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Purely ferroelastic transitions, i.e. , transitions associated with a spontaneous deformation but
no spontaneous polarization, appear from recent experimental investigations as a very common
type of structural phase transitions. A theoretical analysis is presented for this class of transi-
tions on the basis of Landau's theory of continuous phase transitions. The possible symmetries
of their order parameter are systematically worked out both for the cell-preserving transitions
and for those which modify the number of atoms in the crystal unit cell. Accordingly, we ex-
amine the transitions induced by the space-groups irreducible representations complying with the
Landau and Lifshitz symmetry criteria. For each representation attention is given, in particu-

lar, to the construction of the finite group constituted by the set of distinct matrices of the
representation, since this set (the image of the representation) determines the form of the Lan-
dau free energy and the number and characteristics of the low-symmetry phases. The images
corresponding to the four-, six-, and eight-dimensional order parameters, which were not
known previously, have been systematically determined for the 230 crystallographic space
groups. We find 22 four-dimensional images associated with the "active" irreducible representa-
tions, ten six-dimensional, and five eight-dimensional ones. The corresponding Landau free en-

ergies have been expanded as a function of the order-parameter components, up to the lowest-

degree terms which influence the stability of the low-symmetry phases just below a line. of con-
tinuous transitions. It is pointed out that, in some cases, polynomials of degree as high as 12
must be considered. Whenever the order parameter and the spontaneous deformation have dif-

ferent symmetry properties, (improper ferroelastics), we have examined the additional contribu-
tions to the Landau free energy which represent the coupling between those two quantities.
Their form depends on the particular space-group representations and not only on the images of
these representations. We have worked out the lowest-degree coupling'term for all the con-
sidered transitions. Its degree in the order parameter (the "faintness" index), which governs the
qualitative temperature dependence of the macroscopic deformation and elastic constants is

found equal to 2 in most cases, though values of 3 and 4 are also found possible. For each of
the predicted types of ferroelastic transitions the space-symmetry change and unit-cell expansion
have been determined. ' These crystallographic results are presented in table form and discussed.
It is pointed out, in particular, that purely ferroelastic transitions constitute the major part of the
ferroic phase transitions which are inferred to be possible in the framework of the Landau

theory. Finally, the former theoretical results are compared to the available experimental'data.

I. INTRODUCTION

The Landau theory of continuous phase transi-
tions' provides a basis for deriving several important
features of structural phase transitions, namely, the
change in the crystal's space group, the dimension
and symmetry properties of the transition's order
parameter, and the form of the free-energy expan-
sion. The theory does not account correctly, in gen-
eral, for the behavior of physical quantities in the vi-

cinity of the transition point since it has the same
range of validity as the mean-field approximation in

microscopic theories. However, its results concerning
the prediction of the symmetry changes have been
shown to be independent of the preceding approxi-
mation. Besides, the characteristics of the order-
parameter and of the free-energy expansion, defined
by the theory, are known to keep an important role
in the more advanced statistical theories of the criti-
cal behavior.

The symmetry criteria contained in Landau's
theory limit to a few thousands the number of dif-
ferent symmetry changes which are likely to be en-
countered. These restrictions are only valid, in prin-
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ciple, for continuous transitions between strictly
periodic structures, but they also hold for many tran-
sitions of first order. ' Conversely, examples of
first-order transitions not complying with them are
known. ' lt is also expected that transitions leading to
a modulated structure will generally not be submitted
to them. However, the precise extent of their appli-
cability to the actually observed crystalline transitions
cannot be fully estimated because, up to now, the

symmetry changes determined from the Landau and
Lifshitz symmetry criteria have not been extensively
worked out, and accordingly, no systematic compari-
son could be made to the experimental data.
Group-theoretical work based on these criteria have
either been restricted to transitions preserving the
translations of the crystal, or directed towards the
understanding of the symmetry changes occurring in
particular structural families.

In two previous papers, ' referred to hereafter as
TTI and TTII, we have started investigating the
order-parameter symmetries, space-group changes,
and free-energy expansions relative to all the con-
tinuous transitions which are likely to arise from any
of the 230 crystallographic space groups.

These studies dealt with the structural transitions
which modify the crystal class and, possibly, its prim-
itive translations, but keep unchanged the crystal sys-
tem. In TTI the case of purely ferroelectric transi-
tions was examined, awhile TTII was devoted to the
secondary- and higher-order ferroic transitions, i.e.,
to the transitions involving the onset of a spontane-
ous polar tensor or rank higher than two. In both
works the theoretical results were used to compare
the predictions of Landau's theory to the available
experimental data for the considered types of transi-
tions.

In the present paper, we extend this study to the
case of purely ferroelastic transitions. These transi-
tions are of a special interest because, though only
recently the subject of a systematic experimental in-

vestigation, they already appear as a very commonly
encountered type of structural transition. %e will

show in this work that they also constitute a major
part of the transitions which are theoretically predict- .

ed to be possible in the framework of Landau's
theory.

Ferroelastic transitions are those structural phase
transitions which give rise to a spontaneous strain.
They have been recognized by Aizu" in 1969 as a

group of transitions sharing common properties, and
constituting the mechanical analogs of ferroelectric
phase transitions. In particular, the low-symmetry
(ferroelastic) phase is characterized by a stress-strain
hysteresis loop which discloses the occurrence of
several strain-differing stable states (the ferroelastic
domains), and also the possibility of switching the
crystal from one stable state to another by applying
an external stress.

Ferroelasticity sometimes occurs in conjunction
with ferroelectricity such as in several well-known fer-
roelectrics" (KDP, Rochelle-salt, barium titanate).
However, an increasing number of substances have
been found to display a purely ferroelastic (i.e., not
simultaneously ferroelectric) transition. Prominent
examples are lanthanum pentaphosphate" LaP50~4,
potassium trihydrogen selenite' KH3(Se03)2, mercu-
ry chloride" Hg2C12, lead phosphate' Pb3(PO4)2, an-
timony iodide oxide' Sb507I, bismuth vanadate'
BiV04, and many compounds with the perovskite
structure (SrTi03, LaA103, CsPbC13). A few organic
materials, namely, the polyphenyls' and squaric
acid, ' also belong to this group as well as several
metallic alloys such as V3Si (Ref. 21) and
CuA uZn2. M oreover, two ex tensively studied
classes of crystalline transformations, i.e., the ther-
moelastic martensitic transformations ' and the
cooperative Jahn-Teller transitions, ' have been
recognized as closely related to purely ferroelastic
transitions.

A theoretical analysis of purely ferroelastic transi-
tions is described in Secs. II—IV. In Sec. II we briefly
recall the crystallographic and physical characteristics
which define these transitions, and we outline the
method used to apply to them the Landau theory.
The working out of Landau's symmetry criteria is
based on the space-group representations instead of
the simpler point-group ones, in order to account for
the transitions which involve a change in the transla-
tional symmetry. Such a procedure is fully justified
by the fact that a large number of the currently
known ferroelastics actually display a modification of
the translational symmetry. Investigations of the
purely ferroelastic transitions which preserve the
crystal's translations had previously been performed
by Boccara, 2 Aizu, ' and in a more complete way by
Janovec et al. Section III is devoted to the study of
the free-energy expansions relative to the considered
transitions. A reduction of the number of cases to be
handled is achieved through the use of the images'
of the representations. Particular attention is given
to the four-, six-, and eight-dimensional irreducible
representations for which the images are determined
for the first time. The lowest-degree terms are listed
for all the encountered types of expansions, including
the terms representing the coupling between the or-
der parameter and the ferroelastic strain. The mini-
ma of the order-parameter expansions are algebraical-
ly discussed in order to derive the various low-

symmetry phases which are likely to be stable below
the transition point. Section IV contains in table
form the results of the systematic determination of
the space-symmetry changes accompanying all possi-
ble ferroelastic transitions as well as their discussion.
In Sec. IV, we also compare the results of the
theoretical investigation to the available experimental
data.
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II ~ THEORETICAL PROCEDURE

In the Landau theory the symmetry change which
takes place at a continuous transition is related to the
symmetry properties of a certain active' physically ir-
reducible3 representation (IR) of the high-symmetry
(HS) space group. This IR is spanned by the com-
ponents of the transition's order parameter (QP).
The symmetry change will be a ferroelastic one if the
thermal-expansion tensor of the low-symmetry (LS)
phase has more independent components than that of
the HS phase. This condition arises" from the fact
that the spontaneous strain is represented by a sym-
metric second-rank tensor which, moreover, vanishes
by symmetry in the HS phase (it is therefore neces-
sarily traceless). In addition to the trivial group-
subgroup relationship between phases, which is im-

plicitly assumed, the former criterion requires, ' at
the crystallographic level, that the two symmetry-
related point groups belong to different crystal sys-
tems, provided that the hexagonal and trigonal sys-
tems are considered as a single system.

Pure ferroelasticity is defined by the additional con-
dition that the same components of a vector (polari-
zation) are compatible with the crystal classes of the
two phases (this includes, in particular, transitions
between polar classes). The macroscopic features of
the ferroelastic phase, such as the number of orienta-
tional domains, or the form of the spontaneous-strain
tensor are determined by the nature and orientation
of the set of point-symmetry elements of the HS
phase which are retained in the LS one. ' Physically
distinct situations will be associated to different fer-
roelastic "species"." There are 64 species associated
with the purely ferroelastic transitions (PFT) con-
sidered in this work. For some of the species,
several domain orientations are characterized by an
identical spontaneous-strain tensor and they can only
be distinguished at macroscopic level, by spontaneous
components of higher-rank tensors. These species
are not "full" ferroelastic ones in the sense of Aizu. "
We have, nevertheless, included them among the in-
vestigated PFT.

%'e have listed in Table I the 64 former species and
their respective spontaneous tensorial components.
Strain components were previously worked out by
Aizu, 34 while the full set of spontaneous components
can be found in the work of Janovec et al. "

The latter authors have pointed out that, from a
group-theoretical point of view, the spontaneous
components relative to a given species can belong ei-
ther to one, or to several IR of the HS point group.
The decomposition of the relevant tensorial com-
ponents into irreducible parts with respect to the HS
class has been reproduced in Table I as it provides an
essential indication in determining the coupling
scheme between these components and the order
parameter of the transition (see Sec. III).

Table I shows that the 64 considered species derive
from 21 HS crystal classes. We can restrict our
analysis to the 188 space groups belonging to these
classes as only their active IR are likely to give rise to
a PFT. The procedure of working out systematically
all the possible continuous PFT is then (i) to select
the active IR's of each space group Gp, (ii) to deter-
mine the stable LS phases, compatible with a given
IR, (iii) to select the LS phases whose point-
symmetry forms, with the point symmetry of Gp, a

purely ferroelastic species appearing in Table I, and
(iv) to identify the space group of each of the former
LS phases.

The selection of the active IR's of a space group
Gp has been described by Lyubarskii and recalled in

TTI. It is effected in three steps. First are retained
the IR's, denoted I'„(k"), whose star k' corresponds
either to the center (k =0) of the Brillouin zone
(BZ) relative to Gp, or to one of a few definite k

vectors of the BZ boundary. These prominent k vec-
tors were listed in TTII for the BZ of the cubic sys-
tem and in TTI for the remaining systems. This prel-
iminary filtering relies on the rejection of the IR's
whose antisymmetrized square ( I'„(k")') possesses a

representation in common with the vector representa-
tion of Gp (Lifshitz criterion). ' The former criterion
is then applied a second time, at a more detailed lev-

el, to the small representations v„relative to each ac-
ceptable k vector, thus producing a further selection.
The resulting IR's complying with the Lifshitz condi-
tion were indicated in TTI and TTII.

Finally, among the preceding IR's are only kept
the ones whose symmetrized third power [I'„(k')3]
goes not contain the totally symmetric IR of Gp

(Landau criterion). 3p The latter condition is not a

selective one: it is trivially fulfilled by the IR's of all

the space groups except by those relative to a few
stars of the cubic and hexagonal BZ. Ho~ever, in

the latter cases, its practical application for O' WO

often requires a lengthy construction of the represen-
tation matrices, and it is therefore, more conveniently
achieved as the last step of the selection.

The space group G of the LS phase, determined by

a given active IR, coincides with the set of symmetry
operations belonging to Gp which leave invariant a
certain vector Sp in the abstract vector space of the
considered IR. The components g,

p of this vector in
the $, basis of the IR are the particular values of the
OP 'components which correspond to the absolute
minimum of the Landau free-energy expansion. For
an m-dimensional IR (m ) I), depending on the re-
lative algebraic values of the expansion's coefficients,
the absolute minimum is likely to be associated with
different vector directions in the m-dimensional
representation space ~. As a consequence, several
low-symmetry groups G are possible.

In TTI and TTII the groups G of interest were re-
quired to belong to the same crystal system as Gp. It
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TABLE I. Purely ferroelastic species. Columns 1,2: set of point groups and orientation of the LS elements defining each
species. Column 3: strain x;, piezoelectric d~ and elastic Cz spontaneous components. ~; irreducible representation of the HS

point group inducing the point-symmetry change (several 7; can be involved in certain species, this is indicated by the symbol
+). Each 7; is preceded by the set of tensorial components spanning it. The number of components between brackets (some of
which can be zero) is the dimension of ~;. Whenever the spontaneous-strain tensor has components not belonging to the form-
er 7, 's, they are reproduced on the same line without being followed by a 7; symbol. The Voigt contracted notation (Ref. 43) is

used for macroscopic tensors and the ~; are referred to the tables of Zak (Ref. 45),
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TABLE I. (Co/~Ii Ijii( 8)
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was shown that a necessary condition is that the cor-
responding vectors 5p lie along certain prominent
directions in e. The possible occurrence of a LS
phase of the considered type could then be checked
directly among the invariance groups G of these
directions. A free-energy expansion had, in princi-

ple, to be handled in the infrequent cases where a

phase with the required symmetry was obtained.
In the study of ferroelastic transitions, which

essentially involve a modification of the crystal sys-

tem, the above simplification does not remain valid,
and any vector of ~ is likely to be associated to such a

transition. Consequently, to determine the possible
LS phases relative to a continuous PFT, one has to
go through the standard procedure outlined by Lyu-
barskii' and locate first the various directions in ~

which correspond to a minimum of the Landau free
energy. The LS group G can then be specified for
each such direction. The first step of the method
therefore consists in the construction of the free-
energy expansion and the algebraic discussion of its
minima. For the reasons stated above, such a discus-
sion was not performed in detail in TTI and TTII. It
is undertaken in Sec. III for the expansions arising
from all the active IR's.

III. FREE-ENERGY EXPANSIONS IN THE
LANDAU THEORY

The Landau free energy (LFE) is a polynomial ex-
pansion whose terms are invariant functions under
the symmetry operations of the HS space group. For
a PFT, this expansion can be restricted to two sets of
variables: the OP components (7);) spanning the ac-
tive IR which drives the transition, and the sponta-
neous-strain components (x, ) relative to the con-
sidered ferroelastic species (if the species is not a
"full" one, " other higher-rank tensor components,
indicated in Table I, should also be included).

%hen giving attention to the symmetry characteris-
tics of the transition, one can neglect the macroscopic
quantities which are coupled to the OP, but whose
onset would preserve the crystal's higher symmetry
(for instance the strain components already allowed

by symmetry in the HS phase).
Likewise, we can ignore the macroscopic quantities

~hose onset would modify the symmetry of the crys-
tal in a different way than the considered (x, ) com-
ponents. The terms representing their coupling to
the (2);) are warranted to vanish by symmetry for
equilibrium (2);) values of the OP corresponding to
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the purely ferroelastic phase of interest.
Similarly to the case of ferroelectrics, different

situations can be distinguished on the basis of the re-
lative symmetries of the OP and of the spontaneous
strain. When the latter quantity belongs to the same
IR as the OP, the corresponding PFT is labeled as
"proper". ' The star of the IR is necessarily k'=0.
As the physical nature of the OP is irrelevant to the
symmetry aspects developed here, the OP can be
chosen to coincide with the (xi), and the LFE takes
the form F(xJ, Ci), where the Ci coefficients of the
expansion are elastic constants of different orders.

If the sets (x&) and (g, ) belong to different IR's,
the considered PFT is an "improper" one." This is
always the case when the OP corresponds to k' ~ 0,
but it can also occur for k'=0, if the OP is associated
with tensorial components of rank higher than 2. For
an improper PFT, the LFE can be split into three
kinds of terms representing, respectively, the OP ex-
pansion, the strain expansion, and the mixed invari-
ants relative to the coupling between those two quan-
tities. We can write

F(n, rt;, x, , Pi, Ci, 8~)

Ft(~ rti Pg) +F2(xj, Ci) + F3(rt y iixi &~)

where a = ( T —T, ) is the coefficient of the OP in-

variant of degree two, and Pi„Ci, 5 are temper-
ature-independent coefficients of the other terms
constituting the expansion.

Finally, an intermediate situation, which has been
noted by Janovec et al. ,

"arises when the OP coin-
cides with one set of strain components (x;) while
another set (x&), relative to the same ferroelastic
species, belongs to a different nonidentical IR. The
PFT will exhibit simultaneously a proper and an im-

proper behavior. This occurs, for instance, in the
case of the P4/m Pl transition (Tables I and VII).

Let us examine the construction and properties of
the different terms contributing to the expansion, in

the most complex case of an improper PFT. The
other cases can be easily deduced from it.

A. Construction of the Landau free energy

The OP expansion Ft(a, g;, Pi, ) is a sum of in-

dependent homogeneous polynomials of various de-

grees, separately invariant by Go. In addition to a
single quadratic term, F~ contains, in general, several
fourth-degree ones. As we consider an active' IR,
linear and third-degree invariants are necessarily ab-
sent from the expansion.

On the other hand, higher-degree invariants can, in

general, be neglected in the vicinity of a continuous
transition as they play no role in the stability of the
LS phases just below the transition point. It can hap-

pen, however, that for certain multidimensional IR, a
single quartic term exists which will necessarily pos-
sess spherical symmetry. More generally, an isotropy
of the quartic terms can occur in a certain subspace
of the representation space. In these cases the sym-
metries of the LS phases are determined by invari-
ants of degree higher than four even near the transi-
tion.

In the expansion F~ associated with a given IR,
I'„(k'), the number of independent invariants of de-
gree v is unambiguously defined. It is equal to the
number of times the trivial IR of Go is contained in
the symmetrized vth power [I'„(k')"] of the IR. By
contrast, the form of these invariants is partly arbi-
trary, as any linear combination of several of them
will provide another invariant polynomial. More sig-
nificantly, the expression of a given invariant
depends on the choice of a frame of reference in the
representation space ~. For all the expansions dis-
cussed here the following choice has been made:

(i) If the star of I'„(k') has one arm, the basis
coincides with the one defining the representation
matrices in Kovalev's tables. ' However, for two-
dimensional real IR's, the basis provided by the
tables is sometimes a complex one. Also, the con-
sidered IR can be the sum of two complex-conjugate
IR's. In both cases, the basis has been converted
into a real one by one of the sets of transformations

[rt'=(I/J2)(v)+ (); g'=(I/K2)(g —'g)]
or

(ii) If the star of I'„(k") has several arms, the
basis of the small representation 7„ is constructed
from Kovalev's tables as in the preceding case and a
standard' basis of the entire IR is then generated
from it (the various possible choices of this standard
basis have no influence on'the form. of the expansion
within a permutation on the OP components).

The working out of the independent invariants has
been achieved by projecting the basis functions of
[I'„(k')"] on the trivial representation of Go. To
perform this projection it is sufficient to know the set
of distinct matrices of I'„(k') associated with the ele-
ments of Go.

For an active IR, the number of distinct matrices is
always finite" though Go is of infinite order. As not-
ed by Gufan et al. ,

' their set can be considered as
the physically irreducible vector representation of a
finite point group L, acting in the m-dimensional
space ~. L is sometimes called29 the image of
r„(k").

The advantage of considering the images instead of
the entire set of matrices constituting the IR, lies in
the fact that several IR's correspond to the same im-

age. Essential features of the transitions such as the
form of the OP expansion, the number of LS phases,
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and their symmetry relationship, the number of
domains, can be investigated in a considerable re-
duced number of cases corresponding to the distinct
images.

The number of different images associated to the
active IR's is limited by crystallographic restrictions. "
The case of the images of the two- and three-
dimensional IR's has been studied first by Gufan
et al. " It has been shown that there are eight "ac-
tive" images in two dimensions. Their set of matrices
are, respectively, isomorphic to the two-dimensional
point groups C4, C4„, C6, C6„, C8, C8„, C~2, and
Ct2„(Schoenflies notation). Likewise, three-
dimensional active IR's give rise to three images
only, which are isomorphic to the three-dimensional
crystallographic point groups Tq, 0, and Oq. Gen-
erally speaking, there wi11 be as many distinct OP ex-
pansions of the corresponding dimensions. However,
if we only retain the terms of lowest degrees which
are just necessary to account for the continuous sym-
metry change, several distinct images will be associat-
ed with the same form of expansion. Thus, the same
fourth-degree expansion corresponds to all the
three-dimensional images. "

The construction of the expansions relative to the
two- and three-dimensional images has been per-
formed by several authors. For higher dimen-
sions, OP expansions have only been constructed in a
few particular cases corresponding to certain families
of compounds. ' Besides, no information is
available on the higher-dimensional images. We
have determined these images and the lowest-degree
terms of the corresponding OP expansions for the
four-, six-, and eight-dimensional active IR. No
higher dimension is involved when dealing with con-
tinuous transitions between per'iodic phases since no
IR's with higher dimensions are found to comply
with the Lifshitz criterion. For the sake of complete-
ness, we have extended this part of the investigation
to the 230 crystallographic space groups and not only
to the 188 space groups relevant to the study of pure
fcrroelasticity.

Active IR's give rise to 22 four-dimensiona1,
10 six-dimensional, and 5 eight-dimensional images.
Only two of these images are not related to the
onset of pure ferroelasticity. Gufan e( a/. "have stat-
ed that one should find, at most, 24 four-dimensional
and 6 six-dimensional images complying with the
Lifschitz criterion but not necessarily with the Lan-
dau one. This statement, whose basis is not ex-
plained by the former authors, is obviously incorrect
for six dimensions (we even find 7 six-dimensional
images, not indicated here, which do not comply with
the Landau criterion).

Thc four-dimensional images arise from IR's of the
orthorhombic, tetragonal, hexagonal, and cubic sys-
tems. Their order (number of distinct matrices)
range from 8 to 384. The occurrence of the highest

orders might seem surprising since these exceed the
maximum number of point-symmetry elements en-
countered in the crystallographic groups (48). Their
origin lies in the occasional complexity of the ma-
trices representing the primitive translations of the
crystal at certain BZ points.

We have noted that each image is isomorphic to
one of the 227 point groups which occur in four-
dimensional crystallography. We were able to identi-
fy these point groups by using the tables of Mozrzy-
mas, in which the 227 former classes are explicitly
described by the set of their generating matrices.

Six-dimensional images occur in the cubic system
only, while eight-dimensional ones arise from active
IR's of the cubic and hexagonal systems. Their or-
ders arc, respectively, in the ranges 48 —1536 and
72—384. Similarly to the case of three and four di-
mensions (but not of two dimensions) the latter im-

ages are isomorphic to "crystallographic" point
groups since they are generated by integral matrices.
However, no tables of crystallographic point groups
seem to be available for dimensions higher than 4,
and a geometrical identification of the corresponding
images is therefore meaningless at present.

The relationship between the various images is

represented in Figs. 1 and 2. We have specified in

these figures the three-dimensional crystallographic
space groups 60 whose IR give rise to each image as
well as the type of OP expansion associated with it.
The expansions have been listed in Tables II and III.
As shown by the former tables and figures, thc trun-
cated expansions coincide for several images though
the infinite expansions should all be different. As
stressed above, the truncation has not always been
limited to the fourth-degree terms. Tables II and III
specify that the isotropy of the lowest-degree terms
sometimes requires one to consider degrees as high
as 12. Such a circumstance was already noted to oc-
cur for the two-dimensional expansions. 3'

Summing up our results with those already known
for lower dimensions, it appears that active IR's of
the 230 crystallographic space groups give ripe to 49
images whose dimensions range from one to eight.
The study of continuous transitions in the Landau
theory is therefore reduced to the handling, at most,
of 49 types of expansions.

To complete the construction of the LFE, we must
determine the strain contributions F2(x, , C, ) and the
mixed invariant F3(q;,x~, 5 ). The subsequent dis-
cussiorr stresses that these terms are not necessary to
predict the number and symmetries of the LS phases
which are entirely specified by the OP expansion.
However their presence in the LFE are essential to
the understanding of the onset of spontaneous-strain
components and the occurrence of the elastic
anomalies characteristic of the ferroelastic behavior.

Various authors ' have emphasized that it is suf-
ficient to expand the strain contribution F2(x&, CI) as
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4.1
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F222

59.1
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49.1 49 2 f'g() 42, 1 44, 1 f9 48.1 'g 24
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Ia3d

I4
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P 430 I43d

Pnma P2&2I2&

FIG. 1. Images of the four-dimensional physically irreducible active representations of the 230 crystallographic space groups.
Each image is isomorphous to a four-dimensional crystallographic point gr up and is identified by the symbol for this group
(e,g, , 115.01) referred to the tables of Mozrzymas (Ref. 39). The orders of the various images are indicated on the vertical
scale. Be)ow each image are listed the three dimensional space groups whose IR's give rise to the image. These IR's are further
specified (star, small representation) in Tables VI—IX. The symbols at the right of the images (e.g. , f&) represent the associated
OP expansions whose expression is given in Table II. The connecting lines show the group-subgroup relationship between the
images, Underlined space groups are not related to purely ferroelastic transitions,
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Lg hI

F432

kI
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Fd3m

Im3
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I
Pm3n

P43m Pm3m

Pm3n Fm3m

Fm3c

Pn3m Pn3n

Fd3m Fd3c

1432 I43m

Im3m
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M& kZ

Fm3m F43m
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kI

L
M 5

P&3n

"3'

FIG. 2. Images of the six-dimensional (left) and eight-dimensional (right) physically irreducible active representations of the
230 space groups. The indications are the same as in Fig. 1 with the difference that the L& and M& symbols do not have any de-
fined crystallographic meaning.

TABLE II. Four-dimensional order-parameter expansions. Column (a): labeling of the expansions; primed symbols possess
the same fourth-degree terms as the corresponding unprimed ories but differ by the form of the higher-degree terms. Column
(b): number of independent fourth-degree invariants. Column 3: form of the fourth-degree invariants

0 ~ ii ~ Jl ( /I+2 +394' ~ ~2 (3133+ 9294)~ ~3 ('91+4++2+3} i J4 =g1'$2+3 g4g Y)1
—PI cos@1

2 2 2 2 . 2 2 2 2

1,4

~1 92 Pl sin@1 R3 P2 o @2 '94 =P2 Sin/2 = (2

The terms of degree higher than four are not explicitly given, but the highest degree which must be taken to account in order to
work out the stability of the LS phase is indicated (e.g. , degree 12). Column (c): number of LS phases with distinct sym-
metries. Column (d): labeling of the different LS phases. Column (e): direction in the representation space associated to each
LS phase. Directions of the type [1000] are symmetry elements of the image, while [q('q'('] is not determined by symmetry.

(a) (b) Invariants (c) (d) (e)

f2
[ (Ii+Id+13)
i lp, li
[ (I~+I3)

I
II
I

II
III
IV

[1ooo]
[1»1]
[1ooo]
[»oo]
[1010]
[»»]
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TABLE II. (Coitfi iiued)

Invariants (d) (e)

[ Ip I4

[ (Il + I2 + I2)

[
IP', ll

I I2, IS

f
IP', ll

[ I2'12' I4

(pl +p2) +degl ee 6.

(pj+p22)2+degree 6.
{p41 +p42); p 1p2 +degree 6.

'{p'+p") p'p'
pl p2 cos2(pl —p2)
+degree 12.

'

(Pl+P'2)'PIPE,

1+degree 12.

t fs; p21 p22»»(d 1
—

d 2)

[ +degree 12.

+degree 6.
'
Io, (I1 +I2+I3);I4
[»4[&112+&14+ n2

—
52

++1~2 12~1] 12~2[ ll 12
' + (14—r11+4 —r11(2+712(1)[;

[~151(~1—&0+n2k2(92 f2)
+~1~2(~1—~2) —(1(2{(1 —r2)
+»4(~1-&1) -~2&1(~2 —8) [

f9 P1P2(P1 P2) cos(4'1

P1P2(P1 P2) ln(4'1 4'2)
& +degree 6

8& 1 2 Pi COS4@i

g, 2
p'4sln4y, ;

Pl P2 cos2(pl +@2)s

P/P2 Slr12 (@1+@2);
' f12', [P/P2COS(3@1 —42)
—

p2pl cos(3@2—41) l;
[pl p2 sin(3@1 —p2)
—

p2 pl sin(3/2 —@1)];
P1P2(Pf —P2) COS(@1 +P2);

i P1P2(PI P2) sill(41 + l[l2)'

I
II

III
I

II
III
IV
V
I

II
III
IV
V

VI
I

II
I
I

II
I

II
III
IV
V

VI
I

II
III

II
III

I
II
I

[looo]
[»»]
[1111]
[looo]
[1100]
[lolo]
[lool]
[1»1]
[looo]
[1100]
[lolol
[1001]
[1111]
[»11]
[&goo]
[~~~~]
[~~~'~']
[~~00]
[~gg~]
[looo]
[1100]
[1010]
[olol]
[1»1]
[1111]
[q~00]

[~~~~]
[&~00]
[~~~~]

[&goo]

[~~~'~']

[~goo]
[q~gq]
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TABLE III. Sixth- and eight-dimensional order-parameter expansions. The meaning of the various columns is the same as in
Table II eXCept fOr COlumnS (d) and (e) WhiCh are grOuped tOgether. Xmod3 p' p'+t meanS (pt p2+ p2p3+ p3pt). The eXpanSiOn

corresponding to the eight-dimensional image M5 is not indicated as irrelevant to PFT.

In variants Stable directions

h)

h2

h4

h5

k)

k2

k2

9

Xp;; Xp; cos(4@;); X,&J p2pj2,

X,.& p; p& sin24S;sin2$3;

h2,

Xmod3 p; p;+t (sin2@, —sin2$, +t )

h2',

X;&Jpi p& cos2$; cos2$J2 2

Xmod3 pi2 pi2+i (COS2$; —COS2$i+t )
' h4, X p; sin4@;;

X,&J p; p~ sin 2 ( h; i+ d&)i

d3 p; p;+t (sin2@; —sin2$, +t )

pI, ~1(Jpi p), ~I J p; pJ cos2(&I —pJ)~
~

~

~

[ptp2cos2(pt +@2
—7r/3) +p/p4cos2(pt +@4)

+p3p4 cos2(@3+@4
—tr/3) +p)p) cos2(di2+ Q3)

+pjp)cos2(4tt+@3+4r/3) +pjp(cos2(rh2+di4+e'/3) j
[pfp2 cos(4tt + th2 + e'/3) cos(dit —$2)
+p)p4cos(4t3+ts4+tr/3) cos($3 Q4)
+pfp) cos(pt +$3 —ri/3) cos(@t —@3)
+p)p) cos(4t 2 +$4 —tr/3) cos(di2 —$4)
+pfp4cos(@t +@4)cos(@t Q4)
+p/p) cos(@2 +@3)cos(ih2 @3)j
+degree 6.
k~ +degree 6.

k)

+pi p2p3p4 Xmod4 cos(@1+tel —Qi+t d i+2)
ill

+degree 6.

k2+degree 6.

I f100000]»[» 0000]
»I[101010]IV[010101]
Vf»»»]
I[100000]»[»0000]
I» f 101010] IV[01 01 01]
V[»»»] Vl f»1100]
1[100000]»[11OOOO)

»1[101010]IV fol 01 01]
V f »»»] Vl[»» 00]
V» f»» 00]
I[100000]»[»0000]
III[101010]IV[010101]
V f » 11»] Vl [q( (—F00]
1[&~0000]»f &g ~-&OO]

I» f&g&g&~]

I f10000000]
II [010000 00]
III[01OOOO 10]
IV [1010 10 10]
V[010101 01]

1[~~000000]
II[g(0000 qg]
111[~g~g ~g ~g]
1[10000000]

II[01000000]

III [1000 00 10]
IV [1010 10 10]
V[01 010101]
I [q(00 00 00]
II [~~0000~g]
III[~~ ~g ~~ ~~]

a function of the quadratic terms only. F2 will thus
coincide with the standard expression43 of the elastic
energy of the crystal in the HS phase, limited to the
terms depending on the spontaneous components xJ.
It has also been established" ' that the lowest-degree
invariant in F3 is necessarily a linear function of the

xj components. Whenever these components belong
to several distinct IR's, denoted t of the HS point-

group, each t will give rise to an invariant term of

the form

g X x~t[ij(rl;) (2)
t J

where the xj and i[i, are homologous bases spanning
t . The pJ are homogeneous polynomials of degree
p, obtained by projecting [I'„(k")~]upon i . Unlike
the search of invariant polynomials, the generation of
the licIJ functions cannot be achieved by sole con-
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TABLE IV. Coupling scheme between the order parameter and the spontaneous strain [full (Ref. 11) ferroelastic species] or
the other spontaneous macroscopic quantities [partial (Ref. 11) species]. Column one: labeling of the set of aP& polynomials

transforming according to the point-group representations. A, E, and T symbols correspond to one-, two-, and three-
dimensional point-group representations. The first index is the number of components of the order parameter. Column 2:
form of the pj functions. The notations are the same as in Tables II and III. The indices of the summation are only specified
once in each set. Column 4: faintness index relative to the spontaneous-macroscopic quantity defining the ferroelastic species
[full (Ref. 11) or partial (Ref. 11)].

Labeling Macroscopic spontaneous
tensor components

Faintness
index

A21
A22

A31
A41

A42

A43
A 6.1

A63

A S.1

E4.1

~~ or (~2- ~2}

~~ and (~2 —~2}

g2 g3
+ Y)2 v)3 YJ4

2 2 2 2a

Y)1 gP T]3 Y)4

P1 P2 cos(&1-+P2)

3 p; cos2@;

3 pi2 Sln2@i

P1 P2P3X

[cos$1 cos( @2 f3 ) + sin@1 sin ( @2 + P3 ) ]
P1 P2P3P4+

'l Xiwl, mod3 cos($1 + ~i @i+1 ~i+2) l'

[vl4+ p —6712$',4vl((v32 —(') }
[2vll —

vl2
—

v33, J3(v12
—

v31 ) }

Xl 2 ( —i)'p; cos4$;; X(—i)'p; sin4$;

E4.2

E4.4
E45
E4.6

E6.1

3.1
T4.1

T4.2

T6.1

T6.2

Z , l 2 p; cos4$;; g p; sin4$;

[ Pl cos2@1 —
P2 «S2412

[Pl sin2$1 —
P2 sin2$2

[ 94
-

13.91
-

12 } '
[ 13vi41 ll l2}

[pl p2 «S«1 + &2) ' pl p2»n(@1 + &2) }

[2P1 P2
—P3,43(—P2

—P3) } '
2p1 sin2@1 —p22sin2qh2 —

p3 sln2@3 '
J3(p2 sin2&2 —p32 sin2&3)

2P1 cos2@1—
P2 cos2@2 —P) cos2@3.

%3(P2 cos2@2 Pf cos2@3).
l'

l
X, ,p, cos2@,; $p, sin2@,

[q2q3, q1v)3, q1g2] '
+ g2 'g3 g4o

n1 +v) n2 n4

l n1 +n4- n2- n3.2 2 2 2

'
p1 cos4$1 —

p2 cos4@2.
PlP2[P/cos(3/1+$2) +P)cos(34'2+41)].
PlP2[Pf cos(3@1+&2) —P2cos(3@2+01)].

pl cos2@1,p1 cos2$2', p) cos2@3.

p1P2p3 [cos&1sin(@2 —@3)—sin@1 cos($2 +@3)]. '
P1P2P3 [COS@2Sin(@3—P1) —Sintt}'2 COS([t}'3 +$1)l.

, p1p2p3[cos$3 sin($1 —@2)—sin@3 cos(&1 +P2) ].
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TABLE IV. (Co»tintIed)

Labeling Macroscopic spontaneous
tensor components

Faintness
index

T8.2

pt+P P3 4

Pt + p3
—

P4
—

P2
2 2 2 — 2

'

$& z (—I)'p ~(cos2$, —X3sin2$;).

yt 2 [p;+2(cos2$/+2+4 sm2@1/2)
—

p 2(cos2@, +J3 sin2@;) I.
2(pt cos2@~ +p4cos2@4 —

p3 cos2$3
—

p2 cos2$2) .

'within a permutation of the q; or the p;. within a permutation of the components in the bracket.

sideration of the images. For instance, in the Pm3m
space group, P~ functions of degree 3 are found at
the M point' of the BZ while none is found at the X
point, ' though both IR's are associated with the
same image denoted L7 (Fig. 2).

In the vicinity of the transition point it is sufficient
to consider the sets of P, functions having the small-
est degree p = nr. This degree has been called ' the
faintness index relative to the ferroic properties,
High values of nF will, in principle, be associated with
small anomalies affecting the mechanical properties
of the crystal. Besides, nF values of 2, 3, and ~ 4,
have been shown ' to correspond to three qualitative-
ly different types of elastic anomalies at the transi-
tion. In the case of ferroelastic species involving
several t, more than one faintness index can be
necessary to describe the behavior of the sponta-
neous-strain components.

The PJ functions have been systematically worked
out and listed in Table IV together with the corre-
sponding faintness indices. Their expression is given
in the same basis as the OP expansion. We have,
respectively, denoted by A, F., and T the sets of Q,
functions spanning an IR of the point-symmetry
group having one, two, and three dimensions. As
shown by the table, in most cases the faintness index
is equal to 2, but values of 3 and 4 are also found
possible. This situation can be compared to the tran-
sitions studied in TTI and TTII where faintness in-
dices of three and four were frequently encountered.

B. Determination of the low';symmetry phases

We place ourselves in the strict framework of
Landau's theory and consider the LS phases which
are related to Go through a line of continuous transi-
tions. Each phase is specified by the following condi-
tions:

(i) It is associated with a set of component values

q, (n, Pk, CI, 5 ) and x, (n, Pk. CI, 5 ) for which the
LFE is an absolute minimum for a whole range of
vanishingly small values of n, g,c, and x,c (including
the transition point).

(ii) For the whole range of these values the func-
tion 5p = X rt; @;, defined in Sec. II, has a definite
invariance group G, subgroup of Go, which coincides
with the space group of the considered LS phase.

(iii) The same symmetry G corresponds to the
coordinates (gc,xg) of the minimum of the LFE for
a continuous range of values of each of the expan-
sion coefficients (Pk, C1, 5 ).

We therefore exclude the LS phases which can be
reached from Go either by a discontinuous transi-
tion, or by a continuous one only occurring for partic-
ular values of the preceding coefficients.

As shown in the Appendix, the possible occurrence
of a given symmetry change Go G along a line of
continuous transitions, regardless of the correspond-
ing (P„,C, , 5 ) values, does not depend on the strain
contributions F2 and F3. An analysis can thus be
limited to the OP expansion Ft(u, 7I;, Pk).

A standard algebraic discussion has been per-
formed for the various OP expansions contained in

Tables II arid III. The location of the absolute mini-
ma of Ft consists of expressing the cancellation of its
first derivatives, the positiveness of the matrix or the
second derivatives, and in comparing the different
minima which can simultaneously occur for given
(P~) coefficients.

The q, values obtained for the various expansions
are indicated in Tables II and III for OP dimensions
greater than 3. We have also recalled in Table V the
results" for continuous transitions in the case of one-
to three-dimensional OP. Similar to the cases of
lower-dimension OP, "we can classify the LS phases
in two catergories by putting q, = p y;
[pc= g,. (qc)2). The first category corresponds to yc

values defining prominent directions in ~, lying along
symmetry axes belonging to the image L. The y, be-
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TABLE V. Images and LS phases for the one-, two-, and three-dimensional active physically ir-
reducible representations (C;), (C„,C„„),(O, OI, , T~) are Schoenflies notations for the one-, two-,
and three-dimensional point groups. The order-parameter expansions relative to the images can be
found in Refs. 28 and 37.

Images Dimension Number
of LS
phases

Labeling Direction of e

Ci

C4, C6 t
C8 C&2

C4 Ci2I

C8„

J II
Jl
'l II

I

II

JI
II

[1ol
[»l
[1o]
[o1]
[1o]

1 . 1
[cos

8 7r, sin
8

n]
[1ool
[»1]

ing symmetry defined, the temperature dependence
of the q, results exclusively from that of p . The
second category corresponds to directions in e which
are not symmetry ones and which will generally vary
with temperature as well as p . Both situations are
found in the results of Tables II and III.

In four dimensions (Table II) expansions, f~ —,f5,
which arise from real IR, have minima of the first
type only. For the expansionsf6 f~3, which , ar—e, re-
lated to physically irreducible representations (i.e.,
sums of complex conjugates IR), only fs has minima
of the first type while the other expansions provide
two different situations. ,f6, f~~, and f~3 are associat-
ed with images determining no prominent symmetry
directions in e. Consequently the possible LS phases
will all have the same symmetry.

" By contrast, one
or several LS phases are found for the remaining ex-
pansions corresponding to vectors lying in planes of
symmetry of e, but whose precise directions in these
planes is not fixed by symmetry. Between one and
six LS phases with distinct symmetries are found to
be possible for all the four-dimensional images.

In six and eight dimensions (Table III) expansions
h~ —h3 and k~, k2 determine minima of the first type,
while h4, h5 and k~, k2 possess minima which corre-
spond to planes of symmetry, similar to the case dis-
cussed above. The number of LS phases with dis-
tinct symmetries which can be reached through a line
of continuous transitions is found, respectively, in
the range 3-7 and 3-5.

IV. RESULTS AND DISCUSSION

The crystallographic and physical characteristics of
the PFT which are predicted to be possible along a
line of continuous transitions are summarized in
Tables VI—IX, ordered according to the crystal sys-
tem of the HS phase.

Table VI corresponds to a HS phase belonging to
the monoclinic or.orthorhombic system. Tables VII,
VIII, and IX, respectively, contain the results relative
to the tetragonal, trigonal-hexagonal, and cubic sys-
tems. The use of these tables allows the determina-
tion of the following characteristics of each possible
PFT: (i) Space-symmetry change and unit-cell multi-
plication. (ii) Identification, dimension, and sym-
metry properties of the transition's order parameter.
(iii) Form of the Landau free-energy, which includes
the OP expansion as well as the additional terms rela-
tive to the spontaneous-strain components and to
their coupling with the OP.

A. Organization and use of the tables

Let us describe the content of each of the eight
columns constituting Tables VI—IX which summarize
the results of the investigation. Some of their indica-
tions refer to Tables I—V as wel1 as to available
standard tables.

Column 1 lists the HS space groups. But for a few
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TABLE VI. Ferroelastic transitions with monoclinic or orthorhombic high-symmetry phase. The detailed meaning of the
columns is explained in the text (Sec. IV). For the I point the indications are only reproduced for the first HS space group of
each class. Primed coupling polynomials (e.g., A4 i or A4'i ) differ from unprimed ones by a permutation of the OP com-
ponents.

HS
group

P2/m
P2i/m
P2/b
82/m

P2i/b

82/b

Pmm2

Pmc2
Pcc2
Pma2
Pca2i
Pnc2
Pmn2i
Pba2
Pna2i
Pnn2
Cmm2

Cmc2j

Ccc2

Amm2 t

Abm2
Ama2
Aha 2

Fmm2

. Fdd2

Imm2
'

Iba2
Ima2
Pmmm '

Pnnn
Pccm
Pban
Pmma 1

Pnna

Pmna

BZ
point

r
F
F//

r
C
D
I
F
F//

r

r
R
S
r
S
I
R
S
r

r
R
r
R

r
S
r

"1

r
R
U

Low-symmetry
phases

aT(.,)

P1
P1(.. .,)
P1(~&, v&)

P1
P1(wi + zp, 73+T4)
P1(7 i + Tp, T3+ r4)
P1
P1(.&, ~&)

P1(.. .,)
P2(~, )
P2i
P2
P2
P2i
P2
P2i
P2
P2i
P2
P2
82(~&, ~&)

P2(~, , ~,)
P2j
P21(~1T ~2)
P2
82(~, , ~,)
P2(~&, 7&)

82
82
82
82
82
82(v))
82

82|'( Tl )

82
82(., ~,)
P2/m(7 ~)P2/m{v3) &

P2/m (T4)
P2/b, P2/b, P2/b
P2/b, P2/b, P2/m
P2/b, P2/b, P2/b
P2&/m, P2/m, P2/b J

P2/b, P2i/b, P2/b
[P2/b, 82/b] (vi, vp)

P2/m, P2/b, P2i/b
[82/m, 82/bl (Ti, Tp)

[82/m, P2/b] (7i, Tp)

OP
dim

{a)

C;

C4„
C4„

C4„
C4„
Ci

C4„
C4„

C4„
C4„

56.1

58.01

C4„
C;

C4„

(b)

IV

IV
V

(c)

2,2

2,2

2,2

(d)

proper

Api
Agi

App

Agi

proper

Ap)
Api

Api
Api

A 4.1

Ap)
proper

Ap i,Ag )

Ap i,Ap i

Ap i,Ap i



1154 JEAN-CLAUDE TOLEDANO AND PIERRE TOLEDANO

HS

group
BZ

point

Low-symmetry
phases

TA BLE VI. (Coizfi izued)

OP
d 11Tl

(a) (b) (c) (d)

Pcca
Pbam

Pccn

Pbcnz

.Pizi1 i11

Pi71171)1

Pbcn

Pbca

Pnma

Cnzc»1

Cmca

Cnzi71i11

Cccnz

C111117a

Ceca j
Fnzmm

Inzi11»1

Ibam

Ibca
Imma

I

R

S
r
r
R
U

S

r
R

S
I

S

R
r
U

T
r
S
r
I
R

S
r

S
r

I
R

r
R

I
U

S
T
I
S
r
r
U

T

P27/b, P2/b, P2lb
P27/b, P27/b, P2/m
B2/m(7. , +7,, 7, +7, ,

'T3 + Tjp T4 + T8)
P2/m(77+75, 74+73)
P2/b(72+76, T3+T7)

P27/b, P27 /b, P2/b

t(17 +75, 73+ V6)
82/b'J

[(T3 + T7 T4 + T8 )
I 2/b(. . .)
P2/b, P2g/b, P2i/in
P2g/b, P2i/b, P2/in
82/m (Ti, T2)

[P2, /b, 82/in] (T, , T,}
[P2)/b, 82/in] (T), T2)
P2/m(77 +v5, 74+ 78)

t

P2/b (T2 + T6 T3 + T7)

P2g/in, P2)/m, P2/b
82/nz (T), T2)

[P2/b](. , T, )
P27/b, P2lb, P2, /b

[B2lb, P27/bl (7 7, 72)
P27/b, P27/b, P27/b
P1(T~ + T~, T2+ T2)

P2&/b, P27, /in, P2&/b

P2)/»z ( T) + Ts, T4 + Ts)
P27/b(72+76 73+77)
P2(/b (T(, T2)
82/nz, 82/b, P2&/in

P2g/nz (T), T4) P2g/b (T2, T3)
B2/m, B2/m, P27/b
82/nz, 82/m, P2/m
B2/111(T7, T3)B2,lb(7'2 7'4)

P2/m (7'7, 7'4) P2lb(7'7, 7'3)

82/b, 82/b, P2/m
82/izz ( T), T3) 82/b (T2, T4)
P2/nz (7), T4) P2/b (T2, T3 }
82/nz, 82/b, P2/b
82/b, 82/b, P2/b
82/m, 82/m, 82/m
[P1,82/»1] (T() [P1,82jb] (T2)
[B2/m, B2/777l (7 7) [B2/b, B2/bl (72)
82/b, 82/b, B2/b
[Pi,B2/bl(. , ~, )
[B2/b, B2/bl(T7, 72) J

82/m, 82/m, 82/m
82/izz (T'$ T4) 82/b (T2 T3)
82/m (T(, T4}82/b(T2, T3)
82/m (T), T4) 82/b ( T2, T3)
82/b, 82/b, 82/nz
82/in (T, , -T4) 82 jb(T21 T3)
82/b, 82/b, 82/b
82/m, 82/nz, 82jb
82/m(T~, T4)82/b(T2 T3)
82/m (Tg, T4) 82/b (T2 T3)

41
4J

C4

C4
C4

C4

C4„

C4„
C4.

C4.
C4

C4„

13.1

C4

C4

C4„

C4„
C4

C4„
C4

56.1

82.01

C4„
C4.
C4.

C4,
C4„

I

I,II
I,II

I

I

I

I,II
III,IV

I,II
III,IV

I

I

I

2

2,2

2,2

2,2

2,2

4,4

2,2

4,4

322

A22
A22

A2. 2

A2)
A 2.11A 2.1

A2. i A2. i

A22

A2)

A2 ),A2 )

(A4 ] A43}

A22

A2)

A2.

A2)
A2)

I
A4 ]1A4

A4), A4)

A4), A4)
A4), A4)

A2)
A2)
A2)

A2)
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TABLE VII. Ferroelastic transitions with a tetragonal high-symmetry phase. Same conventions as Table Vl, Whenever am-

biguous, the orientation of the LS phases is only indicated once for each Bravais lattice and point-symmetry change (in general,
for the first HS group of each class).

HS

group

BZ
point

Low-symmetry phase OP
dim

(a) (b) (c) (d)

P4

P4)

P42

P43

f4

f4)

P4/»~

P4/»

P42/»

l4) /a

r
R
X
r
X
r
R
X
r
X'r
N

, X'r
Z
X

i N

tI

M

A

R

, X

~
r
M
Z
A

R
X

r r
M
Z

r

M
Z
A

t

Z
X

l N

tr
Z

P2(&, )
82(v), v2)

P2)
P2) (v), v2)
P2
82(T). T2)

P2(v), v2)

P2)
P2) (&), ~2)
82
82{v))
82(v), v, )
82
P2) (v3+ v4)
82(v), v2)
[82,82] (v ) )
P2/»i (v2)
P1(v3 + v4)
P2/»i ( v7 + vs) P2/b ( v3 + ~4)
P2) /»t ( T3 + T4, v7 + Ts)
82/»~(v. 3+ T4, 7.7+ vs)
82/»l {v),T2, T3, T4)

P2/»r(v), v4) P2/b(v2, v3)
P2/»t, P1
P2/In ( v7 + Ts) P2/b (v 3 + T4)

P2)/»~ (v2)
82/»i (v2)
82/]0(v), v2, v3, T4)

P2/»t(v), ~4)P2/b(v2 T3)
P2/b, P1
P2/b(v, )
P2)/b(v3+ v4 +7+ v8)
82/b(v, )
P2/b, P1
P2/b(v, )
P2 /b( )
82/b(v3+ v4 v7+ ~8)
82/I», P1
P2)/»r (v7+ T8) P2)/b (T3 + T4)

82/»l (v), T2) 82/b(v3, v4)
[82/»1, P1](v). v2)
82!b,P1
P2, /b(v, )

[Pt, pi]t
82/b

2

2

2

2

2,

C;
C4„
C4.

C4„

C4.
C4„

58.01

C4.

C4

C4.
59.1

CI

C4
C4

C4

C4

C4„
C4„

C4

C4„
C4„
C4.
C4.

C4„
C4

C4.

C4„
C4.
C4

C4

C4~
58.01

80.01

I

I

II, IV

I

I

I

I

I

I

I

I

I

I, IV

1

2

2

2

2

4,8

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2,8

2,4

4

proper

A2)

A2)

A4,
A2,

A4), A42
proper
proper

A22

A2)

A22

A2)
A2)
A2)

A2)

A2)

A2)
A2)

A22

A2)

A4 ) eA4

A4)

P42»t r
M.

Z

P222(v2)
C222(v5)
P222) (v, )

C;
C4„
C4.

proper

A2)
A2)
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TA BLE VII. (Co»ti »ueil)

HS

group

P42m

P42c

P42i m

P42) c

P4m2

P4c2

P4n2

14m 2

142m

142d

P4)22 t

P4, 22 J

P4)2i2
P432) 2

BZ
point

X
r
M
z

R
X
I
z
r
z
I
M
z

I

z

I
M
z

r
M
z

I
z
J
I"

z
X
I
z
jv

1

z

X
r
M

X

M

Low-symmetry phases

F222(v5)
C222(, , 2, 3, 4)
P222(v), v3)P222)(v2, ~4)
P222
C222(v5)
P222)(v2+ v4, v3+ v5)
F222(v2 + v4 ~3 + v5)
C222 ( v) v2 v3 v4)
P222(v, , r3) P222, (v2, v4)
P2i2(2
P2(2)2)(v5)
P2)2(2
P2)2)2)(v2+v4, v3+v5)
C222
P222, (v5)
C222) (v5)
1222(v5)
C222
P2, 22(., )
C222) (v2+ v5, v3+ v4)
1222(v2+ r5, v3+ v4)
C222
P2)2)2(72+ v5, v3+ v4)
C222, (.,)
12)2)2)(v2+v5 v3+v4)
C222
P2)2)2(v-2+ v-5, v3+ v4)

C222, (., +.. ., +.,)
12,2)2, (v5)
F222
C222)(v5)
C222(v), T2}C222){v3,v4)
F222
C222, (., )
C 222 ( v.), v 2) C222) ( v3 v4)
1222
P2)2)2(v-5)
C222(T], 12)
12)2)2)
P222i(v2+ v4)

P2)2)2)(v3+ v5)
C222i(v), v2)

P2"22(.,}C2~22(&4)
C2"22(vI, v2, v3, v-4)

P2"22(v), v3) P222, (v2, v4)

P2i2i 2, C222
P2~22(. , )
P2)22(T2 + v3 T4 + v 5)
12~22(v) )
12)2)2((v'2+ v3 v4+ v5)
P222i, C222i
P222)(v), 73)P2)2)2(72, 74)
P2) 2) 2), C222)
P222) ( v.

) )

OP
dim

(a)

C4.

C4.

C4

C4

C4„

C4

C4.
C4~

C4„

C4.
C4

C4

C4

C4„
C4

C4
C4

C4

C4.
C4„

C4„

C4„
82.01

C4

C4
80.01

C4

C4

(b)

I

I
I

I

I

I

I

III

(c)

2

2

2

2

2

2

2

(d)

A2)
A2)
A2.

A2)
A22

A22

A22

A22

A2)

A2)
A22

A2)

A22

A2)

A2)
A2)

A2)
A4)

Ap2

A22

A4)

proper

A2)

A2)
A22

A2)
A22

A2)
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TABLE VII. (Co))ti))uecl)

HS

group
BZ

point
Low-symmetry

phases
OP
dim

(a) (b)

P432)2
P4222

P422i 2

f422

14i22

P4mm

P4bm

P42cm

P4, nm

P4nc

P42mc

P42bc

M
r
R
X
I"

M

r
X
N

r
X

r
M
z
A

R
X
r
M
z

r
M
Z

X
r
M
z

r
M
X
r
M

r
M
Z

R
X
r
M,
Z

P2)2)2(v2+ V3 ~4+ ~5)
P222, C222
C222(~] & T2& v3& T4)
P222(v), v3)P222)(v2, v4)
P2i 2i 2, C222
P222(v))
P2)22(v2+ v3 +4+ v5)

12)2)2) (v))
I222(v, +., ~4+ v5)
I2x22 F2~22
C2 22(v'~, v'4) C222) (v2, v3}
C2"22(vi, v.2)
I2)2)2),F222
C222(v), v4) C222(v2 T3)
C222,

1 '(v'], T2)
I222

Pm"m2(T3) Cm~m2(v4)
[Cm"m 2, Pn7~a 2] (v 5)
[Pm"c27, , Cm~c2j )(v5)
[Fm"m 2, I)n~a 21(v5)
A)n )n2('T), v'4)Abn72(v'2, T3)
Pn7 m 2( v ~, v'2) Pma 2(v3, v4)
Pba 2, Cmm2
P]na 2(v, )
[Pna 2~, Cmc2~] ( v5)
Ima 2(v ) )

Pcc2, Cmrn 2

[Cmn7 2, Pma 2] (v 5 )
Cmc2i (vi)
Iba 2(v~ )
Pcc2(v&, v2) Pnc2(v3, T4)
Pnn 2, Cmm 2

Pma2(v&)
Cmc2)(v))
[Fdd2, l)na2] (v5)
Pcc2, Ccc2
[Cmm2, Pma2)(v 5)
Pcc2(v.&, v2) Pnc2(v3 v4}
Pnn 2, Ccc2
Pma 2(v) )
Fdd2(v ))
Pmm2, Ccc2
[ Cmm 2, Pma 2] (v 5)
Pmc2, (v, )
F~m2(v))
Amm2(v~, T2)Abm2(v3, v4)
Pmm2(T], v'2) Pma2(v3 v4)
Pba 2, Ccc2
Pma2(r))
Pna 2~ (v

~ )

1

2

2

2

2

2

2

2

2

C4

C4

C4

C4„
C4

C4„
C4

C4.
82.01

C4„

80.01

C;

C4„
C4„
C4„
C4„
C4„

C4„
C4„
C4„

C4„
C4„
C4„
C4„

C4„
C4„
C4„

~ ~

C4„

C4„
C4„

C4„
C4

C4„
C4„
C4„

C4.
C4„

III
I

I,II
I,II
I,II

I

I

I

I,II
I

I,II
I

I

I

I

I

I,II

I,II
I

I

I

I

8

1

2,2
2, 2

2,2

2

2

2

2,2

2

2,2

2

2

2

2

2

2,2

2,2

2

2,2
2

2

2

2

A2)
A2)

A2)
A22

A22

A2)
A4)

A2)

A4. i

proper

A2 ),A2 )

A2 ),A2 )

A2), A2 )

A2)

A2. i

A2), A2 )

A2)

A2)
A2)
A2)

A2)
A2), A2 )

A2 ),A2 )

A2)

A2)
A2)

A2 ),A2 )

A2)

A2)
A2)

A2)
A2)
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TABLE VII. (Conliilued)

HS
group

BZ
point

Low-symmetry
phases

OP
dim

( ) (b) (c)

14mm

l4cm

l41md

l41 cd

P4/mmm

P4/mcc

P4/nbm

P4/nnc

P4/mbm

P4/mnc

P4/ilillill

P4/ncc

Z
X

W

I
Z
X

I
Z
N

I

Z
I

M

Z
R

X
I
X
I

M

Z
r
M

r
M

I

M
A

Z
I"

M

'(T1, T2)

P2./b, 82~/b

Pinnln, Cmma, P21/m, 82/m

Pbam (T3)Pccnl (T4)
Ibam(v3, v4)
[Pnma, Cmca] (Ts, v1p)
Pccn, Ceca, P21/b, 82/b
Pbcil ( T1 ) Pba n ( v 2 )

Im"m 2, Fm~m 2

[Pm"n 21,Cm+'c 21] (Ts )
Am~m2(T1) Ama2(T2)
Aba 2(v3) Abm 2(v4)
Am"m2(r, )Ab»2(. ,)
[Iin"a2, Fd~d2] (r2, v.4)
Iba 2, Fmm 2

[Pca21,Cmc21] (vs)
Ama 2(r, )Amm 2(v 2)
Abm2(v3) Aba2(v4)
Imm 2, Fdd2

Pmn21 (T1 )
Amm2(v~)Abm2(~2)

t

fmm2(r~)fba2(73) I

Iba 2, Fdd2
Pca 21 (v1)
Pm"ma ( T3) C»~Cm (v4)
[( P2 "/m, 82~/m) (7., )
[Cm"ma, Pb~anl ] (Ts) [Cmmm, Pmma] (T1p)
[Fm"mm, 1m~ma] (Ts, T1p)
[Pin"maCm~cm] (vs, T1p)
Ci11 n1» (T1, T2, T7, Ts) Cmcm(T3 v4 T5, T6)
Pm"mm(T1, T7)Pmma(v2, v4, T6, v8)Pbam(r3 T5)
Pccm, Cccm, P2/c, 82/m
Pccm (T1, T7) Pcca (T2, T4, T6, T8) Pban (T3 Ts)
Pban, Cmma, P2/b, 82/m

Pccm (T1)Pmma (T2)
Iba»1 (r, , T, )
[Pnna, Cnzca] (rs, T1p)
Pnnil, Ceca. P2/b, 82/b
Pban (v 3) Pbcn ( r4)
Fddd(T3, v4)
Pbam, C»n1 », P 21/b, 82/b

Pmnla (v1) Pmna (v 6)
Pban ( v2 + Ts) Pmmn ( v3 + v4) Pbam ( T7, r1p) Pmmm (Ts + T9}
Imma (v1) Ibam (v.6)
Imma ( r3 + T4, T8 + v 9) Ibam ( v 2 + v 5, T7 + T1p)

[ P71ma, Cmcm] ( Ts, v 1p )
Pnnm, Cccm, P21/b, 82/b
Pmna (T1)P7171a (T6)
Pnnn ( T2 + v 5 ) Pccn ( T3 + T4) Pnil m ( r7 + v'1p ) Pccin ( v 8 + v 9}
82'/m

Fd~dd

C4„
C4„

82.01
26.1

C4.
C4.

80.01

C4.
C;

C4.

C4.
C4.
C4.
C4.

C4.

C4.
C4„
C4„

C4.

C4„
C4

C4„
C4

C4„

C4.
C4

58.01

C4.
C4.
C4.

I,II
I

I

I

I,II

I,II
I

I

I
I

III

I

I

I,II
I,II
I,II
I,II

I

I

I
I

I,II

I

I

I

I

I,II

IV

II,V

I

I

I,II

2, 2

2

2

4

4,4

2,2

2

2

2

1

2, 2

2, 2

2, 2

2, 2

2

2

2

2

2, 2

2

2

2

2

2, 2

2,4

2

2

2, 2

A4. 1

A4 1~A43

A 4.1

A 4.1

proper
proper
A 2. 1 A 2.1

A21, A21
A 2.1 A 2.1

A 2 1

A21

A21

A2. 1 A2. 1

A 2.i

A22

A22

A22

(A4. 1 -A4. 1 )

A41
~4.5 «.5

A21

A2. 1 A2. 1

A21
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HS
group

BZ
point

TABLE VII. (Co»ti)zued)

Low-symmetry
phases

OP
dim

(a) (b) (c) (d)

P42/mmc

P42/nzcm

P42/nbc

P42/n)zm

P42/mbc

P42/mnm

r
M

Z

X
I
M
A

Z
X

r
M
Z
r
M
A

Z
r
M

Z
r
M

A

Z

'(~) 72)

P2~ /b, 82~/)zz

Pmmm, Cccm, P2/m, 82/b
[Cmma„Pnna] (15) [Cmmm, Pmna] {~]p)
Fmmm (~3 T4)
Pmma (v.3, ~4)

(7'1 2 7 7'8-) C { 3 4 15 6)
1{~1 7) Pmma(72 z4 ~6 r8) Pbam{7'3 z'5)

Pccm, Cmmm, P2/b, 82/m
[ Ceca, Pbam] ( ~5) [Cccm, Pmma] ( T]p)
l)11n1)71 (7'3p T4)

Cnzcnz (r3, T4)

Pccm(v&, 77) Pcca (T2, 'p4, T6, 'T8)

Pban (v3, 1'5)

Pban, Ceca, P2/b, B2/b
Pban (v.3)Pbcn (1.4)
Pnna(v3, T4)

Pnnn, Cmma, P2/b, 82/b
Pcca (~3)Pnma (74)
[Fddd, Ibam) (75, 7)p)
Cnzca {v3, v 4)
Pbam, Cccnz, P2z, /b, B2/b
Pmna (z-& ) P)zna (76)
Pnnn ( v2 + 75) Pccn (73 + 74) Pnnm (~7 + ~& p) Pecm (1.8 + 79)
Pnma ( v3, v4)
Pnnm, Cmmm, P2&/b, 82/m
Pmma (r, ) Pm»a (~6)
Pban (72 + 7 5) Pmmn {v3 + 7 4) I'bam ( T7 + 'T )p) Pmnzn1 (7'8 + 79)
Imma ( v ~, 7 2) Ibam ( ~4) Immm ( ~3)
Cmcm(v3, ~4)

82'/m

Fnz~mm

C4„
C4„
C4„
C4„
C4„
~ ~

C4„
C4„
C4„
C4

C4„

C4.
C4v

C4.
C4

C4

C4„
I

C4.
C4

C4„
C4.

58.01

I,II 2,2

I . 2

I 2

I 2

I 2

I,II 2, 2

I 2

I 2

I 2

I 2

I 2

I,II 2, 2

I 2

I 2

IV 4
II,V 2,4

A2 ),A2 )

A2)
A2)

A2)

A2. 1 A2. 1

A2)
A2)
A2)

A2), A2)
A2)

A22

A2)

A22
A2)
A2)

(A4g —A4) )

A4)
~4.5 ~4.5

P42/nmc

P42/ncnz

14/mmm

14/mcm

I4~/amd

14&/acd

I
M
Z
r
M
A

Z
r
Z

r
Z
X

r
Z
N

r
Z

Pmnzn, Ceca, P2~/m, 82/b
Pbcn (v 3) Pban (z.4)
Pmma (73, v4)
Peen, Cmma, P2&/b, 82/b

Pbam ( v3) Pccm ( v4)
Ibam (z.), 76)
Imma ( +2 + 74 z 8 + z ]p) lbca ( r3 + 75 r7 + z 9)
Cmca (v3, ~4)
Im"mm, Fm~mm, 82"/m, B2+'/nz

[Pn "nm, Cm~ca) (~5) [Pnmm, Cmcm] (v &p)

Cm~mm (7
&
) Cccm (~2) Cmca (73, 74)

Ceca (75) Cmma (v6) Cmem (v7, 'T8)

[Cm"mmB2"/m](v, &, 74) [Cmca, B2/b] (~3, T3)

82~/m(~~, 74)82/b(12 73)
Ibam, Fmmm, 82/b, 82/m
[Pbcn, Cmca] (~5) [Pbcm, Cmcm] (7 ~ p)
Cmma ( v ~) Ceca (v2) Cmem (~3, Y4)

Cccm (T5) Cmmm (76) Cmca (~7 T8)
Imma, Fddd, 82/m, 82/b
Pnma (~3)Pmna (v4)
[Cmmm, B2/m](r~, v4) [Cmca, B2/b](v3, r3)
82/b(7), 72, v3 74)
Ibca, Fddd, 82/b, B2/b
Pbca ( v 3)Pcca ( T4)

~ ~

C4.

C4„

C4

C4„

C4„

C4„
82.01

I,II 2,2

I 2

I 2

II,I 4, 2

V 4

C4.
C4.

I,II 2,2

I 2

I 2

C4.

C4„1 2

101.01 II,I 4, 2

III 4

A2)

A2. 1~A 2.1

A2 )

A4. i ~4.5
E45

A2 ),A2)
A2)

A2)
A4 ])E44
~4.4

A2)
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TABLE VIII. Ferroelastic transitions with a trigonal or hexagonal high-symmetry phase. Same conventions as Table VII.

HS

group

BZ
point

Low-symmetry
phases

OP
dim

(a) (b) (c) (d)

R3 J

P3lm 1

P3m1

P31c jj

P3cl J

R3m

R3c

P6
P62
P64
P61
P63
P65
P6/m

P63/m

P622
'

P6222 '

P6422 &

P61 22

P6522
P6,'22

P6mm

P63cm

P63mc

P6/mmm

A

M
L
A

M

A

M

L
X

PI(~2+73 75+~6)
Pl(T3)
Pl(T3, „)Jj

[82/m, 82/b) (73, T6)

P2, /b(~2)
P2/b (T3)P23/m ( T4)

82/nz(T1, T4)B2/b(r2, T3)

P21/b(~2)
P21/b (~4) P2/b (73)
[82/m, 82/b) (r3, T6)

P21/m (74) P2/c (v3)
P21/c ( v2)
82/m (~1, 74) 82/b (r2, 7'3)

P2, /. (.,)
P21/c (7.4) P2/c (~3)
P2(T2)
82{.,)

P2, (v2) 3

P1(~11+712)
P2/m (T3 + T4 T9 + T3p)

P23/m(T5+T6 T»+T12) J

P2/m ( T4) P2/b (T3, T3) ]
82/m(T&, T3 T3 T4) J

P1
P21/m(~4) P21/b(~2 T3)
P21212(74)
P2223(T3, T3)
I222(v1, z-4)

1212121(v2 73),

P21 2121 (~4)
P21212(~2 T3)

[ CmC21, Cmc21) (r5)
[ Cc('2, Cnznz 2] (T6)
Pba2(~3)
Pma 2(T2, T4)
Inzm2(r1 ) Iba 2(73)
Ima2(72, ~4)
Pnn 2(~3)
Pizc2(~2, .4)
Pna 21(v3)
Pmn 21 (72) Pca21(74)
Pna2, (73)
Pca21(v2) Pmn21(~4)
[82 /m 82 jm)(z- )
C222(&12)
[ Cccm Cmmm) (~6, ~12)
[Cmcm, Cmcm) (v5, v11)
Pbanz(~4)

C,
Th

0
0h

0
0h
C6„

0

0
Oh

Th

C,
C,

Th

0
Oh

0
0h

c,„
C6.
0

Oh

0
0h
0

Oh

0
oh

C,„
C,„

0

I,II

I

I

I

I,II
I

I

I

I

I

I

I

I

I,II
I,II

I

I

I

I

I

I

I

I

I,II
I

I, II
I,II

I

2, 2

2

2

2

2

2,2

2

2

2

2

2

2

2

2

2,2
2, 2

2

2

2

2

2

2

2

2

1,1

1

2,2
2,2

2

E21,E21

E3, 1

E31

E31

proper

E2.1

E31

E2.1 E2.1

E2.1 E2.1

E31

proper

E21

E2.1 E2.1
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TABLE VIII. (Cotltittued)

HS
group

BZ
point

Low-syrn me try

phases
OP
d1m

(a) (b) (c)

P6/trit»»l

p63/mern

p63/rnmc

I
M

r
M

Pn»&a (r2r3) ,Pban(r&) 1

Pmma {T6, 77) Pnltlltl (T&)
Immm {T1,T&) Ibam(T4, T5)
Imma(72, 73 T6 T7)
82/b, B2/b, C 222
Ptltltll ( T4)
Pn&&a {rpr3) P,&&m& ( r5 )
Pmna(r6rr)P, ccn{r~) J

82/b, 82/t», C 2221

Pnma(T4)
Ptltltn ( T2) Pbcn ( T3)
Pntla (T5) Pbcm (T6)
Pmmn(T7) Pnma(T&),
82/m, 82/b, C 2221

Pnma(T4)
pbctl (T2) Ptltlttl (T3)
Ptl tla ( T

& ) Pnl tll tl ( T6 )
pbcttl (T7) Pnma (7& }

0
Oh

0
0

0
Oh

2

2

E3.1

E31
E31

E3 1

E31

TABLE IX. Ferroelastic transition with a cubic high-symmetry phase. Same conventions as Table VII.

HS
group

BZ
point

Low-symmetry
phases

(a) (b) (c)

F23
123

P213
1213
Pm 3

Pn3

Fm3

R
X

r
R

M
I
R

r
X
L

F222( T2 + T3)
P 222( Tj, T2) P 2221(73 T4)

No continuous PFT transitions
P222(T, + T, )
F222{T2 + 73)
No continuous transitions

P212121 (T2+ T3)
P222(T6 T7)
Fmmm(T2+T3, T6+77)
fFmmm, R3]{T4,T&)

Pmmm ( T1, T6) PCCm ( T2, T5 )
Pmma (T3, T4, T7, T& )
Cmmm(T7, T&) Cmma(T5, T6)
P222
Fddd(T2 + T3 T6 + T7)
[Fddd, R3]{T4,T&)

F222
Ceca ( T5 ) Cmcm ( T6, T7) Cmma (T& )
R 3(T1, T4)

Pl
[B2/m, Fmmm]

1

C6

C12

c,
C,
c,
~h

~h

~h

C6
~h

I

I
I

I,II

I

I

I

II,III

2

1

2

2,2

2

2

2

2,2

2

2

2

4,8

E2.1

E», T»

E31

E3.1 & ~3.1

~4.1

«&.1
—

~&.1)
~$.1 E&.1
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TABLE IX. (Cort tirrued)

HS
group

BZ
point

Low-symmetry
phases

OP
dim

(a) (b) (c)

Fd3 r
L

F222
R3(t1, v4)

Pr
[a2/(, p222]i '2

108.01 I

I

II,III

2

2

4,8

T4.1

(Es.1
—Ts.1)

Ts. 1 (Es.1
—~ s.1)

/m 3 I
H

Pa 3

P

R

la 3 I
H

P432 R

X
M

F4132

' R

P4232
, M
' X

F432
Iw

X
L

t H
1432 N

1222
Pmmm ( t2 + t3) Pnnn ( t6 + v 7)
[Pnnm, R 3](v4) f Pmmn, R 3](ts)
[B2/b, Cmma] (t3) f B2/m, Crnlnn1] (t4)
f fbca, R 3](v 3) [/mrnm, R 3](v4)
[F222, Fmmm, Fddd](v2+ v2, v3+ t3)
P2, 2, 2,
PT(t, +-., t4+t4)
R3(t2+t2, v3+t3, t5+t5, v6+t6)
1212121
Pbca(t2+v3, v6+v7)
[Pcca,R 3) (t4, ts)
[1422, /422] ( v3)
P422 ( t1, t2) P4222 ( t3, T4)
P422(.. .,)
[14122,14122] ( v 3)
P4122(t2, t3) P4322(v4, v5)

P4222(v3, v4)
P4122( v2) P42212( t3)
R32(t, , t, )
[1422,14122]( t1, t4)
P41212(t3) P43212(t4)
R 32(t1, t2)
[P422, P4222] {t3)
[C222i, P4222](r3) [C222i, P42i2](r4) ]

[ l 422, R 32 ] ( v3 ) [ l 4i 22, R 32] ( ~4)
[/422, 14122] ( t2 + v 2 t3 + t3)
No continuous PFT transitions

2

3

2

3

3

2

3

3

3

4
6
3

4

2

6

c,
Th

Ls

42. 1

49. 1

49.2

c,
Th

c,„
0
0
c,„
OI

0
0

109.01

L2
0

110.1

L6

C12v

I

I,II
I,II

VI, III

I,II,III

I

I,II
I,II

I

I

I

I

I

I

I,II
I

I

I,II
I,II

VI, Ill

I,II

2

2,2

2,4

8,8
4,4,4

2

2,2

2, 2

2

2

2, 2

2

2

2

2

4,4
2

2

2

2,4

8,8
4

E2.)
3.1 3.1

T6.1 E6.1

E6.1 T6.1

E4 1,E4 2, E4 2

T4.2

T4.1

E3, , T3,
E21,E21

E3.)
T4. 1

E6.1 E6.1

T4.1

P4i32 ]
14132

P43m

F43m

/43nr

P43n

(' I

R

i M
r
X
L
H

r

H

W

p
r

[P43212,P41212](t3)
f C2221, P41212,R32](v3 v4)
[P4(.,)]
[14m 2, 14c2] ( v.3)
/4rn2(v4)14c2(t5)
P42m (t1, t4) P42c(v2, v.3)
P2221( ts )
f P421 m, P421ni] (t5)
P4b2(t2, v3)
/4
P4n2(t2, t3)
[14m 2, /4c 2] (v 3)
[142m, 142d] (t1, v2)
14
[P42m, P42c] (v3)
P42n ( „)P42 ( )
[P4c2, 142m] (v3) [P4b2, 142d] (v 4)
[F222, 14m2, 14c2](t3+v3)
P4

2

6
3

2

3
3

c,„
L5
0

c,„
01

L7
0

0
M2

L3

c,„

L6
44. 1

I,II
I,II,III

I

I,II
I

I

II

VI,VII
I

I

IV,V
I,II

I,II
I

II,V I

I,II,III

22
2,4, 8

1

2,2

2

2

2

4,4
2

2

8,8
4,4

2,2

2

4,8
4,4,4

E2, , E21
T61,E6, , T6,

(~ 6, 1 E6.1)
E6.1 E6.1

Es.1

E6.2 ~ E6.1

E4.2 E4.2 E4.2
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HS

group

BZ
point

Low-symmetry
phases

TABLE IX. (Co»(irruec/)

OP
dim

{a) (c)

P43n

i P4/nmm?(r?, r7)P4/mcc(r2, r6) t
P42/t??t??C (r3 r9) P42/tt?ctt? (r4rs) I,
[Crncrn, Pmma](r5, 11p) ?

[P4/nmrn, P4/mbm] (75) [ P4/mbnz, P4/rzmm] {~1p)
~ [R 3c,R 3m ] (75) [R 3m R 3e]{~1o)
t P4/mbm {1'2,73)

P4/nbm (~6, 7'9) P4/rzr71rzz (~7, ~s)
[ Pmma, Cmmm]

1, ( )
i [ I4/m&nn?, I4/mmm, R 32 ] ]

R F222(~, + V, )
X [P2221,P421e] (12+ 1.4, z3+ T5)

P4n2(7, , 1-4)

F43e r 14
P4b2(r, , ~4)
14

(43d t ff P212121(~3 + 73)

& P 14{&2+~2?7'3+7'3)

Pm 3m I [P422, P42nz] (Ts)
[P4/nz, R 3](75)
[P4rn2, R 32](.,)

f [I4/mn?t??, l4/mct??](r3rs),
i [I4/t??l?????, R 3tn] (r4, r9) [14/l??cl??, R 3c] (r5r?0),

21.1

L1o
0

21 ~ 1

4 98.1

c,„
3 0
3 OA

C,„
3 OA

3 OA

6 L7

3 0
3 OA

6 L7

I

I,II
I

I,II
I,II
I,II
I,II
I,II

I,II
VI,VII
III,IV

I
I

I, II
VI,VII, IV

2

2, 2

2

1,1

1,1

. 1,1

2,2

2,2

2, 2

4,4

8,8

2

2

2,2

4,4
4

E4.3
( E6.3 ~ 6.1)E6.3
E31

E31

E43
T4 2

E21, T31

E3.1 ~ T3.1

E31

T6. 1 (E6.1 ~ 6.2)

T6, 1 ~ T6.1

T6.1 {E6.1 ~6.2)

Pn3rz

Pr773rz

r
R
M

r
R

M

P422, P42c, P4/n, R 3,P4n 2, R 32
[Fddd, 1422] (T3+ T3, r4+ T4)
[Pbcn, P42?2]] (
[l42d, R3]
P4222, P42c, P42/m, R3,P4m2, R 32
[ Fmmm, 14122] ( 1.

3 + ~3, ~4 + 74)
[Pmma, P4? 322]tj
P42c I

"'4
P42/rzem {T3 74)
[P42/nznm (77, vs) P42/nzcm (v9, r1p)
[ Pnna, Cmma] t

[l4? /acd, l4? /acd, R 32] ]

4 48.1

6 L,

~ ~

4 48.1

6 L9

3 0
3 OA

6

I,II
I,II

VI, IV

I,II
I,II
VI
I

I

I,II
VI,VII, IV

2, 2

2, 2

4,4

2,2

2,2

4

2

2

22
4,4,4

E4 3,E46
T6.1 E6.2

E4.3 E .6

E61,E61, T6

Pn3m r
R
X

P4222, P42m, P42/n, R 3,P4n 2, R 32
[141/amd, 141/acd] (73 7s)
[ Cmca, P4? 322 ]
[P42? m, R3c,R3c] i

C,„
6 L4

I,II 2,2

I,II 2,2

VI,»1,IV 4,8,8 E6.2 T6.1 T6.1

[ Pbcm, P422? 2] (r4) t

[14 2R3]
6 I,II

VI, IV
2,2

4,4
T6.1 E6.2

E6.2t T6.2

Frn3m I
X

1422, 142m, 14/m, R 3,14m 2, R 32
P4/mne (v2) P42/mnm (v3)
P4/nnc ( T6) P4/nmm (~~) P42/nmc (7s) P42/nnm {~9)
[Pmmm, Cmcm]

[ P4/nmm, P42/mnm, R 32] i

R3m(v1, 74)R3e(~2, 75)
[82/b, 82/m] ( 7 3 ) [B2/m, 82/b] ( T6 )
[14/mern, 14/mmm] (tv3) [14/mnzn1, 14/mcm] ( r6) ~

Cmma (73) Cmmm (76)
[14/mmm, 141/amd] (v1, ~4) [14/rncm, 141/acd) (12 T3)

3 0
3 0„
6 L,

4 109.01
8

6 L1

I

I,II
VI,VII, IV

I

I,II
IV,V

III
I,II

2 E31
2,2 T6 1, {L6.1 ~6.2)

4,4,4 E61,E61,T62
T4.1

2,2 (Ts1 —Es1),{1s1—Es1)
Es.1 Es.1

Ts.2

E6.1'E6.1
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TABLE IX. (Continued)

HS BZ
group point

Low-symmetry
phases

OP (a)
dim

(b) (c) (d)

Fm3c I 1422, 142m, 14/m, R 3, 14m 2, R 32
X P4/mbm (~1)P42/mbc (r4)

P4/ncc (v6) P4/nbm (~7) P42/nbc (7'8) P42/ncm (79)
[Pbcm, Cmcm]

[P42/nmc, P4/m??c, R32] J

Fd 3m I 14122, 142m, 14I /a, R 3, 14m 2, R 32
X [P???na, P432?2 I ( )

[P42? n?, R3]
L R 3m (z1, ~4) (R 3c (~2, ~5)

[B2/b, B2/m] (v3) [B2/m, B2/b] (z-6)

3 0
3 01,
6 L7

4 115.01
8 M1

[14c2,14m 2] (73) [14m 2, 14c2] (z.6)

4 48.1

Cmca (73)Cmcm (T6)
Fd3c I 14122,142m, 141/a, R 3, I4c2, R 32

X [ Pnma, P4? 322] ] 6
[P421c R3] 4

Im3nz I 1422, 142m, 14/m, R 3, 14m 2, R 32
H f P4/nznznz, P42/nrnI( ] (v3) f P4/nnc, P42/fz)zm] (v8) 2 C6„
N Cmca, P4/mbm, 141/amd (73)Cmca, P42/lzcm, 14/mcm (74) 6 L6

R3c,R3(73)R3m, R3(v4)
Ceca, P4/nbm (75) Cmma, P42/mnm (7 6) 6 L4
Cnzcnz, P42/mcm ( 7 7) Cmcnz, P4/nmm ( 7 8)
141/acd(75, 78)14/mmm (76)14/mmc (~7)
R3m(~6, z8)R3c(z5 T7)
R32(.. .,)

P [l422, /4?22, /4/n?n?n?] 4 74. 1

[14/mmm, 141/amd, 141/amd ]
' 3 + ~3)

la3d I" 14122,142d, 141/a, R 3,14c2,R 32
H Pbca, P41 322(z.3+73 T4+7.4)

I

I

I,II
VI,VII, IV

I,II
VI, IV

I

I,II

IV,V

I,II
VI, IV

I,II
I,II,VI
III,IV

I,II
I,II
VI
III
IV

I,II,III
IV,V,VI

2, 2

4 4

2

2,2

8.8

T6, , E
E6.2 T6.2
T4. 1

( TS.1
—E8.1 )

( T81 —E81)

(E81 —A8 ]),
(E8, —g81)
T8.2

2,2 T61,E6 2

4,4 E62, T62

2, 2

2,4, 8

8,8

2, 2

2, 2

8
8

8

4,4,4

4,4,4

E2.1 E2.1

T61,E61,E61
T6.1' T6.2
T6.1,E

T6.1

( T6. 1 ~6.3)
E4, , E4, , E42
E42, E42, E42

2, 2 E4 3,E4 6

2 E31
2 E31

2,2 T61, (E61 —A6 2)
4.4.4 E6.1 E6.1 6.2

exceptions for the sake of a more compact presenta-
tion, the order is that of the international tables of
x-ray crystallography. 4 Space groups have been
specified by their international symbol corresponding
to the standard setting of axes. "

Column 2 lists, for each HS group, the relevant
points of the first Brillouin zone. Except for the sim-
ple cubic BZ, there is no universally used notation
for these points. The adopted one refers to the
space-group-representation tables of Zak et al. 4' The
components of the k vector represented by each of
the former points as well as the number of arms in
the corresponding star are available in TTI and TTII.
For each space group w'e have only reproduced the
BZ points associated to active IR's (see Sec. II) which
are related to transitions of the purely ferroelastic
type. The results of the selection of active IR's were
presented formerly in TTI and TTII for the BZ-
boundary points and in Ref. 28 for the BZ center (I'
point) .

Column 3 lists the ferroelastic LS space groups
identified by their standard international symbol.

The relative orientation of the LS and HS symmetry
elements has only been specified when the
knowledge of the ferroelastic species relative to the
transition was not entirely determined by the LS
group. Thus we do not distinguish in the tables the
point-symmetry changes mmm 2*/m and
mmm 2?'/m as both correspond to the same species
and to the same spontaneous-strain component,
within a permutation of the corrdinates. By contrast,
the symmetry changes 4/mmm 2'/m and
4/mmm 2"/m are physically distinct, " and their
respective occurrence has been shown in the tables.
The IR inducing a LS phase is indicated by the sym-
bol ~; of the small representation referred to Zak's
table for the HS space group. Whenever identical LS
phases arise from different IR's at the same BZ
point, the symbols for the various small representa-
tions are grouped together between parentheses fol-
lowing the symbol of the LS group. On the other
hand, each v; corresponds, in general, to several LS
phases with distinct symmetries. These phases are ei-
ther grouped between square brackets on the same
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F = (C66/2)x6 + (C'/4)x6 (3)

The space-group change at the R point is also
Fmm2 82. It corresponds to the same ferroelastic
species mm2 2 and to the same spontaneous strain
x6 but, as shown by column 7, it is accompanied by a
fourfold expansion of the unit cell. By contrast to

line of the table, or listed on consecutive lines.
Column 4 states the dimension of each relevant

IR. This dimension ~s equal to the number of com-
ponents of the transition's order parameter.

Column 5 contains the symbols for the images of
the IR's. These symbols refer to Table V for OP di-

mensions in the range 1—3, to Fig. 1 for an OP di-

mension of 4, and to Fig. 2 for OP dimensions equal
to 6 and 8. As stressed in Sec. III, one then has ac-
cess through Tables II and III (and Ref. 37 for
lower-dimensional images) to the form of the OP ex-
pansions.

Column 6 of Tables VI —IX specifies by a symbol
(referred to Tables II, III, and V) the direction in e

associated to each ferroelastic phase. In addition,
column 7 indicates the change in the number of
atoms in the crystal's unit cell which accompanies the
lowering of symmetry. Whenever several indications
are contained in these columns, they are placed in

the same order as the corresponding phases located
between brackets.

Column 8 is relative to the construction of the
term representing the coupling between the OP and
the spontaneous strain (or higher-rank-tensorial com-
ponents when the considered ferroelastic species is
not a "full" one). The symbol contained in this
column refers to Table IV and specifies a set of
homogeneous polynomials P, (see Sec. III) spanning
an IR of the HS point group and associated to the
relevant ferroelastic species. Whenever the latter
species involves two distinct IR's, the corresponding
symbols for the two sets of p, functions are grouped
between parentheses.

To illustrate by a simple example the use of the
various tables, let us consider the PFT transitions
which arise from the Fmm2 space group. As shown
by. Table VI, such transitions exist at the I and R
points of the BZ.

The transition at the I point corresponds to the
symmetry change Fmm2 B2 (column 3) without
change of the number of atoms in the unit cell
(column 7). It is induced by the one-dimensional IR
(rs) (columns 3 and 4), and it can be classifed as a
proper'ferroelastic transition (column 8). Thus, its
OP can be taken as the spontaneous-strain com-
ponent spanning 73. Referring to the species
mm2 2 in Table I, we find that this component is
the pure shear x6. As explained in Sec. III, the Lan-
dau free energy for this transition can therefore be
written

the former one, this PFT transition is of the improp-
er type.

It appears from Table VI (columns 4 and 5) that
the OP is four dimensional and that its symmetry
properties are described by the image denoted 56.1.

This image gives rise to an OP expansion labeled

fs (Fig. I) whose expression is (Table II)

fs= —,~ grt' + , Pi X—ni' + —,P2(nfn~+qsnB
1,4 1, 4

+ TP3('91'g3 + '92'04) +
2 P4('gl 94 + 92 93)

+Ps'91'rt2 93 94 (4)

F, = (C66/2)x6

The required LFE associated to the considered
transition is the sum of Eqs. (4)—(6).

The crystallographic information contained in the
tables is not complete, in that it does not state expli-
citly the primitive translations of the LS phases.
However, possible translational modifications accom-
panying continuous phase transitions have been
~orked out formerly by Lifshitz and in a more com-
plete way by Naish et al. ' By reporting to these
tables on the basis of the indications of Tables
VI—IX, one is able to obtain unambiguously the
missing data. Thus, in the case of the considered
transition the k vector relative to the R point
is'~s k = [T~, 2, —,]. For this k vector Naish's tabies4'

indicate a single translational change compatible with
the fourfold unit-cell expansion of the crystal.

For many of the 188 considered space groups, the
situation is more complex than in the preceding ex-
ample. Thus, the Fm3m space group (Table IX) is

Such an expansion is compatible (Table II) with six
distinct LS phases depending on the relative values of
the P; coefficients.

When the HS group is Fmm2, the only LS phase
associated to ferroelasticity is the one labeled IV and
corresponding to the [1001]direction in the represen-
tation space e. The function labeled A4~ (column 8
of Table VI) of the OP components, transforms like
the spontaneous strain x6. Its expression is supplied
by Table IV within a permutation of the OP com-
ponents (among the various possible expressions the
one to be retained is nonzero for the [1001] direction
in e). Accordingly, the term representing the cou-
pling between x6 and (rt;) components can be written
(Sec. III)

F3 ( Il ' x6, 8),5X6A 4 )

SX6(7tt + 714 7)2 'rt3)

On the other hand, the truncated elastic energy of
the crystal, limited to the x6 component is"
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likely to give rise to 39 ferroelastic phases corre-
sponding to 20 different IR's with dimensions rang-
ing from 2 to 8. However, working out the charac-
teristics of each transition can be achieved, using the
tables, indentically as above.

The crystallographic part of the results contained in
the tables could partly be checked by comparison to
previous group-theoretical work available for the HS
space groups Pm3m, ' Pm3n, Fd3m, and other
simpler groups. A more extensive comparison could
be made to the unpublished work of Syromiatni-
kov, "where subgroups of the 230 space groups have
been ordered according to the loss of translational
symmetry related to each one of the k vectors per-
mitted, by the Lifshitz criterion. However, this au-

thor has based his crystallographic investigation on
principles" which coincide with those of the Landau
theory only when the small representation v; is one
dimensional. In the other cases, which correspond to
most of the transitions considered here, the sym-
metries indicated in his tables have no relevance to
the Landau theory.

8. Discussion and comparison to 'the experimental data

We have listed in Tables X and XI materials
representative of the main structural families under-
going purely ferroelastic transitions. Table X con-
tains 17 examples of "proper" transitions, and Table
XI 22 examples of "improper" ones. In most of the

selected examples, reliable data are available on the
space groups of the two phases, thus allowing a com-
parison to the results obtained in the present work.

The theoretical results of Tables VI —IX show that
three groups of transitions can be distinguished on
the basis of the characteristics of their order parame-
ter and of the symmetry change. The first group
contains the transitions arising from HS space groups
of the monoclinic, orthorhombic, and tetragonal sys-
tems, the second one concerns the trigonal-hexagonal
systems, and the third one the cubic system.

C. Monoclinic, orthorhombic, and tetragonal systems

Most of the PFT in these systems are predicted to
comply with a uniform scheme.

Thus, with one exception (in the 4/m class), proper
transitions should have a one-dimensional OP deter-
mining a subgroup of index 2 for the LS phase. Ac-
tual examples shown in Table X fit strictly into this
scheme. For instance, the symmetry changes ob-
served in NdP50t4 (Ref. 13) (HS phase in the
orthorhombic system) or in DyVO4 (tetragonal sys-
tem)'4 as well as those of five other families of sub-
stances, confirm the results listed in Tables VI —VII.
All these transitions are observed to be continuous.
As expected for a proper PFT, ' a definite combina-
tion of elastic constants vanishes at the Curie point
for several of these substances, namely, NdP50~4,
KH3(Se03)2, TeOq, DyVO4, and TbVO4. No elasticity

TABLE X. Materials possessing a proper ferroelastic transition.

Substance T, (K) Order Symmetry change
HS BZ

OP

dimension
Table

number
Reference

NdP50)4
KH3 (Se03)2

BiVO4

LaNb04
LaNbThTi08
Te02
DyVO4
TbVO4
NaN3
s-triazine

K,Mn, (SO,),
RbAg41~

V3Si
KCN
In Tl
KNO2

NiCr204

420
212
528
770
950

8 kbar
14
33
293
210
200
208
21

170
320
295
274

2

2

2

2

2

2

2

2

2

1

1

2

2

1

1

1

1

PIzziza

Pbcn

14)/a
14)/a
14)/a

P4i2i2
14&/anzd

14j/amd
R3m
R3e
P2i3
P4i32
Pm3n
Frizz 3 m

Fm3 m

Fm3m
Fd3m

P2i/b
P2)/b
B2/b
B2/b

B2/b
P2i2i2i

lmma

Fddd

B2/m
B2/b

P2)2)2)
R32

P42/mme

Immm

I4/ JpzzOzzzz

R3m
14]/amd

1

1

1

1

1

1

1

1

2a

2a

2a

3a

2a

2a

2a

3a

2a

VI
VI
VII
VII
VII
VII
VII
VII

13
14
18
80
81

82
24
24
62
61
71
83
21
69
70
72
24

'Order parameters not complying with Landau's (symmetric cube) condition.
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TABLE XI. Materials possessing an improper ferroelastic transition.

Substance T, (K) Order Symmetry change
HS LS

Unit cell
X

OP
BZ point dimens.

Table
number

References

P-terpheny1

C404H2
ADP
RbFeF4
VO2

Hg2Cl~

(CH3NH3) 2CdC 14

Ag2H3IO6
Pb3 (PO4) 2

Sb507I
K2Se04

(NH4), S()4

CdSnAs2
ZnSnAs2

Ag2HgI4
SrTiO3
NdA103
NH4Br
CuAu
N3A1F6
SmA103
Cs2NaLnCi6

178
470
148
570
343
185
484
241
453
481
745

840
920
323
196

1640
235
653
830

P2i/b
14/m
142d

P4/mmm

P42/mnm
I4/r'nrr2rn

I4/r7701 r)1

R3
R3rn

P63/m
P63/nzrne

if
P63/l7w1c

j P63/mcm

F43m
F43rn
F43m
Pm 3m
Pm3m
Pm 3m

Fm3m
Fm3m
Pm 3m
Fm3m

P1
P2j/m
C222)
Pmma

P2"/b
Cinern

Crnea

P1
a2/b
P2i/b
Pnma

Pnma

142d
14
14

14/mern

R3e
P4/nmm

P4/mmm

P2i/b
Pnma

l4/m

C
Z
z
z
R
X
X
M
L
M
M

R
R
M
X
X

6
a

a

3

3

3

3

a

a

3

VI
VII
VII
VII
VII
VII
VII
VIII
VIII
VIII
VIII

VIII

IX

IX
IX
IX

IX

19
20
12
84
3
15
85
57
58
55
56

60

67
67
73
63
64
65
66
74
75
68

'Reducible order parameter.

measurements are available yet for BiVO4, LaNb04,
and LaNbThTi08, but due to their compliance with
the same symmetry scheme, they should display the
same characteristic elastic softening.

On the other hand, for the three considered crystal
systems, a standard type of improper PFT is expected
to occur, associated to a two-dimensional OP whose
image is either C4 or C4„. The symmetry change,
leading to a subgroup of index 4, consists in a two-
fold decrease of the point symmetry (e.g. , 2/m 1,
mmm ~2/m, 422 ~222, 4/mmm ~mmm), and in a
doubling of the number of atoms in the primitive
unit cell. The ferroelastic strain is a quadratic func-
tion of the OP. This simple pattern is the one previ-
ously studied in detail for the ferroelectric-ferroelastic
transition in gadolinium molybdate, " agd it is there-
fore expected to remain valid for a large number of
compounds. Consistently, six out of seven examples
available for the considered crystal systems (Table
Xl) have symmetry changes complying with this
description. For all these materials, the salient
features of the physical behavior should resemble
those of gadolinium molybdate. In particular, elastic
constants should undergo a discontinuous downward
jump at the onset of the LS phase (even for a per-
fectly continuous transition3'). The only data which

can be compared to this prediction are the ones for
Hg2C12, "and C404H2, ' and they are in clear agree-
rnent with it.

Other types of more complex schemes are possible
in a few orthorhombic and tetragonal space groups.
They all correspond to four-dimensional OP.

For instance, orthorhombic space groups having an
F-centered lattice give rise to a four-dimensional OP
at the R point ( —, —, —, ) of the BZ, since the star k"
at this point has four arms. Such an OP induces
unit-cell multiplications by factors of 2, 4, or 8, and
to the unusual point-symmetry change mmm 1,
which would be impossible at the BZ center because
no IR of the mmm point group is related to it. Its
possibility in a continuous transition at the preceding
BZ-boundary point is due to the simultaneous cou-
pling of the OP to several IR's of mmm. The triclinic
phase can be considered as the result of the simul-
taneous onset of several, differently oriented, mono-
clinic phases (e.g. , 2"/m, and 2~/m).

A similar scheme is found for the tetragonal space
groups with a body-centered lattice, at the N point of
the BZ boundary.

No examples for these types of transitions seem to
have been detected yet in real physical systems.

By contrast, the ferroelastic, metal-insulator transi-
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tion in VO2, (Table XI), though strongly discontinu-
ous, provides a good illustration of an exceptional
pattern displayed by only two, space groups of the
tetragonal system, i.e., P4/mnc (D4q) and P42/mnm

(Dqq) at the R point ( 2, 0,
2

) of the BZ. The sym-

metry properties of the corresponding four-dimen-
sional OP determine, in particular, the possibility of
transitions towards both the 2"/m and 2*/m point
groups which have, respectively, been observed in

pure, and chromium-substituted VO2.
It is worth noting that for the three considered sys-

tems, about 1000 different types of continuous sym-

metry changes are predicted to be possible accom-
panied by a lowering of both the point and the trans-
lational symmetries (improper ferroic transitions'0):
among these, over 800 are ferroelastic ones.

D. Trigonal and hexagonal systems

As shown by Table VIII, in these systems, PFT are
mainly induced by three-dimensional order parame-
ters at the M point ( —, , 0, 0) for all the investigated

space groups, and at the L point ( —, , 0, 2 ) for all
1 1

symmorphic space groups. The ferroelastic phase
corresponds to the [100] direction in the representa-
tion space (Table V). It is associated with a three-
fold lowering of point symmetry and to a double unit
cell with respect to the HS phase. At the M point,
the double periodicity is located in the plane perpen-
dicular to the ternary or senary axis. At the L point
it occurs along a skew orientation.

The symmetry changes predicted for the M point
are in good agreement with the experimental data re-
lative to the transitions in Sb507I, "K:Se04, ' and
Ag2H3IO6. Likewise in lead orthophosphate
Pb3(PO4)2, both the crystallographic modifications
and the occurrence of a triply degenerate soft mode
at the L point' are observed to comply with the
theoretical results. '

A similar "latent" transition has been assumed to
exist in (NH4)2SO4 in order to explain the ferroelas-
tic behavior of the room-temperature orthorhombic
Pnma phase. The speculative HS phase has been
assigned the P63/mmc space group on the basis of a
group-subgroup relationship between phases and of
the relative orientation of the ferroelastic domains.
Inspection of Table VIII shows that this is not the
only possible group, and that P63/mcm could equaliy
well fulfill the symmetry requirements, In either case
the order parameter of the transition would corre-
spond to the M point of the BZ boundary.

Thus, the available examples of impro. per ferroelas-
tics agree satisfactorily with the theoretical scheme.
However, no illustration seems to exist for another
type of improper PFT arising from a two-dimensional
OP at the A point (0, 0,

2 ) of the BZ boundary. Its

symmetry properties are represented by the images
C6 or C6„(Table V). They therefore differ from the
two-dimensional OP encountered in the monoclinic,
orthorhombic, and tetragonal systems. The sym-
metry change induced would correspond to a three-
fold decrease of the point symmetry (e.g, 3m 2/m;
6/mmm mmm) and to a doubling of the periodicity
along the ternary or senary axis.

On the other hand, as shown by Table X, at least
two examples of proper PFT are known, namely, s
triazine ' C3H3N3, and sodium azide NaN3. This
situation contrasts with the fact that no continuous
transitions are predicted to be possible at the I point
of the trigonal and hexagonal space groups (with the
exception of the 6/m and 6/mmm classes). This is
due to the noncompliance of the relevant two-
dimensional IR's with the Landau criterion (sym-
metric cube). Consequently the induced transittons
should be discontinuous. Experimental results '

show that the transition in s triazine is indeed of first
'

order, though slightly so. As for NaN3 its transition
is claimed to be continuous, within experimental ac-
curacy.

It is therefore striking to note that the transitions
in these two materials, which do not fulfill Landau's
criterion, display discontinuities of similar magnitudes
as the transition in lead phosphate which cornplies
with this criterion.

E. Cubic system

Unlike the other. crystal systems, the cubic one
displays a large variety of situations with respect to
the OP dimensions, the lowering of symmetry and
the coupling scheme between the OP and the macro-
scopic tensors (Table IX).

Let us examine first the PFT which are accom-
panied by a decrease of the translational symmetry.
Two cases can be distinguished among them.

The first one corresponds to the same standard
type of three-dimensional OP which are encountered
in the trigonal system. The PFT involve a lowering
of point symmetry by a factor of 3 (e.g. , m3m

4/mmm) or 4 (e.g. , m3m 3m) together with a
doubling of the primitive unit cell. They can arise at
the R point ( —, , 2, —, ), the X point (0, 0,—), and the

1 1 1 ~ 1

M-point of the simple cubic BZ, and also at the X
point ( —, , —,0) of the fcc space groups (Table IX).1 1

Several continuous transitions are found to comply
with this description. This is, for instance the case of
the ferroelastic perovskites isomorphous of SrTi03, '
and NdA103, and of the order-disorder transition in
ammonium bromide NH4Br. ' A related pattern also
occurs in the metallic alloys of the CuAu I type. In
the latter materials the point, and translational sym-
metry change are consistent with a three-dimensional
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OP at the X point of the Fm3m space group. Howev-
er, this OP does not fulfill the Landau criterion. In
agreement with it, the transitions are observed to be
strongly discontinuous, and to display a large thermal
hysteresis.

Symmetry-change patterns without a counterpart in

lower-symmetry systems are mainly related six- and
eight-dimensional order parameters.

Six-dimensional IR's are determined in a variety of
ways. At the X and M points (sc lattice) and at the X
point (fcc lattice) already mentioned above, they cor-
respond to a three-arm star and a two-dimensional

small representation. At the N point ( —, , 0, 0) of the

bcc Brillouin zone and at the %point ( 4, —, , 4 ) of3 I 1

the fcc one, they result from a six-arm star and a
one-dimensional small representation. No uniform
scheme of symmetry changes is found for these
representations since the OP symmetries are related
to 10 distinct images (Fig. 2). Thus point symmetry
changes from m3m towards seven different classes of
the orthorhombic, tetragonal, and rhombohedral sys-
tems are predicted to be possible, as well as unit-cell
multiplications by factors of 2, 4, and 8.

On the other hand, eight-dimensional IR's occur at
the L point of the fcc lattice. They induce the
steepest decrease in symmetry which is obtained for
all the investigated transitions. Thus the index of the
LS space group with respect to the HS one can be as
high as 48. For instance, a continuous transition is
predicted from Fd3m to I4m2, with an eightfold ex-
pansion of the unit cell. These types of OP are also
the only ones compatible with certain ferroelastic
species (e.g. , m3m 2~/m, or m3 1) which in-

volve a large decrease in point symmetry.
Few examples have been found, up to now, of

structural transitions possessing such high-dimen-
sional order parameters. In the case of pure ferroe-
lastics„a representative class of substances is provid-
ed by the ternary semiconductors undergoing a rever-
sible transition from the chalcopyrite structure
(l42d) to the zinc blend one (F43m) These transi-.
tions have previously been pointed out by Jerphag-
non6' to be related to improper PFT. The number of
atoms in the primitive unit cell is multiplied by 4,
and Table XI allo~s us to identify unambiguously the
OP as a six-dimensional one at the 8'point of the
BZ. CdSnAs2 and ZnGeAs2 are two examples of
these substances with transitions, respectively, occur-
ring at 840 K and 1080 K.

Let us consider now the transitions which preserve
the number of atoms in the crystal's unit cell. A re-
markable feature of the cubic system is that continu-
ous equitranslational ferroelastic transitions are only
possible if their order parameter is distinct from the
components of a homogeneous strain. These unusu-
al types of improper ferroelastics are associated to
two- and three-dimensional OP having the sym-

metrics either of a third-rank polar tensor (e.g. ,
m3 222, 43m 4, m3m 422) or of components
of a fourth-rank polar tensor (e.g. , m3m 4/m,
m3ni 3). The onset of the spontaneous strain of
these ferroelastic species is due to the coupling of the
strain components to quadratic polynomials of the
former macroscopic quantities, whose form is speci-
fied in Tables IX and IV.

Possible examples of such improper PFT can be
found among compounds with the formula
Cs3NaLnCl6 (Ln:lanthanide) belonging to the family
of elpasolites. ' These have been conjectured to un-
dergo the symmetry change Fm3m l4/m with one
formula per unit cell in both phases. As stressed
above, the OP would correspond to the components
of a fourth-rank tensor, namely, the three-dimen-
sional set of elastic constants
(C34 —C34 C35 C]5 C]6 C35) (Table I).

By contrast, no continuous transition of the proper
type is expected to occur because the corresponding
OP do not comply with Landau's criterion.

As sho~n by Table X, a number of proper PFT
have been observed in real crystals. Most of them
possess a strong first order in agreement with the
theoretical predictions. These are, for instance the
transitions in KCN and NaCN, those arising in
several members of the spinel family, '4 as well as
those observed in many martensitic transformations
similar to the one in the indium thallium alloys. '
Some compounds with the langbeinite structure" and
potassium nitrite KNO3 (Ref. 72) also belong to this
class of transitions. A few examples, however, pos-
sess transitions which are almost continuous. In par-
ticular, V3Si has been the subject of many accurate
investigations which have assigned to its 21 K transi-
tion a continuous character. '

Finally, we can note that the experimental data
contain examples of symmetry changes which do not
comply with the most important feature of Landau's
theory: they do not appear to be induced by a single
IR of the HS phase.

Thus, the symmetry change in Ag2HgI4, "and

ZnSnAs3 (Ref. 67) (F43m 14, with a fourfold
unit-cell expansion) cannot be accounted for by the
IR's considered in Table IX, though the translational
change matches well the one predicted at the W
point. The full symmetry change is probably associ-
ated to a reducible order parameter composed of a
six-dimensional IR at the appoint, and of three-
dimensional one at the I point. Also, the transition
in cryolithe N3AIF4 (Ref. 74) (Fm3m P2]/b, with
a double unit cell) involves several IR's, one of
which corresponds to the X point of the BZ boun-
dary. Other complex examples have been pointed
out to occur in the ferroelastic-antiferromagnetic
perovskites such as SmA103, "or LaFe03 (Ref. 76)
(TaMe XI).
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IV. CONCLUSION

In this paper, a theoretical investigation has been
carried out of the symmetry characteristics of purely
ferroelastic transitions. We have established that, in
the strict framework of Landau's theory of continu-
ous transitions, this type of transition should consti-
tute the largest part of the ferroic transitions encoun-
tered in crystals. By comparison, other categories of
structural transitions previously examined in TTI and
TTII (i.e., purely ferroelectric transitions, secondary
ferroics, etc. ) correspond to marginal cases. In par-
ticular, while improper ferroelectrics were noted to be
an exception, on theoretical grounds improper ferroe-
lastics appear to be the rule.

In the theoretical procedure adopted to handle this
systematic application of Landau's theory, we have
stressed the similarity which exists between transi-
tions arising from different high-symmetry space
groups with respect to the symmetry properties of the
order parameter, and to the pattern of the possible
low-symmetry phases. As already pointed out by pre-
vious authors, ' ' we have shown that this similarity
relies on the occurrence of an identical "image" for
the various order parameters considered. To be able
to deal with the case of order parameters of dimen-
sions greater than 3, mostly arising in the cubic sys-
tem, we have established for the first time the form
of the corresponding images, and their mutual rela-
tionship.

As a result of identifying the different images, we
could show that the symmetry and thermodynamical
aspects of Landau's theory of continuous transitions
is contained in the properties of 49 images of dimen-
sions ranging from 1 to 8, and giving rise to, at most,
49 types of free-energy expansions.

The enumeration of all possible-ferroelastic transi-
tions of the continuous type has been presented in

tables. These tables allow a determination of the
crystallographic modifications (point and translational
symmetry) taking place at each transition, a deduc-
tion of the dimension and symmetry properties of the
order parameter associated to it, as well as of the
free-energy expansion.

A comparison of these theoretical results to the ex-
perimental data available for ferroelastic transitions in
real substances has been performed. It has shown
that the experimental results can be classified into
three groups.

The first and largest group is constituted by the
continuous or discontinuous transitions which comply
in all their symmetry and thermodynamical aspects
with the results contained in the tables. Among the
39 examples of materials selected for the reliability of
the data available for them, 25 were found to belong
to this group. For each such material, starting from
the knowledge of the space-group change, the useful-
ness of the. tables consists in the possibility of deduc-

ing, by simple inspection, the information which is
necessary to elaborate a phenomenological theory of
the considered transition. Belong to this group, all
the transitions observed in lower-symmetry systems
(monoclinic, orthorhombic, tetragonal) as well as
most of the transitions in any system which are ac-
companied by a multiplication of the unit cell of the
crystal. We can note that the latter "improper" fer-
roelastic transitions outnumber the examples of fer-
roelastics which preserve the crystal's periodicity.
This situation contrasts with the case of improper fer-
roelectrics for whom examples were scarce' and dif-
ficult to understand on the basis of Landau's theory.

A second group of transitions corresponds to equi-
translational symmetry changes which fail to comply
with Landau's "symmetric-cube" criterion. These
transitions have a high-symmetry phase belonging to
the trigonal or cubic system. Their characteristics
cannot be found in the present tables (I—XI). How-
ever, their order-parameter and free-energy expan-
sion are available in the tables of Janovec et al. ,

2'

which contain the characteristics of all the cell-
preserving transitions.

Finally a few cases remain of materials in which a
first-order transitions appears to be induced by a
reducible order parameter. Such cases could be easily
detected by inspection of the tables since, for them,
either the point-symmetry change or the translational
symmetry one did not fit into the listed results. For
each such example, it would be necessary to perform
a particular group-theoretical analysis of its symmetry
characteristics in order to interpretate the physical
pecularities of its transition. In some ferroelectric
materials analyses along these lines have recently
been carried out to explain intricate symmetry
changes, namely, in the boracites, ' Rochelle salt, '
and benzil.
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APPENDIX

In this Appendix, we show that, if the possibility of
a line of continuous transitions between Go and G
has been established on the basis of the order-
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F, (~, ~;, P k) =(~/2) X~,' +X»P»fk(~, ),
I

(7)

where the f» are invariant polynomials of degree
«4. A line of continuous transitions between Gp

and G is assumed to exist for Pk & P» & P» (strict
inequality). Let us first introduce the coupling with a

single strain component x. The Landau free energy
will be expressed as

F = F, + (C/2) x + Sxg(g;)
For a mechanically free crystal, the strain can be

eliminated from Eq. (S) through the condition
f)F/Bx =0 resulting in

(8)

parameter expansion, this possibility will be preserved
when the coupling with the strain is taken into ac-
count. As stressed in Sec. III, the OP expansion can
be written

values l(P» —Pk)/ykl, for yk &0. If we impose the
following conditions on the expansion coefficients:

lsl &1501,

(Pk & Pk & Pk) tf 'yk
\

(Pk&Pk &Pk+50rk) if rk &0

(Pk + g0rk & Pk & Pk) tf 'yk )0

(12)

It can easily be checked that we have P» & P»' & P»
and that, consequently, a line of continuous transi-
tions exists between Gp and G.

The preceding proof would not hold for transitions
which can only be continuous at a definite tempera-
ture and pressure (pO, TO). Such a transition point
would correspond to a condition of the type

F =F) —(5'/2C)y'(q;) .
Pk0(pO TO) Pk0(pO TO) (13)

0'/2C=xrkfk .
k

Inserting Eq. (10) into Eq. (9) shows that F takes
the same form as F~ with the modified coefficients

(10)

P»'=P»-5'rk .

Let Sp be a finite quantity smaller than the set of

Continuous transitions are determined by the abso-
lute minima of F. Like F and F~, the homogeneous
polynomial p (g;) is invariant by GO. Its degree is

2p & 4 (P being of degree ~ 2 since x and g; impli-
citly have different symmetries). If 2p is greater than
the highest degree in Ft, P will obviously have no in-

fluence on the stability of the LS phases just below
the transition point. A line of continuous transition
will exist for unmodified ranges of the P» coeffi-
cients, no condition being imposed to 5.

In the other case, P2 can be expressed as a linear
combination of the f» (with some of the coefficients
possibly zero)

As in general the occurrence of ykp &0 cannot be
discarded, we will have

5=8p=0 (14)

F = F) + —X Cl~x(x~ + X5(xi/( (q; ) (15)

The occurrence of a line of continuous transitions
can be straightforwardly established using the same
arguments as in the case of a single strain component
by eliminating the xt through the set of conditions
8F/'dxi =0, and puting, for instance, 8 equal to the
largest of the 81 coefficients.

The three equations (13), (14), and n(pO, TO) =0,
cannot be satisfied simultaneously, thus resulting in a
supression of the continuous character of the transition.

When several strain components xt are involved in
the coupling terms, the free energy takes the more
general form
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