The crystallographic part of the results contained in the tables could partly be checked by comparison to previous group-theoretical work available for the HS space groups Pm3m, <sup>7,48</sup> Pm3n, <sup>49</sup> Fd3m, <sup>50</sup> and other simpler groups. A more extensive comparison could be made to the unpublished work of Syromiatnikov,<sup>51</sup> where subgroups of the 230 space groups have been ordered according to the loss of translational symmetry related to each one of the  $\overline{k}$  vectors permitted by the Lifshitz criterion. However, this author has based his crystallographic investigation on principles<sup>52</sup> which coincide with those of the Landau theory only when the small representation  $\tau_i$  is one dimensional. In the other cases, which correspond to most of the transitions considered here, the symmetries indicated in his tables have no relevance to the Landau theory.

#### B. Discussion and comparison to the experimental data

We have listed in Tables X and XI materials representative of the main structural families undergoing purely ferroelastic transitions. Table X contains 17 examples of "proper" transitions, and Table XI 22 examples of "improper" ones. In most of the selected examples, reliable data are available on the space groups of the two phases, thus allowing a comparison to the results obtained in the present work.

The theoretical results of Tables VI–IX show that three groups of transitions can be distinguished on the basis of the characteristics of their order parameter and of the symmetry change. The first group contains the transitions arising from HS space groups of the monoclinic, orthorhombic, and tetragonal systems, the second one concerns the trigonal-hexagonal systems, and the third one the cubic system.

#### C. Monoclinic, orthorhombic, and tetragonal systems

Most of the PFT in these systems are predicted to comply with a uniform scheme.

Thus, with one exception (in the 4/m class), proper transitions should have a one-dimensional OP determining a subgroup of index 2 for the LS phase. Actual examples shown in Table X fit strictly into this scheme. For instance, the symmetry changes observed in NdP<sub>5</sub>O<sub>14</sub> (Ref. 13) (HS phase in the orthorhombic system) or in DyVO<sub>4</sub> (tetragonal system)<sup>14</sup> as well as those of five other families of substances, confirm the results listed in Tables VI–VII. All these transitions are observed to be continuous. As expected for a proper PFT,<sup>31</sup> a definite combination of elastic constants vanishes at the Curie point for several of these substances, namely, NdP<sub>5</sub>O<sub>14</sub>, KH<sub>3</sub>(SeO<sub>3</sub>)<sub>2</sub>, TeO<sub>2</sub>, DyVO<sub>4</sub>, and TbVO<sub>4</sub>. No elasticity

| Substance                        | $T_c(\mathbf{K})$ | Order | Symmetry change   |                    | OP             | Table   | Reference |
|----------------------------------|-------------------|-------|-------------------|--------------------|----------------|---------|-----------|
|                                  |                   |       | HS                | BZ                 | dimension      | number  |           |
| NdP5O14                          | 420               | 2     | Pmna              | $P2_1/b$           | 1              | VI      | 13        |
| $KH_3(SeO_3)_2$                  | 212               | 2     | Pbcn              | $P2_1/b$           | 1              | VI      | 14        |
| BiVO <sub>4</sub>                | 528               | 2     | $14_{1}/a$        | B2/b               | 1              | VII     | 18        |
| LaNbO <sub>4</sub>               | 770               | 2     | $14_{1}/a$        | B2/b               | 1              | VII     | 80        |
| LaNbThTiO <sub>8</sub>           | 950               | 2     | $I4_1/a$          | B2/b               | 1              | VII     | 81        |
| TeO <sub>2</sub>                 | 8 kbar            | 2     | P41212            | P212121            | 1              | VII     | 82        |
| DyVO <sub>4</sub>                | 14                | 2     | $I4_1/amd$        | Imma               | 1              | VII     | 24        |
| TbVO4                            | 33                | 2     | $I4_1/amd$        | Fddd               | 1              | VII     | 24        |
| NaN <sub>3</sub>                 | 293               | 2     | $R\overline{3}m$  | B2/m               | 2 <sup>a</sup> |         | 62        |
| s-triazine                       | 210               | 1     | $R \overline{3}c$ | B2/b               | 2 <sup>a</sup> | · · · · | 61        |
| $K_2Mn_2(SO_4)_3$                | 200               | 1     | P213              | $P2_{1}2_{1}2_{1}$ | 2 <sup>a</sup> |         | 71        |
| RbAg <sub>4</sub> I <sub>5</sub> | 208               | 2     | P4132             | R 32               | 3 <sup>a</sup> |         | 83        |
| V <sub>3</sub> Si                | 21                | 2     | Pm3n              | $P4_2/mmc$         | 2 <sup>a</sup> |         | 21        |
| KCN                              | 170               | . 1   | Fm3m              | Immm               | 2 <sup>a</sup> |         | 69        |
| InTi                             | 320               | 1     | Fm3m              | I4/mmm             | 2 <sup>a</sup> |         | 70        |
| KNO <sub>2</sub>                 | 295               | 1     | Fm3m              | $R\overline{3}m$   | 3 <sup>a</sup> |         | 72        |
| NiCr <sub>2</sub> O <sub>4</sub> | 274               | 1     | Fd3m              | $I4_1/amd$         | 2 <sup>a</sup> | ••••    | 24        |

| TABLE X. | Materials | possessing a | proper | ferroelastic | transition.  |
|----------|-----------|--------------|--------|--------------|--------------|
|          | materials | DODDODDINE U | proper | rontociastic | ti unaition. |

<sup>a</sup>Order parameters not complying with Landau's (symmetric cube) condition.

#### ORDER PARAMETER SYMMETRIES AND FREE-ENERGY ....

| Substance                                                         | <i>T</i> <sub>c</sub> (K) | Order | Symmetry change      |                   | Unit cell | OP       |         | Table  | References |
|-------------------------------------------------------------------|---------------------------|-------|----------------------|-------------------|-----------|----------|---------|--------|------------|
|                                                                   |                           |       | HS                   | LS                | X         | BZ point | dimens. | number |            |
| P-terphenyl                                                       | 178                       | 2     | $P2_1/b$             | PĪ                | 2         | С.       | 2       | VI     | 19         |
| $C_4O_4H_2$                                                       | 470                       | 1     | 14/m                 | $P2_1/m$          | 2         | Z        | 2       | VII    | 20         |
| ADP                                                               | 148                       | 1     | 142d                 | C 2221            | 2         | Ζ        | 2       | VII    | 12         |
| RbFeF <sub>4</sub>                                                | 570                       | 2     | P4/mmm               | Pmma              | 2         | Ζ        | 2       | VII    | 84         |
| VO <sub>2</sub>                                                   | 343                       | 1     | P4 <sub>2</sub> /mnm | $P2_1^x/b$        | 2         | R        | 4       | VII    | 3          |
| Hg <sub>2</sub> Cl <sub>2</sub>                                   | 185                       | 2     | I4/mmm               | Cmcm              | 2         | X        | 2       | VII    | 15         |
| (CH <sub>3</sub> NH <sub>3</sub> ) <sub>2</sub> CdCl <sub>4</sub> | 484                       | 2     | I4/mmm               | Cmca              | 2         | Х        | 2       | VII    | 85         |
| Ag <sub>2</sub> H <sub>3</sub> IO <sub>6</sub>                    | 241                       | 2     | $R\overline{3}$      | ΡĪ                | 2         | М        | 3       | VIII   | 57         |
| $Pb_3(PO_4)_2$                                                    | 453                       | 1     | R3m                  | B2/b              | 2         | L        | 3       | VIII   | 58         |
| Sb <sub>5</sub> O <sub>7</sub> I                                  | 481                       | 1     | $P6_3/m$             | $P2_1/b$          | 2         | M        | 3       | VIII   | 55         |
| K <sub>2</sub> SeO <sub>4</sub>                                   | 745                       | • • • | $P6_3/mmc$           | Pnma              | 2         | М        | 3       | VIII   | 56         |
| (NH <sub>4</sub> ) <sub>2</sub> SQ <sub>4</sub>                   | ••••                      |       | $P6_3/mcm$           | Pnma              | 2         | M        | 3       | VIII   | 60         |
| CdSnAs <sub>2</sub>                                               | 840                       | 1     | F43m                 | 1 <b>4</b> 2d     | 4         | W        | 6       | IX     | 67         |
| ZnSnAs <sub>2</sub>                                               | 920                       | 1     | F43m                 | 14                | 4         | W        | а       |        | 67         |
| Ag <sub>2</sub> HgI <sub>4</sub>                                  | 323                       | 1     | F43m                 | 14                | 4         | W        | а       |        | 73         |
| SrTiO <sub>3</sub>                                                | 196                       | 2     | Pm3m                 | I4/mcm            | 2         | R        | 3       | IX     | 63         |
| NdAlO <sub>3</sub>                                                | 1640                      | 2     | Pm3m                 | $R \overline{3}c$ | 2         | R        | 3       | IX     | 64         |
| NH₄Br                                                             | 235                       | 2     | Pm3m                 | P4/nmm            | 2         | М        | 3       | IX     | 65         |
| CuAu                                                              | 653                       | 1     | Fm3m                 | P4/mmm            | 2         | X        | 3       |        | 66         |
| N <sub>3</sub> AlF <sub>6</sub>                                   | 830                       | • • • | Fm3m                 | $P2_1/b$          | 2         | X        | а       |        | 74         |
| SmAlO <sub>3</sub>                                                | • • •                     | • • • | Pm3m                 | Pnma              | • • •     |          | а       |        | 75         |
| Cs <sub>2</sub> NaLnCl <sub>6</sub>                               | • • •                     |       | Fm3m                 | 14/m              | 1         |          | 3       | IX     | 68         |

TABLE XI. Materials possessing an improper ferroelastic transition.

<sup>a</sup>Reducible order parameter.

measurements are available yet for  $BiVO_4$ , LaNbO<sub>4</sub>, and LaNbThTiO<sub>8</sub>, but due to their compliance with the same symmetry scheme, they should display the same characteristic elastic softening.

On the other hand, for the three considered crystal systems, a standard type of improper PFT is expected to occur, associated to a two-dimensional OP whose image is either  $C_4$  or  $C_{4\nu}$ . The symmetry change, leading to a subgroup of index 4, consists in a twofold decrease of the point symmetry (e.g.,  $2/m \rightarrow \overline{1}$ ,  $mmm \rightarrow 2/m$ ,  $422 \rightarrow 222$ ,  $4/mmm \rightarrow mmm$ ), and in a doubling of the number of atoms in the primitive unit cell. The ferroelastic strain is a quadratic function of the OP. This simple pattern is the one previously studied in detail for the ferroelectric-ferroelastic transition in gadolinium molybdate,<sup>4</sup> and it is therefore expected to remain valid for a large number of compounds. Consistently, six out of seven examples available for the considered crystal systems (Table XI) have symmetry changes complying with this description. For all these materials, the salient features of the physical behavior should resemble those of gadolinium molybdate. In particular, elastic constants should undergo a discontinuous downward jump at the onset of the LS phase (even for a perfectly continuous transition<sup>31</sup>). The only data which

can be compared to this prediction are the ones for  $Hg_2Cl_2$ , <sup>53</sup> and  $C_4O_4H_2$ , <sup>54</sup> and they are in clear agreement with it.

Other types of more complex schemes are possible in a few orthorhombic and tetragonal space groups. They all correspond to four-dimensional OP.

For instance, orthorhombic space groups having an *F*-centered lattice give rise to a four-dimensional OP at the *R* point  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$  of the BZ, since the star  $k^*$  at this point has four arms. Such an OP induces unit-cell multiplications by factors of 2, 4, or 8, and to the unusual point-symmetry change  $mmm \rightarrow \overline{1}$ , which would be impossible at the BZ center because no IR of the *mmm* point group is related to it. Its possibility in a continuous transition at the preceding BZ-boundary point is due to the simultaneous coupling of the OP to several IR's of *mmm*. The triclinic phase can be considered as the result of the simultaneous onset of several, differently oriented, monoclinic phases (e.g.,  $2^x/m$ , and  $2^y/m$ ).

A similar scheme is found for the tetragonal space groups with a body-centered lattice, at the N point of the BZ boundary.

No examples for these types of transitions seem to have been detected yet in real physical systems.

By contrast, the ferroelastic, metal-insulator transi-

tion in VO<sub>2</sub>,<sup>3</sup> (Table XI), though strongly discontinuous, provides a good illustration of an exceptional pattern displayed by only two space groups of the tetragonal system, i.e., P4/mnc  $(D_{4h}^{5})$  and  $P4_2/mnm$  $(D_{4h}^{14})$  at the *R* point  $(\frac{1}{2}, 0, \frac{1}{2})$  of the BZ. The symmetry properties of the corresponding four-dimensional OP determine, in particular, the possibility of transitions towards both the  $2^{x}/m$  and  $2^{z}/m$  point groups which have, respectively, been observed in pure, and chromium-substituted VO<sub>2</sub>.

It is worth noting that for the three considered systems, about 1000 different types of continuous symmetry changes are predicted to be possible accompanied by a lowering of both the point and the translational symmetries (improper ferroic transitions<sup>10</sup>): among these, over 800 are ferroelastic ones.

#### D. Trigonal and hexagonal systems

As shown by Table VIII, in these systems, PFT are mainly induced by three-dimensional order parameters at the *M* point  $(\frac{1}{2}, 0, 0)$  for all the investigated space groups, and at the *L* point  $(\frac{1}{2}, 0, \frac{1}{2})$  for all symmorphic space groups. The ferroelastic phase corresponds to the [100] direction in the representation space (Table V). It is associated with a threefold lowering of point symmetry and to a double unit cell with respect to the HS phase. At the *M* point, the double periodicity is located in the plane perpendicular to the ternary or senary axis. At the *L* point it occurs along a skew orientation.

The symmetry changes predicted for the M point are in good agreement with the experimental data relative to the transitions in Sb<sub>5</sub>O<sub>7</sub>I, <sup>55</sup> K<sub>2</sub>SeO<sub>4</sub>, <sup>56</sup> and Ag<sub>2</sub>H<sub>3</sub>IO<sub>6</sub>.<sup>57</sup> Likewise in lead orthophosphate Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>, both the crystallographic modifications and the occurrence of a triply degenerate soft mode at the L point<sup>58</sup> are observed to comply with the theoretical results.<sup>59</sup>

A similar "latent" transition has been assumed to exist in  $(NH_4)_2SO_4$  in order to explain the ferroelastic behavior of the room-temperature orthorhombic *Pnma* phase.<sup>60</sup> The speculative HS phase has been assigned the  $P6_3/mmc$  space group on the basis of a group-subgroup relationship between phases and of the relative orientation of the ferroelastic domains. Inspection of Table VIII shows that this is not the only possible group, and that  $P6_3/mcm$  could equally well fulfill the symmetry requirements. In either case the order parameter of the transition would correspond to the *M* point of the BZ boundary.

Thus, the available examples of improper ferroelastics agree satisfactorily with the theoretical scheme. However, no illustration seems to exist for another type of improper PFT arising from a two-dimensional OP at the A point  $(0, 0, \frac{1}{2})$  of the BZ boundary. Its symmetry properties are represented by the images  $C_6$  or  $C_{6\nu}$  (Table V). They therefore differ from the two-dimensional OP encountered in the monoclinic, orthorhombic, and tetragonal systems. The symmetry change induced would correspond to a three-fold decrease of the point symmetry (e.g.,  $\overline{3}m \rightarrow 2/m$ ;  $6/mmm \rightarrow mmm$ ) and to a doubling of the periodicity along the ternary or senary axis.

On the other hand, as shown by Table X, at least two examples of proper PFT are known, namely, s triazine<sup>61</sup> C<sub>3</sub>H<sub>3</sub>N<sub>3</sub>, and sodium azide<sup>62</sup> NaN<sub>3</sub>. This situation contrasts with the fact that no continuous transitions are predicted to be possible at the  $\Gamma$  point of the trigonal and hexagonal space groups (with the exception of the 6/m and 6/mmm classes). This is due to the noncompliance of the relevant twodimensional IR's with the Landau criterion (symmetric cube). Consequently the induced transitions should be discontinuous. Experimental results<sup>61</sup> show that the transition in s triazine is indeed of first order, though slightly so. As for NaN<sub>3</sub> its transition is claimed to be continuous, within experimental accuracy.<sup>62</sup>

It is therefore striking to note that the transitions in these two materials, which do not fulfill Landau's criterion, display discontinuities of similar magnitudes as the transition in lead phosphate which complies with this criterion.

#### E. Cubic system

Unlike the other crystal systems, the cubic one displays a large variety of situations with respect to the OP dimensions, the lowering of symmetry and the coupling scheme between the OP and the macroscopic tensors (Table IX).

Let us examine first the PFT which are accompanied by a decrease of the translational symmetry. Two cases can be distinguished among them.

The first one corresponds to the same standard type of three-dimensional OP which are encountered in the trigonal system. The PFT involve a lowering of point symmetry by a factor of 3 (e.g.,  $m3m \rightarrow 4/mm$ ) or 4 (e.g.,  $m3m \rightarrow \overline{3}m$ ) together with a doubling of the primitive unit cell. They can arise at the *R* point  $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ , the *X* point  $(0, 0, \frac{1}{2})$ , and the *M*-point of the simple cubic BZ, and also at the X point  $(\frac{1}{2}, \frac{1}{2}, 0)$  of the fcc space groups (Table IX).

Several continuous transitions are found to comply with this description. This is, for instance the case of the ferroelastic perovskites isomorphous of  $SrTiO_3$ ,<sup>63</sup> and NdAlO<sub>3</sub>,<sup>64</sup> and of the order-disorder transition in ammonium bromide NH<sub>4</sub>Br.<sup>65</sup> A related pattern also occurs in the metallic alloys of the CuAu *I* type.<sup>66</sup> In the latter materials the point, and translational symmetry change are consistent with a three-dimensional OP at the X point of the Fm3m space group. However, this OP does not fulfill the Landau criterion. In agreement with it, the transitions are observed to be strongly discontinuous, and to display a large thermal hysteresis.

Symmetry-change patterns without a counterpart in lower-symmetry systems are mainly related six- and eight-dimensional order parameters.

Six-dimensional IR's are determined in a variety of ways. At the X and M points (sc lattice) and at the X point (fcc lattice) already mentioned above, they correspond to a three-arm star and a two-dimensional small representation. At the N point  $(\frac{1}{2}, 0, 0)$  of the bcc Brillouin zone and at the W point  $(\frac{3}{4}, \frac{1}{2}, \frac{1}{4})$  of the fcc one, they result from a six-arm star and a one-dimensional small representation. No uniform scheme of symmetry changes is found for these representations since the OP symmetries are related to 10 distinct images (Fig. 2). Thus point symmetry changes from m3m towards seven different classes of the orthorhombic, tetragonal, and rhombohedral systems are predicted to be possible, as well as unit-cell multiplications by factors of 2, 4, and 8.

On the other hand, eight-dimensional IR's occur at the L point of the fcc lattice. They induce the steepest decrease in symmetry which is obtained for all the investigated transitions. Thus the index of the LS space group with respect to the HS one can be as high as 48. For instance, a continuous transition is predicted from Fd3m to  $I\overline{4}m2$ , with an eightfold expansion of the unit cell. These types of OP are also the only ones compatible with certain ferroelastic species (e.g.,  $m3m \rightarrow 2^{xy}/m$ , or  $m3 \rightarrow \overline{1}$ ) which involve a large decrease in point symmetry.

Few examples have been found, up to now, of structural transitions possessing such high-dimensional order parameters. In the case of pure ferroelastics, a representative class of substances is provided by the ternary semiconductors undergoing a reversible transition from the chalcopyrite structure  $(I\overline{4}2d)$  to the zinc blend one  $(F\overline{4}3m)$ . These transitions have previously been pointed out by Jerphagnon<sup>67</sup> to be related to improper PFT. The number of atoms in the primitive unit cell is multiplied by 4, and Table XI allows us to identify unambiguously the OP as a six-dimensional one at the W point of the BZ. CdSnAs<sub>2</sub> and ZnGeAs<sub>2</sub> are two examples of these substances with transitions, respectively, occurring at 840 K and 1080 K.<sup>67</sup>

Let us consider now the transitions which preserve the number of atoms in the crystal's unit cell. A remarkable feature of the cubic system is that continuous equitranslational ferroelastic transitions are only possible if their order parameter is distinct from the components of a homogeneous strain. These unusual types of improper ferroelastics are associated to two- and three-dimensional OP having the symmetries either of a third-rank polar tensor (e.g.,  $m3 \rightarrow 222, 4\overline{3}m \rightarrow \overline{4}, m3m \rightarrow 422$ ) or of components of a fourth-rank polar tensor (e.g.,  $m3m \rightarrow 4/m$ ,  $m3m \rightarrow \overline{3}$ ). The onset of the spontaneous strain of these ferroelastic species is due to the coupling of the strain components to quadratic polynomials of the former macroscopic quantities, whose form is specified in Tables IX and IV.

Possible examples of such improper PFT can be found among compounds with the formula  $Cs_2NaLnCl_6$  (*Ln*:lanthanide) belonging to the family of elpasolites.<sup>68</sup> These have been conjectured to undergo the symmetry change  $Fm3m \rightarrow I4/m$  with one formula per unit cell in both phases. As stressed above, the OP would correspond to the components of a fourth-rank tensor, namely, the three-dimensional set of elastic constants

 $(C_{24} - C_{34}; C_{35} - C_{15}; C_{16} - C_{26})$  (Table I).

By contrast, no continuous transition of the proper type is expected to occur because the corresponding OP do not comply with Landau's criterion.

As shown by Table X, a number of proper PFT have been observed in real crystals. Most of them possess a strong first order in agreement with the theoretical predictions. These are, for instance the transitions in KCN and NaCN,<sup>69</sup> those arising in several members of the spinel family,<sup>24</sup> as well as those observed in many martensitic transformations similar to the one in the indium thallium alloys.<sup>70</sup> Some compounds with the langbeinite structure<sup>71</sup> and potassium nitrite KNO<sub>2</sub> (Ref. 72) also belong to this class of transitions. A few examples, however, possess transitions which are almost continuous. In particular, V<sub>3</sub>Si has been the subject of many accurate investigations which have assigned to its 21 K transition a continuous character.<sup>21</sup>

Finally, we can note that the experimental data contain examples of symmetry changes which do not comply with the most important feature of Landau's theory: they do not appear to be induced by a single IR of the HS phase.

Thus, the symmetry change in Ag<sub>2</sub>HgI<sub>4</sub>, <sup>73</sup> and ZnSnAs<sub>2</sub> (Ref. 67) ( $F\overline{4}3m \rightarrow I\overline{4}$ , with a fourfold unit-cell expansion) cannot be accounted for by the IR's considered in Table IX, though the translational change matches well the one predicted at the Wpoint. The full symmetry change is probably associated to a reducible order parameter composed of a six-dimensional IR at the W point, and of threedimensional one at the  $\Gamma$  point. Also, the transition in cryolithe N<sub>3</sub>AlF<sub>6</sub> (Ref. 74) ( $Fm3m \rightarrow P2_1/b$ , with a double unit cell) involves several IR's, one of which corresponds to the X point of the BZ boundary. Other complex examples have been pointed out<sup>48</sup> to occur in the ferroelastic-antiferromagnetic perovskites such as SmAlO<sub>3</sub>,<sup>75</sup> or LaFeO<sub>3</sub> (Ref. 76) (Table XI).

<u>21</u>

#### **IV. CONCLUSION**

In this paper, a theoretical investigation has been carried out of the symmetry characteristics of purely ferroelastic transitions. We have established that, in the strict framework of Landau's theory of continuous transitions, this type of transition should constitute the largest part of the ferroic transitions encountered in crystals. By comparison, other categories of structural transitions previously examined in TTI and TTII (i.e., purely ferroelectric transitions, secondary ferroics, etc.) correspond to marginal cases. In particular, while improper ferroelectrics were noted to be an exception, on theoretical grounds improper ferroelastics appear to be the rule.

In the theoretical procedure adopted to handle this systematic application of Landau's theory, we have stressed the similarity which exists between transitions arising from different high-symmetry space groups with respect to the symmetry properties of the order parameter, and to the pattern of the possible low-symmetry phases. As already pointed out by previous authors, <sup>29, 37</sup> we have shown that this similarity relies on the occurrence of an identical "image" for the various order parameters considered. To be able to deal with the case of order parameters of dimensions greater than 3, mostly arising in the cubic system, we have established for the first time the form of the corresponding images, and their mutual relationship.

As a result of identifying the different images, we could show that the symmetry and thermodynamical aspects of Landau's theory of continuous transitions is contained in the properties of 49 images of dimensions ranging from 1 to 8, and giving rise to, at most, 49 types of free-energy expansions.

The enumeration of all possible-ferroelastic transitions of the continuous type has been presented in tables. These tables allow a determination of the crystallographic modifications (point and translational symmetry) taking place at each transition, a deduction of the dimension and symmetry properties of the order parameter associated to it, as well as of the free-energy expansion.

A comparison of these theoretical results to the experimental data available for ferroelastic transitions in real substances has been performed. It has shown that the experimental results can be classified into three groups.

The first and largest group is constituted by the continuous or discontinuous transitions which comply in all their symmetry and thermodynamical aspects with the results contained in the tables. Among the 39 examples of materials selected for the reliability of the data available for them, 25 were found to belong to this group. For each such material, starting from the knowledge of the space-group change, the usefulness of the tables consists in the possibility of deducing, by simple inspection, the information which is necessary to elaborate a phenomenological theory of the considered transition. Belong to this group, all the transitions observed in lower-symmetry systems (monoclinic, orthorhombic, tetragonal) as well as most of the transitions in any system which are accompanied by a multiplication of the unit cell of the crystal. We can note that the latter "improper" ferroelastic transitions outnumber the examples of ferroelastics which preserve the crystal's periodicity. This situation contrasts with the case of improper ferroelectrics for whom examples were scarce<sup>10</sup> and difficult to understand on the basis of Landau's theory.

A second group of transitions corresponds to equitranslational symmetry changes which fail to comply with Landau's "symmetric-cube" criterion. These transitions have a high-symmetry phase belonging to the trigonal or cubic system. Their characteristics cannot be found in the present tables (I–XI). However, their order-parameter and free-energy expansion are available in the tables of Janovec *et al.*,<sup>28</sup> which contain the characteristics of all the cellpreserving transitions.

Finally a few cases remain of materials in which a first-order transitions appears to be induced by a reducible order parameter. Such cases could be easily detected by inspection of the tables since, for them, either the point-symmetry change or the translational symmetry one did not fit into the listed results. For each such example, it would be necessary to perform a particular group-theoretical analysis of its symmetry characteristics in order to interpretate the physical pecularities of its transition. In some ferroelectric materials analyses along these lines have recently been carried out to explain intricate symmetry changes, namely, in the boracites, <sup>77</sup> Rochelle salt, <sup>78</sup> and benzil.<sup>79</sup>

#### ACKNOWLEDGMENTS

We are grateful to Professor L. Michel and J. Morzrymas for several very helpful discussions. Professor Michel has pointed us, in particular, the advantages of using the representation images as well as various properties of the Landau-type expansions. Professor Morzrymas has clarified to us the use of higher-dimensional crystallography. It is a pleasure to thank Dr. Petrov and Dr. V. N. Syromiatnikov for communicating to us their unpublished results. Thanks are also due to D. Paquet for a helpful remark.

#### APPENDIX

In this Appendix, we show that, if the possibility of a line of continuous transitions between  $G_0$  and G has been established on the basis of the order-

parameter expansion, this possibility will be preserved when the coupling with the strain is taken into account. As stressed in Sec. III, the OP expansion can be written

$$F_1(\alpha, \eta_i, \beta_k) = (\alpha/2) \left( \sum_i \eta_i^2 \right) + \sum_k \beta_k f_k(\eta_i) \quad , \qquad (7)$$

where the  $f_k$  are invariant polynomials of degree  $\ge 4$ . A line of continuous transitions between  $G_0$ and G is assumed to exist for  $\beta_k^1 < \beta_k < \beta_k^2$  (strict inequality). Let us first introduce the coupling with a single strain component x. The Landau free energy will be expressed as

$$F = F_1 + (C/2)x^2 + \delta x \psi(\eta_i) \quad . \tag{8}$$

For a mechanically free crystal, the strain can be eliminated from Eq. (8) through the condition  $\partial F/\partial x = 0$  resulting in

$$F = F_1 - (\delta^2 / 2C) \psi^2(\eta_i) \quad . \tag{9}$$

Continuous transitions are determined by the absolute minima of F. Like F and  $F_1$ , the homogeneous polynomial  $\psi^2(\eta_i)$  is invariant by  $G_0$ . Its degree is  $2p \ge 4$  ( $\psi$  being of degree  $\ge 2$  since x and  $\eta_i$  implicitly have different symmetries). If 2p is greater than the highest degree in  $F_1$ ,  $\psi^2$  will obviously have no influence on the stability of the LS phases just below the transition point. A line of continuous transition will exist for unmodified ranges of the  $\beta_k$  coefficients, no condition being imposed to  $\delta$ .

In the other case,  $\psi^2$  can be expressed as a linear combination of the  $f_k$  (with some of the coefficients possibly zero)

$$\psi^2/2C = \sum_k \gamma_k f_k \quad . \tag{10}$$

Inserting Eq. (10) into Eq. (9) shows that F takes the same form as  $F_1$  with the modified coefficients

$$\beta_k^{\prime\prime} = \beta_k - \delta^2 \gamma_k \quad . \tag{11}$$

Let  $\delta_0^2$  be a finite quantity smaller than the set of

- <sup>1</sup>L. D. Landau and E. M. Lifshitz, *Statistical Physics* (Addison-Wesley, Reading, Mass., 1958).
- <sup>2</sup>N. Boccara, Solid State Commun. 11, 39 (1972).
- <sup>3</sup>J. R. Brews, Phys. Rev. B <u>1</u>, 2557 (1970).
- <sup>4</sup>V. Dvořak, Phys. Status Solidi B <u>45</u>, 147 (1971).
- <sup>5</sup>Yu. M. Gufan, and V. P. Sakhnenko, Fiz. Tverd. Tela (Leningrad) <u>14</u>, 1915 (1972) [Sov. Phys. Solid State <u>14</u>, 1660 (1973)].
- <sup>6</sup>A. P. Levanyuk and D. G. Sannikov, Fiz. Tverd. Tela (Leningrad) <u>18</u>, 423 (1976) [Sov. Phys. Solid State <u>18</u>, 245 (1976)].
- <sup>7</sup>K. S. Aleksandrov, V. I. Zinenko, L. M. Mikhelson, and Y. Sirotin, Kristallografyia <u>14</u>, (1969) [Sov. Phys. Crystallogr. <u>14</u>, 256 (1969)].
- <sup>8</sup>V. Dvořak, Phys. Status Solidi B 52, 93 (1972).
- <sup>9</sup>P. Tolédano and J. C. Tolédano, Phys. Rev. B <u>14</u>, 3097 (1976).

values  $|(\beta_k^2 - \beta_k^1)/\gamma_k|$ , for  $\gamma_k \neq 0$ . If we impose the following conditions on the expansion coefficients:

$$\begin{aligned} |\delta| < |\delta_0| , \\ (\beta_k^1 < \beta_k < \beta_k^2) & \text{if } \gamma_k = 0 ; \\ (\beta_k^1 < \beta_k < \beta_k^2 + \delta_0^2 \gamma_k) & \text{if } \gamma_k < 0 ; \\ (\beta_k^1 + \delta_0^2 \gamma_k < \beta_k < \beta_k^2) & \text{if } \gamma_k > 0 . \end{aligned}$$

$$(12)$$

It can easily be checked that we have  $\beta_k^1 < \beta_k'' < \beta_k^2$ and that, consequently, a line of continuous transitions exists between  $G_0$  and G.

The preceding proof would not hold for transitions which can only be continuous at a definite temperature and pressure  $(p_0, T_0)$ . Such a transition point would correspond to a condition of the type

$$\beta_{k0}^{1}(p_0, T_0) = \beta_{k0}^{2}(p_0, T_0) \quad . \tag{13}$$

As in general the occurrence of  $\gamma_{k0} \neq 0$  cannot be discarded, we will have

$$\delta = \delta_0 = 0 \quad . \tag{14}$$

The three equations (13), (14), and  $\alpha(p_0, T_0) = 0$ , cannot be satisfied simultaneously, thus resulting in a supression of the continuous character of the transition.

When several strain components  $x_i$  are involved in the coupling terms, the free energy takes the more general form

$$F = F_1 + \frac{1}{2} \sum C_{lm} x_l x_m + \sum \delta_l x_l \psi_l(\eta_l) \quad . \tag{15}$$

The occurrence of a line of continuous transitions can be straightforwardly established using the same arguments as in the case of a single strain component by eliminating the  $x_l$  through the set of conditions  $\partial F/\partial x_l = 0$ , and puting, for instance,  $\delta$  equal to the largest of the  $\delta_l$  coefficients.

- <sup>10</sup>P. Tolédano and J. C. Tolédano, Phys. Rev. B <u>16</u>, 386 (1977).
- <sup>11</sup>K. Aizu, J. Phys. Soc. Jpn. <u>27</u>, 387 (1969).
- <sup>12</sup>F. Jona and G. Shirane, *Ferroelectric Crystals* (Pergamon, New York, 1962).
- <sup>13</sup>J. P. Budin, A. Milatos-Roufos, N. Duc-Chinh, and G. Le Roux, J. Appl. Phys. <u>46</u>, 2867 (1975).
- <sup>14</sup>L. A. Shuvalov, N. R. Ivanov, and T. K. Sitnik, Kristallografyia <u>12</u>, 366 (1967)[Sov. Phys.Crystallogr. <u>12</u>, 315 (1967).]
- <sup>15</sup>Ch. Barta, A. A. Kaplyanskii, V. V. Kulakov, and Yu. F. Maskov, Fiz. Tverd. Tela (Leningrad) <u>17</u>, 1129 (1975) [Sov. Phys. Solid State <u>17</u>, 717 (1975)].
- <sup>16</sup>L. H. Brixner, P. E. Bierstedt, W. F. Jaep, and J. R. Barkley, Mater. Res. Bull. <u>8</u>, 497 (1973).
- <sup>17</sup>V. Kramer, R. Nitsche, and M. Schuhmacher, J. Cryst. Growth <u>24/25</u>, 179 (1974).

- <sup>18</sup>J. D. Bierlein and A. W. Sleight, Solid State Commun. <u>16</u>, 69 (1975).
- <sup>19</sup>J. L. Baudour, Y. Delugeard, and H. Caileau, Acta Crystallogr. B <u>32</u>, 150 (1976).
- <sup>20</sup>E. J. Samuelsen and D. Semmingsen, Solid State Com-
- mun. <u>17</u>, 217 (1975).
- <sup>21</sup>J. Wanagel and B. W. Batterman, J. Appl. Phys. <u>41</u>, 3610 (1970).
- <sup>22</sup>N. Nakanishi, Y. Marukami, S. Kachi, T. Mori, and S. Miura, Phys. Lett. A <u>37</u>, 61 (1971).
- <sup>23</sup>J. N. Christian, The Theory of Transformations in Metals and Alloys (Pergamon, New York, 1965).
- <sup>24</sup>G. A. Gehring and K. A. Gehring, Rep. Progr. Phys. <u>38</u>, 1 (1975).
- <sup>25</sup>J. C. Tolédano, J. Solid State Chem. <u>27</u>, 41 (1979).
- <sup>26</sup>N. Boccara, Ann. Phys. (N. Y.) 47, 40 (1968).
- <sup>27</sup>K. Aizu, J. Phys. Soc. Jpn. <u>28</u>, 706 (1970).
- <sup>28</sup>V. Janovec, V. Dvořak, and J. Petzelt, Czech. J. Phys. B 25, 1362 (1975).
- <sup>29</sup>L. Michel and J. Mozrzymas, in Proceedings of the VIth International Colloquium on Group Theoretical Methods in Physics, Tübingen, (1977) (Springer-Verlag, Berlin, 1978).
- <sup>30</sup>G. Ya. Lyubarskii, *The Application of Group Theory in Physics* (Pergamon, New York, 1960).
- <sup>31</sup>J. C. Tolédano, Ann. Telecommun. <u>29</u>, 243 (1974).
- <sup>32</sup>A. P. Cracknell, Acta Crystallogr. Sect. A <u>28</u>, 597 (1972).
- <sup>33</sup>W. Jeitshko and A. W. Sleight, Acta Crystallogr. Sect. B <u>30</u>, 2088 (1974).
- <sup>34</sup>K. Aizu, J. Phys. Soc. Jpn. <u>28</u>, 706 (1970).
- $^{35}$ V. Dvořak, Ferroelectrics 7, 1 (1974).
- <sup>36</sup>O. V. Kovalev, Irreducible Representations of Space Groups (Gordon and Breach, New York, 1965).
- <sup>37</sup>Yu. M. Gufan and V. P. Sakhnenko, Zh. Eksp. Teor. Fiz. <u>63</u>, 1909 (1972) [Sov. Phys. JETP <u>36</u>, 1009 (1973)].
- <sup>38</sup>R. Pynn, J. D. Axe, and R. Thomas, Phys. Rev. B <u>13</u>, 2965 (1976).
- <sup>39</sup>J. Mozrzymas and A. Solecki, Rep. Math. Phys. <u>7</u>, 367 (1975).
- <sup>40</sup>J. Neubüser, H. Wondratschek, and R. Bülow, Acta Crystallogr. Sect. A 27, 517 (1971).
- <sup>41</sup>A. P. Levanyuk and D. G. Sannikov, Usp. Fiz. Nauk. <u>112</u>, 561 (1974) [Sov. Phys. Usp. <u>17</u>, 199 (1975)].
- <sup>42</sup>K. Aizu, J. Phys. Soc. Jpn. <u>33</u>, 629 (1972).
- <sup>43</sup>J. F. Nye, *Physical Properties of Crystals* (Clarendon, Oxford, 1960).
- <sup>44</sup>International Tables for X-ray Crystallography (Kynoch, Birmingham, 1952).
- <sup>45</sup>J. Zak, A. Cacher, H. Glück, and Y. Gur, *The Irreducible Representations of Space Groups* (Benjamin, New York, 1969).
- <sup>46</sup>E. M. Lifshitz, Zh. Eksp. Teor. Fiz. <u>11</u>, 255 (1941).
- <sup>47</sup>V. E. Naish and V. N. Syromiatnikov, Kristallografiya <u>21</u>, 1085 (1976) [Sov. Phys. Crystallogr. <u>21</u>, 627 (1976)].
- <sup>48</sup>E. B. Vinberg, Yu. M. Gufan, V. P. Sakhnenko, and Yu. I. Sirotin, Kristallografiya <u>19</u>, 21 (1974) [Sov. Phys. Crystallogr. <u>19</u>, 10 (1974)].
- <sup>49</sup>M. V. Jaric and J. L. Birman, Phys. Rev. B <u>16</u>, 2564 (1977).
- <sup>50</sup>O. V. Kovalev, Fiz. Tverd. Tela (Leningrad) <u>2</u>, 1220 (1960) [Sov. Phys. Solid State <u>2</u>, 1105 (1960)].
- <sup>51</sup>V. N. Syromiatnikov, thesis (Ural Scientific Center, Academy of Sciences of the USSR, 1977) (unpublished).
- <sup>52</sup>V. E. Naish and V. N. Syromiatnikov, Krystallografiya <u>22</u>,

- 7 (1977) [Sov. Phys. Crystallogr. 22, 2 (1977)].
- <sup>53</sup>C. Barta, J. P. Chapelle, G. Hauret, Cao Xuan An, A. Fouskov, and C. Konak, Phys. Status Solidi A <u>34</u>, K51 (1976).
- <sup>54</sup>W. Rehwald and A. Vonlanthen, Phys. Status Solidi B <u>90</u>, 61 (1978).
- <sup>55</sup>W. Prettl and K. H. Rieder, Phys. Rev. B <u>14</u>, 2171 (1976).
- <sup>56</sup>S. Shiozaki, A. Sawada, Y. Ishibashi, and Y. Takagi, J. Phys. Soc. Jpn. <u>43</u>, 1314 (1977).
- <sup>57</sup>J. Petzelt, J. Roos, and H. Granicher, Ferroelectrics <u>13</u>, 437 (1976).
- <sup>58</sup>C. Joffrin, M. Lambert, and G. Pepy, Solid State Commun. <u>21</u>, 853 (1977).
- <sup>59</sup>J. Torrès, Phys. Status Solidi B <u>71</u>, 141 (1975).
- <sup>60</sup>A. Sawada, Y. Makita, and Y. Takagi, J. Phys. Soc. Jpn. <u>41</u>, 174 (1976).
- <sup>61</sup>J. H. Smith and A. I. M. Rae, J. Phys. C <u>11</u>, 1761 (1978).
- <sup>62</sup>G. J. Simonis and C. E. Hathaway, Phys. Rev. B <u>10</u>, 4419 (1974).
- <sup>63</sup>E. Pytte and J. Feder, Phys. Rev. <u>187</u>, 1077 (1969).
- <sup>64</sup>J. D. Axe, G. Shirane, and K. A. Muller, Phys. Rev. <u>183</u>, 820 (1969).
- <sup>65</sup>W. Press, J. Eckert, D. E. Cox, C. Roller, and W. Kamitahara, Phys. Rev. B <u>14</u>, 5 (1976).
- <sup>66</sup>C. S. Barrett and T. B. Massalski, *The Structure of Metals* (McGraw Hill, New York, 1966).
- <sup>67</sup>J. Jerphagnon, Proceedings Ternary compounds Conference Edinburg, 1977, IOP Conf. Ser. 35 (Institute of Physics, London, 1977), p. 1.
- <sup>68</sup>R. W. Schwartz, S. F. Watkins, C. J. O'Connor, and R. L. Carlin, J. Chem. Soc. Faraday Trans. II <u>72</u>, 565 (1976).
- <sup>69</sup>J. M. Rowe, J. J. Rush, and E. Prince, J. Chem. Phys. <u>66</u>, 5147 (1977).
- <sup>70</sup>D. J. Gunton and J. A. Saunders, Solid State Commun. <u>12</u>, 569 (1973).
- <sup>71</sup>T. Hikita, J. Phys. Soc. Jpn. <u>43</u>, 1327 (1977).
- <sup>72</sup>J. K. Solbakk and K. O. Stromme, Acta Chem. Scand. <u>23</u>, 300 (1969).
- <sup>73</sup>K. W. Browal, J. S. Kasper, and H. Wiedemeier, J. Solid State Chem. <u>10</u>, 20 (1974).
- <sup>74</sup>E. G. Stewart and H. P. Rooksby, Acta Crystallogr. <u>6</u>, 49 (1953).
- <sup>75</sup>S. C. Abrahams, J. L. Bernstein, and J. P. Remeika, Mater. Res. Bull. <u>9</u>, 1613 (1974).
- <sup>76</sup>S. C. Abrahams, R. L. Barnes, and J. L. Bernstein, Solid State Commun. <u>10</u>, 379 (1972).
- <sup>77</sup>A. P. Levanyuk and D. G. Sannikov, Fiz. Tverd. Tela (Leningrad) <u>17</u>, 526 (1975) [Sov. Phys. Solid State <u>17</u>, 327 (1975)].
- <sup>78</sup>V. Dvořak, Czech. J. Phys. B <u>28</u>, 989 (1978).
- <sup>79</sup>J. C. Tolédano, Phys. Rev. B 20, 1147 (1979).
- <sup>80</sup>L. H. Brixner, J. F. Whitney, F. C. Zumsteg, and G. A. Jones, Mater. Res. Bull. <u>12</u>, 17 (1977).
- <sup>81</sup>G. Fonteneau, H. L'Helgoualch, and J. Lucas, Rev. Chim. Miner. <u>14</u>, 359 (1977).
- <sup>82</sup>P. S. Peercy and I. J. Fritz, Phys. Rev. Lett. <u>32</u>, 466 (1974).
- <sup>83</sup>F. L. Lederman, M. B. Salamon, and H. Peisl, Solid State Commun. <u>19</u>, 147 (1976).
- <sup>84</sup>M. Hidaka, I. G. Wood, B. M. Wanklyn, and B. J. Garrard, J. Phys. C <u>12</u>, 1799 (1979).
- <sup>85</sup>R. Kind, Phys. Status Solidi A <u>44</u>, 661 (1977).