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Differential renormalization-group equations for the one-particle-irreducible vertex functions

are solved analytically to provide information about the scaling properties of the correlation

function at small and moderate wave vectors everywhere in the critical region. For Ising-like

spin systems, this extends previous work on the anomalous dimension crossover function to

nonzero magnetization. The susceptibility-correlation-length relative-amplitude ratio is correctly

given to O(~), a =4-d; moreover, a fully nonlinear crossover-amplitude function is obtained.

For general »-component spins, the longitudinal part of the correlation function, I 2 L is calculat-

ed to O(~) in crossover form for small and moderate k. The asymptotic singularity 12 L
-k' is

automatically incorporated. The result is exact in the spherical limit »

I. INTRODUCTION

The use of nonlinear solutions of differential
renormalization-group equations has proved to be a
powerful method for the calculation of thermo-
dynamic functions for critical phenomena in cross-
over exponentiated form. ' This approach provides
results which represent a summation of an infinite
class of Feynman diagrams; thus, instead of a series
of logarithmic terms, an expression with power-law
behavior is obtained. A natural auxiliary benefit is
that the first correction-to-scaling behavior is general-
ly automatically incorporated in a crossover equation
form (the crossover being between simple-Landau
and true-critical behavior; other more complex cross-
overs are also obtainable). Most recently, ' what was
called the anomalous dimension crossover function,
which relates the susceptibility to the correlation
length, was calculated for general order 0 multicriti-
cal points in the disordered phase. For the ordinary
critical case, the results are in essential agreement
with earlier calculations based on equations of the
Callan-Symanzik type due to Lawrie and Bruce and
Wallace. ' This function carries the effects of a
nonzero value of the critical exponent q. In view of
the small size of this exponent, the crossover
behavior involving q may well be unobservably small.

However, in the presence of a nonzero magnetiza-
tion (in particular on the coexistence surface), the re-
lationship between the susceptibility and correlation
length involves more than q. These M-dependent
contributions to the anomalous dimension crossover
function are relatively large. Formally, they are
O(e) rather than O(e2), where a=4 —d. At d =3,
they may be 5—10 times as large. In this paper, we
extend the earlier results to the ordered phase of an
ordinary Ising-like critical point.

For general n-component spin models, both the
transverse and longitudinal susceptibilities diverge on

the coexistence surface. To make the corresponding
extension, an exponentiated nonlinear crossover
form of the general n wave-vector-dependent longitu-
dinal susceptibility is calculated to 0 (e) with em-
phasis on the behavior near the coexistence surface
and restricted to moderate l. If the four-spin cou-
pling constant u is set equal to its fixed-point value,
the present result is the same as that of Schafer and
Horner to the order given here. If the power-law
singularities are expanded into logarithms, the result
reproduces the longitudinal part of the O(e) full-

susceptibility tensor of Brezin et al. ,
' as well as the

conjectured partial exponentiation of Mazenko.
Crossover to mean-field behavior is included, in con-
trast to Refs. 7—9. The calculation gives an exact
result in the spherical limit n ~. In the Ising case,
n =1, the O(e) part of the anomalous dimension
crossover function is recovered.

For small k a somewhat different exponentiation
from that of Achiam and Kosterlitz'0 [who use a
double-matching technique to obtain the correlation
function for all k in an implicit rather than (as here)
explicit] is obtained.

In Sec. II, some general properties of the anoma-
lous dimension crossover function (henceforth, D)
are discussed for M ~ 0, with applications to the scal-
ing of the irreducible vertex functions. An exact
nonlinear scaling result for D is given.

In Sec. III, the calculation of D to leading order is
detailed for the ordinary critical point, n =1. The
one-particle-irreducible 1PI renormalization-group
generator" is used. The calculation serves to illus-
trate how the (1PI) equations are used to obtain
nonlinear results.

In Sec. IV the longitudinal two-point function
(whose inverse is the susceptibility) is calculated to
O(e). Although a strictly rigorous nonlinear solution
cannot be obtained analytically, the approximations
made should provide good exponentiations in some
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regions of the wave vector k. As mentioned above,
the result is exact in the spherical limit and repro-
duces the results of Sec. III for n = 1 .

In Appendix A, an alternate definition of quasiglob-
a1 eigenfunctions of the renormalization group is in-
troduced. Although the new definition has no im-
mediate consequences for the present calculation, it
does clarify the relationship between the alternate
derivations of D given in Ref. 1 . For calculations to
higher order in perturbation theory, the present de-
finition should be useful.

In Appendix B, a few technical details needed in
the derivation of D used in Sec. III are established.

II ~ ORDERED PHASE: GENERAL RESULTS

The basic idea used in Ref. 1 was to maintain a
specified form of the partially renormalized correla-
tion function I"2(k) so that for all values of the re-
normalization parameter I

where @0 is a scaled magnetization variable (defined
below). The same procedure is now applied to calcu-
late D.

Before giving the actual calculation, a discussion of
the general features of the approach will clarify the
method and results. Renormalization-group genera-
tors such as the one-particle-irreducible generator
give an expression for the renormalization of the
Helmholtz functional A; this can be expressed in
terms of the physical fields Mk or in terms of re-
scaled fields. We define the "minimally rescaled"
field $» by

r

Mk = Pk (/) exp ——,
'

J~ ~(go(y), y) dy, (2.5)

where g($0, /) is the magnetization-dependent rescal-
ing factor to be defined below. The function @0(/)
satisfies

ey, (/) = —,~ (y, ( /), /) y, ( /);

r, (k, /) =r, (k =0, /) +k'+O(k4) (2.1)
(2.6)

This is done by choosing an appropriately defined re-
scaling factor r/(/); at a fixed point g(/) reduces to
the value of the critical-point exponent q for the crit-
ical behavior controlled by that fixed point. Any
thermodynamic or correlation functions can be ex-
pressed in terms of the unsealed physical magnetiza-

tionn

Mk, nonlinear scaling fields and the anomalous
dimension crossover functiori D

d, (/=O) =M .

x r, (k,
(2. /)

The use of a magnetization-depender[. t q leads to a
nonlinear scaling of the fields'2 [the usual fully scaled
field sk = @k exp [ —, (d —2) /] }.

The free-energy functional given by

D = exp „r/( /) d/— (2.2) can also be written in terms of the Mk.

For example, the physical value of the correlation
function is given by

I'2( k) = D [ lim I'2( k =0, /) exp ( —2/)
I~oo

k, k =0
M D,/',

kt k
P .

(2.8a)

+kz+O(k )] (2.3) where D is the magnetization-dependent anomalous
dimension crossover function.

In Eq. (2.3), the indicated limit just the inverse
square of the correlation length g ', which is an exact
nonlinear scaling field. The inverse susceptibility
[=I'2 ( k =0) ] is therefore X ' = D g '. As detailed in
Ref. 1, the correct [to 0 ( e') ] expression for D is
given by (in the disordered phase)

D = Y " 'exp [( Y —1) (1 —u)]

Y ' =I +u(g' —1)

(2.4a)

(2.4b)

In Eq. (2.4), u = u/u", and u is the value of the
four-spin coupling constant and u' its fixed-point

1
value, u

In the presence of a finite magnetization (n = 1), a
magnetization-dependent value of q may be defined
in a similar fashion so that

rp(fo, k, /) =I 2(fo, k=0, /) +k + O(k ),

D = exp J1 q($0(y), y) dy (2.8b)

The physical vertex functions are defined by func-
tional derivatives with respect to the Mk

8 A

5Mk 5Mk
1 Ip

(2.9)

Applying the functional derivatives to Eqs. (2.8)
there will be contributions of 5 functions 5k 0 from

the derivatives of D which cancel corresponding
terms in the renormalization-group equations for I ~.
For k; infinitesimally different from zero, the 5 func-
tions are absent

I' (k, k, M») =D f' (k~ k, @„) . (2.10)

Extending the arguments given in Ref. 1, it is easy to
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see that the minimally rescaled vertex functions are
exact nonlinear scaling fields in $—=$p (i = ~) of
canonical dimension: for example, 12(k =0,
/ =0)=$4/t~ 't. This exact nonlinear scaling of the
I ~ in $ may be useful in the consideration of alter-
nate exponentiations of perturbative results for the
vertex functions or other thermodynamic quantities.
From this scaling property and the corresponding
property shown for the vertex functions I ~ of Ref. 1

scaled with a magnetization-independent q(/) it fol-
lows that D($)/D(/=0) is an exact nonlinear scal-
ing invariant. The vertex functions scaled with D(0)
are singular at the critical temperature while those of
the present calculation are not; for example, the
k =0 two-point function 12 behaves as M" " '
&c (r/M' a) p" as t 0 Th.e term in brackets is a seal-
ing invariant, so that this two-point function is still of
canonical dimension. The use of D($) simply ab-
sorbs the temperature singularity so that the
minimally rescaled (and physical) vertex functions

may be finite and nonzero at t =0. An exact calcula-
tion in either approach would, of course, give the
same physical vertex functions; however, in low-
order approximations an erroneous behavior may be
introduced. This is illustrated in the calculation of
the equation of state; compare the renormalized
zero-loop approximation and the fully exponentiated
solutions given in Ref. 2.

III. CALCULATION OF D FOR THE ORDINARY
CRITICAL POINT

The discussion of Sec. II applies to all critical sys-
tems to any order in perturbation theory. In this sec-
tion, the leading behavior for the ordinary Ising criti-
cal point will be calculated. As the use of the 1PI re-
normalization equations may be unfamiliar, the
method will be given in some detail. The renormali-
zation-group equation for I 2 is

48- I'4(ne ', —ne ', k, —k)= —qi'2 —
2 q 12+exp ( d/)—

8/ ' 8$ i,(n -')

I 3( n e "g,k) 2, 5( g + k n e ') 0( i g i
e' 1)—

n i, ( g )I,( n e-') (3.1)

The first two terms of Eq. (3.1) are a consequence of
the rescaling of the magnetization variable @. The
integrals represent the infinitesimalization of the
one-loop diagrams contributing to the two-point func-
tion. All the vertex functions in Eq. (3.1) are func-
tions of $. Similar equations can be written tor the
three- and four-point functions but they will not be
needed. Requiring that the k term be invariant
leads to

g=q4+q3, 3 (3.2)

where q4 and q3 3 are the k' parts of the correspond-
ing integrals. Note that Eqs. (3.1)—(3.2) are exact;
the approximations arise in the expressions used for
the three- and four-point functions.

A

In the ordered phase I 3=0 and the k-dependent
parts of I'4 are O(e') and expressible in terms of the
O(e) solution for the k-independent 14. In the or-
dered phase, I'3-QpI 4 and I'3 is O(e). Therefore,
'r/3 3 is 0 (e) and, as will be shown below, r/4 remains
O(e ). In general, the O(e) perturbation induced by

7/3 3 would disrupt the 0 ( e) solutions for the vertex
functions. As shown in Appendix B, the asymptotic
behavior of the renormalization-group equations is
not significantly altered. This is consequence of the
lack of any slow-transient or slow-growth behavior in

g3 3 which at e =0 would have induced logarithmic
singularities. "

Within these approximations, q4 can be evaluated

as before

exp(2e/) + 0(,)
(1 + I'2 exp2/) ' (3.3)

where I 4 is the solution for the four-point function
1

given in Ref. 2, and q = —,4
e', Similarly, q3 3 can be

written

-exp( e/) I 4$p
'93, 3

=
(1 + I'2exp2/)

"dn O(~n+ keJ —1)
I' exp(2/) +~n+ k e'~' „2„„

. (3.4)

This function behaves like exp[(2+ e) /] for small /

and like exp( —d/) for large i. Its integral over / is
finite even at the critical point and does not depend
strongly on e. This is in contrast to q4 which has an
initially slow growth, proportional to exp(2e/) and
the integral of which diverges at the critical point.
For q3 Q the slow variation in I"4 is completely
swamped by the more rapidly changing behavior of
the angular integral. Therefore, in Eq. (3.4) the ver-
tex functions will be set equal to their asymptotic
limits. Furthermore, the integral of q3 3 over I can
be extended to / = —~ since the exp(2/) factor pro-
vides the necessary rapid damping. The effect of all

the approximations is a factor of ~ smaller than the
final result obtained. The integrals are now easily
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Of course, to the order calculated, the last factor
could be replaced by I ~4M~/I'q, or any number of ex-
pressions equivalent to O(e). The form used in Eq.
(3.5) is an exact nonlinear invariant. Combined with
the approximations made for q4, the total expression
in Eq. (3.5) does satisfy the exact invariance property
described in Sec. II.

At the fixed point, D simplifies to give the asymp-
totic relation between the susceptibility and correla-
tion length.

X '=g " exp(+ —„$'g~ 'u' ) (3.6)

Using the equation of state, ' the argument of the ex-
ponential may be evaluated (it is finite everywhere in

the critical region). The universal amplitude ratio of
X 'g' " is thus found to be

2

12
=1+—a+O(e ) (3.7a)

A+—= lim X 'g
c 0+

(3.7b)

in agreement with earlier calculations. '
The specific form of the exponentiation of Eq. (3.5)

is not particularly suggestive. The argument of the
exponential. represents only the amplitude of the
leading singularity and thus cannot be checked by any
simple asymptotic scaling property. In Sec. IV, an al-

ternate approach to the longitudinal correlation func-
tion for all values of n provides (in the limit n = I) a
different form of the O(e) part of the anomalous di-
mension crossover function, identical to O(a), but
with a more plausible exponentiation.

The corrections-to-scaling effects (crossover ef-
fects) in Eq. (3.5) are now O(e), being generated by
the I'4P' term. The O(a) part of the crossover may
be written

D = I +—I' M ( +' + 0 ( a')
, (3.8)

In Eq. (3.8) the distinctions between I"4 and 14 on
the one hand, and @ and M' on the other, have
been dropped. I 4 is given in Ref. 2 as I 4 = u Y, with
Ygiven in Eq. (2.4b). The numerical factor of 12,
although correct in the e expansion, might be con-
sidered as an adjustable constant in comparison with
experiment. To O(a~) the form of Eq. (3.8) would,
of course, also change, but a detailed calculation
would be cumbersome in the present approach.

performed:

D = Y " 'exp[(1 —u) ( Y —1)q/a +—I',@'g'+'j
(3.5)

IV. LONGITUDINAL CORRELATION FUNCTION

As is well known, ' the ~ expansion for the thermo-
dynamic functions of the n-component spin model
has some difficulties of interpretation in the ordered
phase. This is a consequence of the divergence of
the longitudinal susceptibility on the coexistence sur-
face. Denoting the longitudinal part of the two-point
function as I'q L(k, h), the asymptotic behavior is
given by

(4.1a)

(4.1b)

An exponentiated expansion is one approach to re-
express the logarithms of the e expansion in a form
which contains Eqs. (4.1). For k =0, a solution for
the equation of state was given in Ref. 2 which em-
bodied Eq. (4.1a) and which was exact in the spheri-
cal limit, n ~. An alternate exponentiation due to
Nelson3 incorporated Eq. (4.1a) but did not repro-
duce the spherical limit. This indicates that different
a priori reasonable methods may be expected to pro-
vide distinct exponentiations. Complete criteria for
judging exponentiation are presently lacking. %hen
possible, comparison with higher-order e expansions
or exact results may be used as partial checks. ' In
this section, we extend the k =0 to finite (small) k
for the longitudinal correlation functiori. A fully
nonlinear solution of the differential renormali-
zation-group equations does not seem feasible; how-
ever, in the special cases of n = 1 and n = ~, the ap-
proximations made reduce to the anomalous dimen-
sion crossover function of Sec. III (in a different ex-
ponentiation) and the exact spherical result, respec-
tively. The result is given in nonlinear crossover
form, containing the effects of the first corrections-
to-scaling variable. For u = u, the result is similar
to that of Schafer and Horner' and when ~ expanded
gives the O(e) result of Brezin et al. The partly ex-
ponentiated form conjectured by Mazenko is also
contained within the present result and may be
recovered by a partial expansion in e. However,
since a fully nonlinear solution is not used, the ex-
ponentiation is not uniformly good. In particular, the
large k region is excluded (the asymptotic properties
in this region have been given by Brezin er al. '5).

%e begin with the renormalization-group equation
of the 1PI generator

(4.2a)

where

5A
SM' SM'

p -q
(4.2b)
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(4.3)

(where M; is a unit vector in the direction of the magnetization), we have the following renormalization-group
equations

r, ,(k) = -exp (-dl) J + r,
~ ] "dQ 1 El +1
2T 3 r2, L(s) r2, T(s)

In Eq. (4.2a), s denotes a shell wave vector, s = 0 exp( —I) and g a "greater-than-shell" wave vector,
~'g~) exp( —I); (i,j,r, t, ).d. .enotes the components of Mk, sums over repeated indices and integrals over g and g
are implied.

To obtain the equation for the two-point function I'2"(k, —k), two functional derivatives of Eq. (4.2a) are taken.
The result is simplified by evaluating for a uniform magnetization M to enforce momentum conservation. To
lowest order, we may also neglect the k dependence of the three- and four-point vertex functions (this restricts
us to relatively small k in a sense that will be made clear). Separating the two-point function into transverse and
longitudinal parts

r,"(k) =r2 T(k)(S,, MM-)+MMr2L

t

——,M'r40(exp(I)
I

s +kI —I) +L=T
I'2L(s)I'2 (s+k)

(4.4a)

~dor, , (k) =exp( —dl) J
—,
' (n -1)

I', ——,M' r,'O(exp( I)
i s + k

i

—1)
r2, L (s ) I 2, T( s )

9 n —1

,
r2, L(s)r2, L(s +k) r2T(s)12T( s + k )

As k 0, these equations are equivalent to those
used previously. In that limit the sole effect of the
step functions averaged over all angles is to introduce

1
a factor of 2. The product of transverse and longitu-

dinal propagators is reduced by noting that in this ap-
proximation I'2L =I'2 T+I'4M' ' and that I'2L(s) =
s'+ 1 2 L, and I 2 ~ = s'+ I 2 & to lowest order. %hen
no argument is indicated, the value at k =0 is meant.

By using the lowest-order forms and neglecting the
I dependence of the vertex functions, Eq. (4.4) can
be trivially integrated. It is useful to recall how that
integration is done. The k-dependent parts involve
propagators at two different momenta and effective
masses

dd
1(k,mt2, m22 ) = (4.5)

(p'+m2') [(p+ k)'+m, ']
Feynman parameters are used to combine the propa-
gators

1(k,mt, m2 )

[n(p'+ m2 ) + (1—n) [(p+k)'+m(]]'
(4.6)

Changing variables, we set q = p +(1—a)k; the in-

tegral can now be done analytically (cf. Appendix A
of Ref. 2). The leading behavior (imposing a cutoff

I

of unity on the q integration)

(4.4b)

1(k,m(, m2 ) = —[II(k,mt, m2 ) —1] (4.7)

where the function H is'

11 —= r(1+—,
'

~) r(2 ——,
'

~)

x Ji [a(1 —n)k'+nM( + (I —a)M22] '12 dn

(4.&)

The use of the e expansion of Eqs. (4.7) and (4.8)
yields the 0 (e) results of Brezin er al. s We will use
the notation II(k, m2) = II(k, m', m2) subsequently.

This method cannot be directly applied to Eq. (4.4)
when Eq. (4.4) is considered nonlinearly. By infini-
tesimalizing the renormalization process, the integral
over all momenta [such as p in Eq. (4.5)] is broken
down into an angular integral over a shell, with
masses (12 L and I"2 T) and vertices which depend on
the magnitude of the shell momentum [= exp (—1)].
Thus, although the propagators may be combined
with Feynman parameters, the change of variable is
not simply done. The vertex functions are constants
on shells concentric about the original origin; on the
other hand, the convenient integration variable is
offset with respect to that origin. Finally the step
function complicates any integration. A solution of
Eq. (4.4) using all the information contained in the
nonlinear equations would be very difficult.
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I (k, l) =I (I) +k +O(&k /r ) (4.9)

where rq r(l) can be taken from Ref. 2. This ap-

proximation will affect the final result only in

O(e k /I q) terms.
The longitudinal equations are to be handled by

means of an approximation of the value of r4(I)
The k-independent value is shifted an O(e ) amount

To proceed, we look for a limit in which simplifica-
tions may be made, By the use of k-independent
vertices, the large-k region is already excluded. The
longitudinal equation (4.4b) is somewhat simpler
since it does not involve mixed transverse and longi-
tudinal propagators. If k «rq (more precisely rq,
see below), the effect of the offcenter integrals may
be assumed to be small; the integrals over the
renormalization-group parameter I for the transverse
propagator are always cutoff by the longitudinal pro-
pagator, even in the limit of zero magnetic field.
Thus the solution to Eq. (4.4a) may be approximated
by

to correspond to the shells defined by the k-depen-
dent propagator terms. This of course does not affect
the O(e) result at all. At O(e) the effective value
of I at which the contribution is cutoff is governed by
the II function alone. Thus the leading part of the
exponentiated behavior is also governed by H. Since
we are interested in k «1 the step function can be

1
replaced by &. If the I 4 were constant this would be

exact, so again we are introducing a nonleading
O(e') error. The total error depends on the relative
sizes of k', h/M, and rq L. For the longitudinal pro-
pagators, the error introduced will again be
O(e'k /rq L). The error in the transverse terms is
more complicated. For h/M«k', the error will be
O[e'(h/M/k )]; for h/M) &k', the error induced
is O[e'k'/(h/M) ]; for intermediate values of k, we
can only state that the error is O(a ), but no addi-
tional factor enters to further reduce the error. Small
errors at O(e ) may be important for reliable ex-
ponentiation. Within these deformed trajectory ap-
proximations the longitudinal correlation function is
given by

rzL(k ) =—+k +-h p 1 uM
3 1 —u +u[(n —I)/(n+8) ]Il(kh/M) +u [9 (/n +8)]II(k, rp)

(4.10)

The function 1 ~ is the inverse longitudinal suscepti-
bility shorn of transverse effects. ~ The equation of
state governing h/Mand rq is given in Eqs. (3.7) and
(3.11) of Ref. 2. Setting u = 1 and e expanding, the
result of Brezin et al. 7 is obtained. By setting h =0
and expanding the longitudinal II function the result
of Mazenko is recovered.

Still for u =1, this result reproduces to the given

order the result of Ref. 7. This agreement can be
improved by adjusting the amplitudes
(n —I)/(n +8) and 9/(n +8) using the results for
the k =0 limit as discussed below.

We note that in the spherical limit (4.10) is exact
(as is the corresponding equation of state). For the
Ising limit, the results of Sec. III can be reproduced
by the expansion of the II function in k

2—uM
r, , (k') =—+k'+

1 —u + u [I' ' —
—, e(k /r, )r; '+ o (k') ]

=r, +k'[I+r'( 'M')k'g'+ ] =D—(M)(g '+k')- (4.11)

As discussed in Ref. 2, nonlinear crossover expres-
sions such as Eq. (4.10) can be tentatively extended
by exponent improvement; that is, low-order expan-
sions of the critical-point exponents are replaced by
higher-order expressions or by the exponent itself (to
be determined by other means). In this manner, the
equation of state given in Ref. 2 for the Ising case,
n =1, can be made to agree to O(a') with the &-

expansion results. In the same spirit, amplitudes
may be corrected by comparing the ~ expansions of

n-1
1

e 16 60
n+8 2(n+8) n+8

(4.12a)

The corresponding value of y for the equation of

I

the exponentiated forms with other results. If the
form of Eq. (4.10) is retained, a comparison with the
equation of state'7 suggests that the factors (n —1)
l(n +8) and 9l(n +8) be replaced by y, and (1 —y)
with
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state is

1

fl —1 60
3'es= 1+ —25—

n+8 2(n+8) n+8
(4.12b)

present calculation, unlike that of Ref. 7, does have
the virtue of giving the crossover to mean-field
behavior (u Wu').

Note that Eq. (4.10) contains three different types
of crossover. First, the crossover between Landau
and true critical behavior is controlled by u, u =1 be-
ing the fully critical limit of this crossover. Second,
transverse and longitudinal effects compete [with a
crossover amplitude of y/(I —y)1. Finally, k =0 and
k AO compete within the transverse II function. %'e

also note that the solution of the nonlinear differen-
tial equations in lowest-order crossover form corre-
spond to an approximation similar to the simple
screening approximation.

The approach which gives results closest to the cal-
culation given here is that of Schafer and Horner. '
Both approaches follow naturally from their k = 0
limits for which the O(e') results are available for
comparison. Therefore, a comparison will be made
principally for the equation of state. Reference 7 in-

cludes a partial calculation of the two-loop diagrams
neglected in Ref. 1 and here. These alter the effec-
tive value of y from (n —1)/(n+8) to that given by

Eq. (4.12) and incorporate (for the equation of state)
the second leading term of the quadrature integral
given by Brezin et al. and discussed in Ref. 1.
Beyond these emendations there is still a difference
in approach. Both methods introduce an effective
mass for longitudinal effects; the factor I 2 which
enters the present and previous calculations arises
from the natural cutoff of the differential equations
by longitudinal propagation. By its construction I 2

has no, Goldstone effects. In fact, it is analytic in the
scaling variable x(=t/M'~a) ne—ar the coexistence sur-
face. The mass term m' used in Ref. 7 is linear in

the magnetic field near the coexistence surface and
hence nonanalytic in x. It is finite at h =0, but its
higher derivatives with respect to M will be singular.
These differences do not affect their agreement at
O(a'). Both match the e-expansion results [if Eq.
(4.12) is usedj. The two results are identical at
p1 =1 and fl = oo.

Schafer and Horner base their approach on the
Ward identities [0(n) invariance] and an analysis of
the diagram series. Here and in Ref. 1 there are no
diagrams but rather a set of differential equations.
The leading behavior of the solutions of these equa-
tions do not depend upon the approximations used
here. For example, replacing the factors of MI"4 with
a wave-vector-dependent I"3 will not disturb the
structure of (4.4b). The dominant effects are given
(for h 0) by the propagator terms. They determine
the l at which the integration is effectively cut off,
which in turn governs the nature of the singularities.
A more detailed analysis appears to be difficult. The

APPENDIX A: ADVANCED QUASIGLOBAL
OPERATORS

In Ref. 2 several methods of calculating D were
discussed. Since the same methods are needed for
Secs. II and III of the present work, the relationship
between these methods is further clarified in this Ap-
pendix.

In Appendix A of Ref. 1 quasiglobal eigenfunctions
(eigenoperators) for the 1PI generator were given.
They have the property of reducing to the linearized
eigenfunctions at both the Gaussian and infinite
Gaussian fixed points. For all sufficiently small
Hamiltonians, these represent the l +~ limits of
the renormalized Hamiltonian trajectory. That is,
noncritical Hamiltonians run away as l ~ to the in-

finite Gaussian fixed point (critical Hamiltonians of
course approach some nontrivial fixed point). For
differential generators, the Hamiltonian trajectory
may be continued to negative values of l; if the ini-
tial Hamiltonian is sufficiently close to the Gaussian
fixed point (within the suitably defined separ-surface)
then the continuation of the trajectory approaches the
Gaussian fixed point for l —~. In any case, an ex-
pansion of the e type always places the Hamiltonian
near the Gaussian fixed point, so that the linearized
operators at the nontrivial fixed point can be calculat-
ed in an ~ expansion about the Gaussian operators.
The use of the quasiglobal operators generally simpli-
fies the analysis of the global nonlinear behavior in

the I ~ limit at which the thermodynamic functions
may be recovered.

The renormalization-group equations have terms
linear in the 1PI vertices with propagators formed by
the two-point function r(k, l). The use of the previ-
ously defined quasiglobal eigenfunctions would re-
rnove these terms entirely if the two-point function
were independent of the renormalization parameter l.

The terms which remain for l dependent r may or
may not be important for the particular problem con-
sidered. By requiring that these terms be completely
removed, a new definition of quasiglobal operators is
obtained. They are defined by

Of =exp( —Y) t )f(k; k )sk sk
k, I ill

(AI)

y=)f d'k

r[k, I —ln(k)1»k» k-(A2)

where f (kt k ) is a homogeneous function of its
arguments and (for the k' propagator case) Y is given
by
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Note that the two-point function is evaluated at an
advanced value of /(ln(k) (0), so that r(r, /) must
be specified for all values of I. The solution of the
differential equations for the parameters other than
r(k/) ,are solved with r(k, /) assumed known and
then r(k, /) is calculated self-consistently. If there is
no nontrivial variation with /we may write r(k, /) =
k'+ro exp(2/) and Eq. (A2) would look more fami-
liar

Q(k3+roe ') Ssk5s k

(A3)

In the general case the operator Y is more complicat-
ed but the asymptotic solutions of the differential
equations are not made more difficult. Some care
must be taken, however, to include all the important
quadratic terms. For example, for the ordinary criti-
cal point the use of these operators reduces the equa-
tion for the reduced temperature to

t 2t+ 0[ ct3/(1 +)t3] (A4)

showing that the initial value of this variable t differs
only at O(a') from its asymptotic limit (which is the
inverse susceptibility). The u3 must be taken into ac-
count or an improper exponentiation results.

The use of these operators changes the form of the
operator-defined 3/(/) given in Ref. 2. With the
present definition of Y, the only remaining distinction
between the two expressions given in Eqs. (2.5) and
(3.1) of the earlier work is that between r(/) and the
new t(/).

A similar modification can be employed to give the
advanced quasiglobal operators for the general propa-
gator case. With the definitions of Ref. 1 we define

dII c0 d03 5

cur(e, / Inca)—»r »r. -
1/cr, . „

/ca = g d~/o. ;, q; = cu

For non-Ising systems, the function f is a tensor in

the spin-component indices, and Y is the correspond-
ing Laplacian.

Undoing the minimal scaling, the corresponding
equation for 14 eliminates the first two terms of Eq.
(BI):

c fl—3exp e/ —2 ' 3/($(y), y) dy 14
(a2)

(1 + I 3 exp2/)

where, of course,
fl

r4(M) =r4exp 2 J g(P(y), y) dy

This differs from the expression of Ref. 2 by the
presence of the r/ term and by the distinction
between I 2 and I"2 in the propagators. The solution
of Eq. (82) is

r4=u Y

t

c l exp e/ —2 J c/(c/c(y), y) dy
Y = I +3ct

(1 + I'3 exp2/)

(133)

where u is the initial value of I 4. The asymptotic
behavior of the integral may be estimated by ter-
minating the integral at /r, I'3exp(2/&) =1. To esti-
mate the effect of 3/(M), the exponential is expanded

pl ~ ps

Jl, exp(es) I —2 Jl 3/(ctc(y) y) dy+ ds

Moreover there are O(e) k4 and higher momentum-
dependent contributions. In this Appendix, we show
that the lack of a slow-growth term in the expression
for q(M) precludes any change in the vertex func-
tions even at O(e').

To illustrate this, we may ignore the k and higher
terms; their analysis precisely parallels the k' case.
The equation for the four-point function is then

ar4 A ] 'Qr4

Bt 2 8
2&(—y, /) r„&—(y, /) @

3 exp(e/) f'4

(/ + I 3 exp2/) '

APPENDIX B: EFFECTS OF q(M) ON
0 (e}CALCULATIONS

We wish to show that the physical vertex functions
are not significantly changed when calculated with an
O(e) q(M). Such a change might be expected since
the derivation of the approximate 1PI equations
essentially assumed that the coefficient of the
momentum-dependent term (here, k') was always
1+0(e'). In the presence of a nonzero magnetiza-
tion, however, there are e M corrections to the lead-
ing behavior, which if M' is treated as O(a ') as is
required in the equation of state, are definitely O(a).

I y2(2+@(c (B4)4

where the O(e) expression for r/3 3 has been used
and smaller terms dropped. In a strict e expansion
the first term is O(1) and the second is O(e) lead-
ing to O(e') changes in the equation of state. How-
ever, in the exponentiated ~ expansion, the coeffi-
cients of g' are O(e ') and O(e), ieading to O(e')
changes in the exponentiated form, and hence the
direct effects of the q term may be neglected. The
distinction between $ 3+" and 13 induced by the
q(M) term does not change the equation of state
even at O(e'). If I'3 is replaced by cc '+" in Eq.
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(3.14) of Ref. 2 (without the anomalous dimension
crossover term) the equation of state is only changed
in a strict e expansion by a term proportional to e'M'
which is removed by a change of scale. Only at
0(e ) will distinctions need to be made.

A completely careful calculation would have to in-
clude the effects of the k4 and higher terms. One
formal approach is to define a wave-vector-dependent
q such that the renormalized two-point function is al-
ways exactly in the form I 2(k) = I"2(k =0) +k'.
Then all the effects may be analyzed with the

magnetization- and momentum-dependent anoma-
lous dimension crossover function.
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